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Abstract

In this paper we study the effects of simultaneous homogenization and dimension reduction
in the context of convergence of stationary points for thin nonhomogeneous rods under the
assumption of the von Kármán scaling. Assuming stationarity conditions for a sequence of
deformations close to a rigid body motion, we prove that the corresponding sequences of
scaled displacements and twist functions converge to a limit point, which is the stationary
point of the homogenized von Kármán rod model. The analogous result holds true for the
von Kármán plate model.
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1. Introduction

Boosted by the rigidity result of Friesecke, James and Müller [14], the rigorous deriva-
tion of various approximate models from three-dimensional nonlinear elasticity theory and its
variational justification have become a prominent research topic in the last decade. In partic-
ular, based on a refined rigidity result [15], a whole hierarchy of limiting lower-domensional
models has been derived by means of Γ-convergence techniques [4, 10]. In this paper, we
only refer to the derivation of nonlinear inextensible rod models [23, 25]. In all these models
however, the material is assumed to be fixed, i.e. does not have a microstructure. There is
also a vast literature on studying the effects of simultaneous homogenization and dimension
reduction in various contexts [5, 9, 19], but we will focus on the derivation of rod models. In
[21] the authors studied a linearized rod model assuming its homogeneity along the central
line and nonhomogeneous microstructure in the cross section. A systematic approach com-
bining rigidity estimates [15] and the two-scale convergence method [1] was presented in [28]
for the model of bending rod under the assumption of periodic microstructure. The same
homogenized model has been obtained in [22] without periodicity assumptions, while using a
Γ-convergence method tailored to dimension reduction in higher-order elasticity models. This
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method has been previously applied for the derivation of homogenized von Kármán plate [32]
and linearized elasticity models [8], and in this paper we briefly outline how it accomplishes
the homogenized von Kármán rod model (see Section 2.5).

The main purpose of this paper is to study convergence of stationary points of thin three-
dimensional inhomogeneous rods in the von Kármán scaling regime. The above mentioned
Γ-convergence techniques roughly assert that a compact sequence of minimizers of scaled
energies converges (on a subsequence) to a minimizer of the limit energy. However, due to
nonlinearities, these minimizers are typically only global and do not necessary satisfy the
corresponding Euler–Lagrange equation. Secondly, it is possible that there exist stationary
points that are not minimizers and thus their convergence can not be analyzed by the Γ-
convergence approach. Convergence of stationary points of thin elastic rods in the bending
regime has been first studied in [26] on a simplified model of thin 2D strips and thenafter
extended to the full 3D problem in [24]. In order to identify the limit equations, besides
the rigidity estimate, the authors also used compensated compactness and careful truncation
arguments. Later on, convergence of stationary points of thin elastic rods in higher-order
scaling regimes (including the von Kármán scaling), under physical growth conditions for the
elastic energy density, has been established in [11]. However, in all these models the rod
material was assumed to be fixed, i.e. without a microstructure.

In this paper we allow for possibility of materials with a microstructure (including random)
and study the effects of simultaneous homogenization and dimension reduction in the context
of convergence of stationary points in the von Kármán rod model. Let us denote by Ω =
(0, L) × ω ⊂ R3 a three-dimensional rod-like canonical domain of length L > 0 and cross-
section ω ⊂ R2 bounded, having a Lipschitz boundary. The (scaled) energy functional of a rod
of thickness h > 0 occupying material domain Ωh = (0, L)× hω associated to a deformation
yh : Ω→ R3 is defined on the canonical domain by

Eh(yh) =

∫
Ω
W h(x,∇hyh)dx−

∫
Ω
fh · yhdx . (1)

Above W h is an elastic energy density describing an admissible composite material (see Sec-
tion 2.2), ∇hyh = (∂1y

h | 1
h∂2y

h | 1
h∂3y

h) denotes the scaled gradient of the deformation, and
fh describes an external load. It is well known that different scaling regimes with respect to
the thickness h in the applied load and elastic energy lead in the limit to different rod models
[15, 31]. In the von Kármán scaling of the rod, which is the subject of the research here, we
assume that the elastic energy of a sequence (yh) satisfies

lim sup
h↓0

1

h4

∫
Ω
W h(x,∇hyh)dx <∞ . (2)

The forcing term scales as fh = h3f , where f = f2e2 + f3e3 with f2, f3 ∈ L2(0, L), meaning
that only normal loads to the mid-fiber of the rod are considered. One can prove that under
this scaling of the forces the global minimizers satisfy the assumption (2), see [15] for details.

