Home Research Teaching Curriculum




Research interests

  • mathematical and numerical analysis of diffusion equations and cross-diffusion systems
  • homogenization and dimension reduction in nonlinear elasticity theory
  • information fusion with applications to robotic systems



Journal papers                            

  1. J. Ćesić, I. Marković, M. Bukal, and I. Petrović. Extended Information Filter on Matrix Lie Groups. Accepted for publication in Automatica, 2017. (preprint)
  2. M. Bukal, I. Velčić. On the simultaneous homogenization and dimension reduction in elasticity and 
    locality of Gamma-closure. Accepted for publication in Calc. Var. Partial Differential Equations, 2017 (preprint version)
  3. M. Bukal, M. Pawelczyk, I. Velčić. Derivation of homogenized Euler-Lagrange equations for von Kármán rods. Journal of Differential Equations 262 (2017), 5565-5605. doi:10.1016/j.jde.2017.02.009. (preprint)
  4. I. Marković, M. Bukal, J. Ćesić, and I. Petrović. Multitarget tracking with the von Mises-Fisher filter
    and probabilistic data association. Accepted for publication in Journal of Advances in Information Fusion, 2017 (preprint)
  5. M. Bukal. A family of fourth-order q-logarithmic equations. Journal of Mathematical Analysis and Applications 438 (2016), 142-161. doi:10.1016/j.jmaa.2016.02.002 (preprint)
  6. M. Bukal, I. Marković, and I. Petrović. Composite distance based approach to von Mises mixture reduction. Information Fusion 20 (2014), 136-145. DOI: 10.1016/j.inffus.2014.01.003
  7. M. Bukal, E. Emmrich, and A. Jüngel. Entropy stable and entropy-dissipative approximations of a fourth-order quantum diffusion equation.  Numerische Mathematik 127 (2014), 365-396. DOI: 10.1007/s00211-013-0588-7
  8. M. Bukal, A. Jüngel, and D. Matthes. A multidimensional nonlinear sixth-order quantum diffusion equation. Ann. Inst. H. Poincaré Anal. non linéaire  30 (2013), 337-365. DOI: 10.1016/j.anihpc.2012.08.003
  9. M. Bukal, A. Jüngel, and D. Matthes. Entropies for radially symmetric higher-order nonlinear diffusion equations. Commun. Math. Sci. 9 (2011), 353-382. DOI: 10.4310/CMS.2011.v9.n2.a2

Conference papers

  1. I. Marković, M. Bukal, J. Ćesić, and I. Petrović. Direction-only tracking of moving objects on the unit sphere via probabilistic data association. 17th International Conference on Information Fusion (FUSION), Special Session on Directional Estimation. Salamanca, Spain, 2014, 1-7. (full text)
  2. M. Bukal and M. Maurette. Lyapunov functionals for fourth-order lubrication equations. Proceedings of Mathemática Aplicada, Computational e Industrial (MACI), Buenos Aires, 2013, 133-136. (full text)

You can also follow my work on

Google Scholar  &  ResearchGate