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Abstract—Directional data can emerge in many scientific
disciplines due to the nature of the observed phenomena or
the working principles of a sensor. Such direction-only sensors
can be used in applications with the aim of tracking multiple
moving objects. One of the reasons why multiple moving
object tracking can be challenging is because of the need to
deal with the problem of pairing sensors measurements with
tracked objects in the presence of clutter (the data association
problem). In this paper we propose to approach the problem of
multiple object tracking in clutter with direction-only data by
setting it on the unit sphere, thus tracking the objects with a
Bayesian estimator based on the von Mises-Fisher distribution
and probabilistic data association. To achieve this goal we derive
the probabilistic data association (PDA) filter and the joint
probabilistic data association (JPDA) filter for the Bayesian
von Mises-Fisher estimator on the unit sphere. The final PDA
and JPDA filter equations are derived with respect to the
Kullback-Leibler divergence by preserving the first moment of
the spherical distribution. The performance of the proposed
approach is demonstrated in experiments with synthetic data
where moving object trajectories were simulated and noisy
observations obtained along with the clutter simulated as a
Poisson process on the unit sphere.

I. INTRODUCTION

Directional data can emerge in many scientific disciplines.
Since the surface of the earth is approximately a sphere, such
data arise readily in earth sciences, e.g. the location of the
earthquake’s epicenter, the paleomagnetic directions of the
earth’s magnetic pole etc. Furthermore, many astronomical
observations are points on the celestial sphere and as such
yield directional data. In robotics, measurements from various
sensors, due to their nature of operation, yield direction-
only information of the objects of interest, e.g. microphone
arrays measure the sound source direction, perspective and
omnidirectional cameras measure the direction of various
features of interest in space, the heading of the mobile
robot calculated via odometry is a directional variable in
two dimensions etc. One of the possible applications of such
sensors is to utilize them in order to track moving objects in
the context of probabilistic representation of directional data.

Considering the tracking of moving objects, the goal of
such a system is to estimate the trajectories in scenarios with
noisy measurements, clutter or false alarms (measurements
that falsely appear to originate from moving objects) and
multiple moving objects. The duties of such a system are
truly manifold, and in the past several seminal methods
have been developed in order to tackle this problem wherein
data association plays one of the crucial roles. To solve

this problem the methods that can be used are the global
nearest neighbor (GNN) which attempts to find the single
most likely data association hypothesis at each scan [1], the
probabilistic data association (PDA) filter for single object
tracking and joint probabilistic data association (JPDA) fil-
ter for multiple object tracking where multiple hypotheses
are formed after each scan and then these hypotheses are
combined before proceeding further with the next scan [2],
the multiple hypothesis filter (MHT) [3] where multiple data
association hypotheses are formed and propagated from scan
to scan [1]. Also, another method for tracking of multiple
objects is the probability hypothesis density (PHD) filter [4]
which estimates the number of objects in the scene but does
not solve the data association problem by itself, however a
solution has been presented in [5] for the Gaussian mixture
PHD filter [6].

Considering the tracking of moving objects with direction-
only sensors, it was proposed in [7] to utilize the von Mises-
Fisher distribution, a distribution on the unit sphere, to model
the system state and the sensors measurements after which a
Bayesian estimator was developed for single object tracking.
This method was used in our previous work [8] in order to
track a single moving object detected by an omnidirectional
camera on a mobile robot assuming only a single moving
object in the scene, thus not offering a consistent method for
dealing with multiple moving objecst nor false alarms/clutter.
A global nearest neighbor (GNN), which in contrast to JPDA
solves the data association by hard assignment, was applied
in tracking multiple moving objects on the sphere in [9]
and the Rényi α-divergence was used as a distance measure.
The comparison of the GNN and JPDA filter is out of the
scope of this paper and the interested reader is directed to
[1]. Direction-only estimation and tracking within a Bayesian
framework using a probability distribution over quaternions
(3D rotations), namely the Bingham distribution, was used
in [10], [11] and in [12] where, furthermore, a second-
order filter was derived which included also the rotational
velocity. These approaches, advocating the unit hypersphere
as the appropriate filtering space, showed better performance
of the Bingham filter compared to the (extended) Kalman
filter. However, the normalization constant of the Bingham
distribution, hence its partial derivative, cannot be computed
in closed form, but this can be surmounted by caching
techniques and interpolation. On the contrary, the von Mises-
Fisher distribution does not require such techniques since



the normalization constant and its partial derivative can be
calculated in closed form, which will be of practical interest
in the ensuing JPDA equations, but it will involve at one point
a numerical inversion of a ratio of Bessel functions since the
derived equations are transcendental. Note that the Bingham
and the von Mises-Fisher distributions reside on different
manifolds, namely the unit quaternion hypersphere and the
unit vector sphere, respectively. It is also worth bringing
attention to similar approaches, where Bayesian filters were
developed based on the von Mises distribution, a circular
distribution in 2D [11], [13]–[15].

In this paper we propose a probabilistic data association
solution to the problem of tracking a single and multiple
moving objects in clutter with direction-only sensors. We
pose the problem on the unit sphere and utilize a Bayesian
tracking algorithm that is based on a spherical distribution,
namely the von Mises-Fisher distribution. To solve the data
association problem we derive the PDA and JPDA filter equa-
tions for the aforementioned Bayesian von Mises-Fisher filter.
This constituted (i) deriving the a posteriori probabilities
of association events on the unit sphere which essentially
weigh each hypothetical estimation and form a mixture of
von Mises-Fisher densities, (ii) determining the final (single)
component density as the result of the update in the PDA and
JPDA filter by preserving the first moment of the spherical
distribution (which is optimal in the Kullback-Leibler sense),
and (iii) modeling the false alarms as Poisson processes on
the unit sphere. The proposed algorithms were tested on a
synthetic data set comprising of single and multiple-object
scenarios where direction-only measurements were corrupted
with noise and clutter.

The paper is organized as follows. Section II presents the
general mathematical background and formulae for track-
ing on the sphere with the von Mises-Fisher distribution.
Section III describes the proposed PDA and JPDA filtering
approaches based on the von Mises-Fisher distribution. Sec-
tion IV presents the results of the synthetic data experiments,
while Section V in the end concludes the paper.

II. GENERAL BACKGROUND

When considering directions in d dimensions, i.e. unit vec-
tors in d–dimensional Euclidean space Rd, one can represent
them as points on the (d − 1)–dimensional sphere Sd−1 of
unit radius. Thus, in our notation, 1–sphere is the unit circle
in R2 and the 2–sphere is the surface of the unit ball in R3.
In the sequel we introduce all the necessary constituents and
discuss the basic paradigm of a tracking system on the unit
2–sphere using von Mises–Fisher distributions.

A. von Mises–Fisher distribution

Parametric probability distribution f (µ, κ) defined on the
unit (d − 1)–dimensional sphere Sd−1, whose probability
density function (pdf) is given by

f(x;µ, κ) = Cd(κ) exp(κµ · x), x ∈ Sd−1 , (1)

is called von Mises–Fisher (vMF) distribution with parame-
ters κ ≥ 0 and µ ∈ Sd−1 denoting the concentration and the

mean direction, respectively. Expression

Cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
(2)

is the normalization constant, where Ip denotes the modified
Bessel function of the first kind and order p [16]. Density
(1) is rotationally invariant around the mean direction and,
analogously to the multivariate Gaussian distribution, charac-
terized by the maximum entropy principle in the sense that it
maximizes the Boltzmann–Shannon entropy under prescribed
directional mean [16].

Von Mises-Fisher distributions constitute an exponential
family [17] parametrized by the natural parameter θ = κµ ∈
Rd and the log-normalizing function given by

Fd(θ) = − logCd(‖θ‖) . (3)

The minimal sufficient statistics is the identity map, t(x) = x
on Sd−1, hence, the vMF distribution is completely deter-
mined by the directional (angular) mean 1

E[x] =

∫
Sd−1

xf(x;µ, κ)dx = ∇Fd(θ) =: Ad(κ)µ , (4)

where Ad(κ) is the ratio of the following Bessel functions

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
. (5)

Due to the present application of moving objects tracking,
we are particularly interested in case of d = 3 and vMF
distributions on the unit 2–sphere S2, where the above
expressions simplify to [16]

C3(κ) =
κ

4π sinhκ
and A3(κ) =

1

tanhκ
− 1

κ
. (6)

An example of a von Mises-Fisher distribution on the unit
2–sphere S2 with different mean directions and concentration
parameters is depicted in Fig. 1.

B. Motion model
In our model we assume that moving objects are relatively

slow with respect to the sampling rate, i.e. changes in the
objects’s position between two consequent observations are
relatively small. Mathematically, motion of such objects is
then described by a wide-sense stationary stochastic pro-
cesses, among which, the Wiener process (Brownian motion)
is the standard choice [18]. These time-continuous processes
are typically further approximated by a random walk of a
fixed time step. We will briefly describe two model examples
whose transition probability function can be well approxi-
mated by the vMF distributions, thus motivating the nonlinear
filtering framework discussed in Section II-D.

First, consider the isotropic Wiener process in R3 and
corresponding time-discretization (random walk) of fixed
time step τ > 0. The transition probability density function
of the process is given by the Gaussian density

p(xk|xk−1) =
1

(2πσ2
τ )3/2

exp(−‖xk − xk−1‖2/2σ2
τ ) , (7)

1Note that the directional mean is defined by the integral (4), while the
mean direction µ is the parameter of the von Mises-Fisher distribution.
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Fig. 1: Samples on the unit 2–sphere of the von Mises-Fisher
distribution with different mean directions and concentration
parameters of 50 (red), 150 (green), 500 (blue).

where σ2
τ := σ2τ and σ > 0 denotes the process strength. If

we are confined to a mesurement device which only measures
direction x̂k ∈ S2 of position vectors xk, then marginalizing
(7) over the range, one obtaines statistical model being the
angular Gaussian density [19]

p(x̂k|xk−1) =
1

C

∫ ∞
0

s2 exp(−s2/2κτ+sx̂k−1·x̂k)ds (8)

with parameters x̂k−1 = xk−1/‖xk−1‖, κτ = ‖xk−1‖2/σ2
τ ,

and normalization constant C. Following [7], for moderate or
large values of κτ (practically most relevant cases), (8) can
be well approximated by the vMF density f(x̂k; x̂k−1, κτ ).

Second, if we consider a random walk approximating the
isotropic Wiener process on S2 [20], its transition pdf is given
by

p(x̂k|x̂k−1) =
1

4π

∞∑
l=0

(2l+1)e−σ
2
τ l(l+1)Ll(x̂

k−1 · x̂k) , (9)

where Ll are Legendre polynomials of degree l, and στ > 0
defined as above. Again, according to [16, Section 9.3.3],

p(x̂k|x̂k−1) ≈ f(x̂k; x̂k−1, κτ ) ,

where κτ = 1/2σ2
τ . In further, we will assume our motion

model on the unit 2–sphere being described by the von Mises-
Fisher density.

Usage of physically more realistic motion models like
Ornstein–Uhlenbeck or Langevin processes [21], in place of
simple Wiener process, requires more complex state represen-
tation manifolds and solving the Fokker-Planck equation to
obtain the corresponding state transition densities. The latter
typically needs to be further approximated by an appropriate
parametric density which will keep the model computation-
ally tractable and statistically consistent with the remaining
ingredients of the filtering algorithm: state distribution and
measurement model.

C. Observation model
As already announced above, we assume that observation

process consists of measuring object’s direction, where mea-
surement disturbances are interpreted as random rotations,
i.e. observed direction z is a random rotation of the true
direction x. It is reasonable to statistically describe such
model by a unimodal distribution which is rotationally in-
variant around the true direction x. Our choice will be the
von Mises–Fisher distribution [22], represented by its density

p(z|x) = C3(κo) exp(κox · z), z,x ∈ S2 , (10)

where the concentration parameter κo describes the measure-
ment uncertainty.

D. Filtering equations
Having at hand the motion and observation models, both

described by vMF densities, we can perform the simplest
Bayesian tracking of a moving object. Let the object have
the estimated position (direction) µk−1 ∈ S2, conditioned
upon all available measurements up to (and including) time
k − 1, which is statistically described by the density

p(xk−1|z1:k−1) = C3(κk−1) exp(κk−1µk−1 · xk−1) .

Predicted direction at the next time is described by the
convolution of the motion model with the belief density

p(xk|z1:k−1) =

∫
S2
p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 .

(11)
Since convolution of two vMF densities is not vMF, we will
approximate (11) by another vMF, which is optimal choice
in the sense of the Kullback-Leibler divergence [23]. Cal-
culating the directional mean with respect to the prediction
density

E[xk|z1:k−1] =

∫
S2
xkp(xk|z1:k−1)dxk

= A3(κτ )A3(κk−1)µk−1 ,

according to (4) we determine unique vMF f(xk; µ̄k, κ̄k)
such that E[xk|z1:k−1] = A3(κ̄k)µ̄k. Thus, the prediction
equations are [7]:

µ̄k = µk−1 , κ̄k = A−13 (A3(κτ )A3(κk−1)) , (12)

where A−13 denotes the inverse to the strictly monotone
function A3 defined in (6).

Upon availability of the measurement zk at time k, pos-
terior density is found using the Bayes rule

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)

= C3(κk) exp(κkµk · xk) ,

with corresponding update equations [7]:

κk = ‖κozk + κ̄kµ̄k‖ ,

µk =
κoz

k + κ̄kµ̄k

κk
.

(13)

Note that equations (12)–(13) resemble the linear Kalman
filter equations for updating mean and covariance matrix of
Gaussian distributions [24].



III. TRACKING IN CLUTTER ON THE UNIT 2–SPHERE

Tracking of objects in a cluttered environment requires,
among other, to resolve the problem of measurement-to-
object association. In this section we recall two basic proba-
bilistic (nonbackscan) approaches, developed in seminal pa-
pers of Bar-Shalom et al. [25], [26] in the context of Poisson
distributed clutter and linear models described by Gaussian
distributions. Here we extend those to directional (spherical)
models described by von Mises–Fisher distributions.

A. Probabilistic data association filter

First we assume a single object in track with multiple
measurements where the number of false alarms is a Poisson
distributed random variable. Let Zk denote the set of all
measurements that fall within the validation gate at time k

Zk = {zkj : j = 1, . . . ,mk},

and Z1:k = {Z1, . . . , Zk} the history of all measurements
within the validation gate. On how the validation gate is
calculated for the von Mises-Fisher distribution, please refer
to [9]. We want to calculate the conditional probability
density p(xk|Z1:k) for all k ≥ 1. Assume that at a given
time k − 1, the object’s direction is described by the vMF
density

p(xk−1|Z1:k−1) = C3(κk−1) exp(κk−1µk−1 · xk−1).

Obtaining measurements Zk we build the following set of
hypotheses:

Hj = {zkj is the correct measurement}, j = 1, . . . ,mk ,

and

H0 = {none of the gated measurements are correct} .

Using the total probability formula, the posterior probability
density at time k is given by

p(xk|Z1:k) =

mk∑
j=0

p(xk|Hj , Z1:k)P (Hj |Z1:k) . (14)

From the definition of Hj and using the Bayes rule, for j =
1, . . . ,mk we have

p(xk|Hj , Z1:k) = p(xk|Hj , Zk, Z1:k−1)

=
p(Zk,Hj |xk)p(xk|Z1:k−1)

p(Zk,Hj |Z1:k−1)

=
p(zkj |xk)p(xk|Z1:k−1)

p(zkj |Z1:k−1)
.

(15)

Assuming that the likelihood and the prior density are both
vMF with respective parameters zkj , κo, and µ̄k, κ̄k given
by (12), then the posterior density in (15) is also vMF with
parameters analogous to those in (13):

κkj = ‖κozkj + κ̄kµ̄k‖ , (16)

µkj =
κoz

k
j + κ̄kµ̄k

κkj
, j = 1, . . . ,mk . (17)

Clearly, for j = 0, p(xk|H0, Z
1:k) = p(xk|Z1:k−1).

Let wj = P (Hj |Z1:k) denote the a posteriori probabilities
of each feature having originated from the object in track.
According to calculations in [26, Appendix]

wj =
p(zkj |Hj , Z1:k−1)

b+
∑mk
l=1 p(z

k
l |Hl, Z1:k−1)

, j = 1, . . . ,mk , (18)

w0 =
b

b+
∑mk
l=1 p(z

k
l |Hl, Z1:k−1)

, (19)

where b = c(1 − pGpD)/pD, c > 0 is the clutter density,
pG is the probability that the correct feature will be inside
the validation gate, and pD is the probability that the correct
feature will be detected. Density p(zkj |Hj , Z1:k−1) denotes
the probability density of a measurement conditioned upon
past data and hypothesis that is correct, which is assumed to
be known and in our case it is modeled by the vMF density

p(zkj |Hj , Z1:k−1) = f(zkj ; µ̄k, κkS) , (20)

where
κkS = A−13 (A3(κo)A3(κ̄k)) . (21)

Note that parameter κkS has the role analogous to the Kalman
innovation for linear models.

Having defined and calculated all the ingredients, posterior
density (14) becomes a mixture of vMF densities

p(xk|Z1:k) =

mk∑
j=0

wjf(xk;µkj , κ
k
j ) . (22)

In order to estimate the object’s direction µk ∈ S2, we
calculate the directional mean

E[xk|Z1:k] =

∫
S2
xkp(xk|Z1:k)dxk =

mk∑
j=0

wjA3(κkj )µkj ,

and, using (4), determine the unique vMF density
f(xk;µk, κk), which is the best approximation of (22) in
the sense of the Kullback–Leibler divergence by solving

κk = A−13

(∥∥∥ mk∑
j=0

wjA3(κkj )µkj

∥∥∥) , (23)

µk =
( mk∑
j=0

wjA3(κkj )µkj

)/
A3(κk) . (24)

The latter procedure is the analogon of computing the state
estimate and covariance matrix from the mixture of Gaussians
representing the posterior densities in [25], [26].

B. Joint probabilistic data association filter

Next we consider the problem of tracking several interfer-
ing objects {O1, . . . ,ON}, with the number of objects being
fixed to N . The main issue is how to appropriately assign
features to objects in track. In principle, PDA filter approach
could be applied for each object separately, but this would
implicitly assume that all measurement features originated by
another object in track are Poisson distributed clutter [26],
and we would like to avoid such a rough assumption.



Let Xk = {xk1 , . . . ,xkN} ⊂ S2 denotes the set of object’s
states (directions) at time k, and assume that at a given time
k − 1 position of each object Oi is described by the vMF
density

p(xk−1i |Z1:k−1) = C3(κk−1i ) exp(κk−1i µk−1i · xk−1i ) .

Upon availability of a set of new measurements Zk = {zkj :
j = 1, . . . ,mk}, the following set of hypotheses is built:

Hij = {zkj is caused by Oi} , j = 1, . . . ,mk ,

and

Hi0 = {none of the measurements is caused by Oi} .

Again, the total probability formula implies that the posterior
density for object Oi at time k is given by

p(xki |Z1:k) =

mk∑
j=0

p(xki |Hij , Z1:k)P (Hij |Z1:k) , (25)

where densities p(xki |Hij , Z1:k) are computed following
the same lines and assumptions as in the previous PDA
filter approach. They are vMF densities f(xki ;µkij , κ

k
ij) with

parameters

κkij = ‖κozkj + κ̄ki µ̄
k
i ‖ , (26)

µkij =
κoz

k
j + κ̄ki µ̄

k
i

κkij
, j = 1, . . . ,mk , (27)

and κki0 = κ̄ki and µki0 = µ̄ki .
The only difference between PDA filter and JPDA filter

is in calculation of a posteriori association probabilities
wij = P (Hij |Z1:k), where JPDA filter takes into account
measurement-to-object association events jointly across the
set of objects. This means that hypothesis Hij consists of all
valid joint association events E which assign feature zkj to
object Oi. By valid joint association events we consider those
which assert that every feature lying within the validation
gate region can originate from at most one object and every
object can generate at most one feature. Thus, they partition
the hypothesis Hij and

wij =
∑
E∈Hij

P (E|Z1:k), j = 1, . . . ,mk , (28)

wi0 = 1−
mk∑
j=1

wij . (29)

In order to compute P (E|Z1:k), two auxiliary indicator
functions are introduced: measurement association indicator
ϕj(E), which indicates whether in event E measurement zkj
is associated with any object, and target detection indicator
δi(E), which indicates whether in E any measurement is
associated with object Oi. Following [26] and using vMF
model instead of the Gaussian, we obtain

P (E|Z1:k) = B(E)

mk∏
l=1

ϕl(E)=1

f(zkl ; µ̄kil , κ
k
S,il

)

with κkS,il = A−13 (A3(κo)A3(κ̄kil)) analogous to (21), where
il is the object index with which measurement zkl is associ-
ated. Next,

B(E) =
cφ(E)

p
α(E)
G C

N∏
i=1

δi(E)=1

piD

N∏
i=1

δi(E)=0

(1− piD) ,

where φ(E) is the number of false features in joint event E ,
which is assumed Poisson distributed, α(E) =

∑mk
j=1 ϕj(E)

is the number of measurement-to-object associations in E ,
pG is the probability that the correct measurement will be
inside the validation gate, piD is the detection probability of
object Oi, and C is the normalization constant.

Posterior density (25) for object Oi is again a mixture of
vMF densities, and the estimated posterior direction µki with
uncertainty κki is calculated via

κki = A−13

(∥∥∥ mk∑
j=0

wijA3(κkij)µ
k
ij

∥∥∥) , (30)

µki =
( mk∑
j=0

wijA3(κkij)µ
k
ij

)/
A3(κki ) . (31)

IV. SYNTHETIC DATA EXPERIMENTS

In order to test the performance of the 2–sphere PDA and
JPDA filter, we have simulated trajectories of a maneuvering
object in 3D, where the dynamics of the system were de-
scribed by a jump-state Markov model [27]. In order to make
the simulations as realistic as possible (i) the trajectories
were corrupted with Gaussian noise in the 3D Euclidean
coordinates prior to projecting the noisy positions to the unit
sphere, (ii) the probability of detection was pD = 0.95 and
(iii) false alarms were simulated as a Poisson process on the
unit 2–sphere with the mean value λ = βµ(S2) = β · 4π,
where µ denotes the area measure on S2 and the intensity
β was defined as the number of measurements per solid
radian. Hence, on average we could expect 4πβ false alarms
per sensor frame sampled from a uniform distribution on the
unit 2–sphere. The experiments involving the PDA and the
JPDA filter were envisaged so as to simulate tracking on
the 2–sphere of a single moving object and multiple moving
objects in clutter, respectively.

The experimental results of the tracking task involving
PDA filter are shown in Fig. 2. The trajectory of the single
moving object (black) and corresponding estimated trajectory
(green) are shown in Fig. 2a. Azimuth and elevation for
both trajectories as well as false alarms represented by red
pluses are shown in Figs. 2b and 2c, respectively. The error,
calculated as the great circle distance between the real and the
estimated trajectories, is shown in Fig. 2d. The gained mean
error value equals to 0.84◦, which confirmed the prospects
of the method even with high false alarm rate.

The experimental results of the tracking task for JPDA
filter are shown in Fig. 3. The trajectories of three moving
objects (black) and corresponding estimated trajectories (red,
green and blue) are shown in Fig. 3a. Azimuth and elevation
for all the trajectories as well as false alarms represented
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Fig. 2: The experimental results of the tracking task for the PDA filter. The solid green line represents the estimated direction,
while the solid black line is the ground truth in (a), (b), and (c). The red plus signs in (b) and (c) represent false alarms.

by red pluses are shown in Figs. 3b and 3c, respectively.
The error, calculated as the great circle distance between the
true and the estimated trajectories, is shown in Fig. 3d. The
gained mean error values for all the tracks stayed beneath
1◦, confirming the effectiveness of the proposed method.
However, the approach presented in this paper estimates only
the direction of the objects without taking into account its
motion model, thus not predicting the future positions of the
tracked objects. This can cause, for example, that two filters
either switch their tracked trajectories or both start tracking
the same object. Resolving this problem will be the aim of
our future research.

V. CONCLUSION

In the present paper we have proposed methods for track-
ing single and multiple moving objects in clutter, where the
observation consisted of only the objects’s directions. The
methods are based on Bayesian tracking with an isotropic
distribution on the unit 2–sphere, namely the von Mises-
Fisher distribution, and the data association logic of the PDA
and JPDA filters. For single object tracking we have derived
the PDA filter equations by assuming a moving object in a
Poisson distributed clutter. This has resulted with a mixture of
hypotheses represented as von Mises-Fisher densities which
were weighted by the a posteriori probability that the selected
measurement is correct. For multiple object tracking the
JPDA filter was derived under similar assumptions which
again resulted with a mixture of hypotheses represented
as von Mises-Fisher densities, where each component was
weighted by the a posteriori probability of the association

event. The final single component estimate for each object
in track, both in the PDA and JPDA filter case, was obtained
by preserving the first moment of the spherical distribution
which is optimal in the Kullback-Leibler sense. In the end,
the proposed methods were tested on synthetic data examples
simulating a scenario of tracking a single and multiple objects
in clutter on the unit 2–sphere.
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objects using adaptive sample-based joint probabilistic data association
filter,” in International Conference on Computational Intelligence,
Robotics and Autonomous Systems (CIRAS), 2008, pp. 99–104.