Under assumption (2) on a sequence of deformations (yh) one can also prove, based on the
theorem of geometric rigidity [14], that there exist sequences of rotations (R̄h) ⊂ SO(3) and
constants (ch) ⊂ R3, such that transformed deformations ŷh = (R̄h)T yh − ch converge to the
identity deformation on (0, L) in the L2-norm, i.e. ŷh → x1e1, and moreover, ∇hŷh → I in
the L2-norm [23] (cf. Theorem 2.1 below), where I is the 3× 3 identity matrix. Furthermore,
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the scaled displacements, defined by

uh(x1) =

∫
ω

ŷh1 − x1

h2
dx′ , vhi (x1) =

∫
ω

ŷhi
h

dx′ for i = 2, 3 , (3)

and the twist functions

wh(x1) =
1

µ(ω)

∫
ω

x2ŷ
h
3 − x3ŷ

h
2

h2
dx′ , (4)

where µ(ω) =
∫
ω(x2

2 + x2
3)dx′, converge (weakly) on a suitably extracted subsequence to

(u, v2, v3, w) ∈ H1(0, L)×H2(0, L)×H2(0, L)×H1(0, L) (see Theorem 2.4 for more details).
If one assumes the natural fixed boundary condition at one end of the rod, then it can be
shown that R̄h can be taken to be identity and ch can be taken to be zero (see Remark 2.2
below).

The strain sequence (Gh) is implicitly defined through the decomposition of the scaled
gradient as ∇hŷh = Rh(I + h2Gh), where (Rh) denotes the sequence of rotation functions
constructed in Theorem 2.1. Convergence results from Theorems 2.1 and 2.4 allow for the
representation of the symmetrized strain symGh as the sum of a fixed and a corrector (and
remainder) term as follows:

symGh = sym(ı(md))︸ ︷︷ ︸
fixed term

+ sym∇hψh︸ ︷︷ ︸
corrector term

+oh , (5)

where the fixed term is

md =

 u′ + 1
2

(
(v′2)2 + (v′3)2

)
− v′′2x2 − v′′3x3

−w′x3

w′x2

 , (6)

with ı denoting the inclusion of vectors into 3× 3 matrices, the sequence (ψh), called the cor-
rector sequence, satisfies (ψh1 , hψ

h
2 , hψ

h
3 ) → 0,

∫
ω(x2ψ

h
3 − x3ψ

h
2 )dx′ → 0 in the L2-norm and

‖ sym∇hψh‖L2(Ω) ≤ C, while the rest sequence (oh) converges to zero in the L2-norm. The
corrector term plays the role of the corrector in homogenization. Utilizing the Γ-convergence
method developed for the bending rod model in [22], we can analogously perform the simul-
taneous homogenization and dimension reduction process in the von Kármán case and obtain
that the corresponding homogenized model, i.e. the Γ-limit of h−4Eh(ŷh) as h ↓ 0, is given by

E0(u, v2, v3, w) = K(h)(md)−
∫ L

0
(f2v2 + f3v3)dx1 ,

where the functions u, v2, v3 and w are the weak limits of the scaled displacements and the
twist functions, respectively, and md is given by (6). Moreover, the resulting limit elastic
energy density (depending on a given subsequence of the diminishing thickness (h)) can be
calculated according to

K(h)(md) = lim
h↓0

∫
Ω
Qh(x, ı(md) + sym∇hψhmd)dx , (7)

where Qh is the quadratic form approximating the energy density W h, and (ψhmd) the sequence
(which we call the relaxation sequence) that satisfies certain minimality property (see (21),
(22) below). Confer Section 2.5 for more details.
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As we already stressed out, our aim is to study the stationary points of the energy func-
tional Eh rather than just global minimizers attainable through the Γ-convergence techniques.
The weak form of the Euler–Lagrange equation of the functional Eh, assuming the zero bound-
ary condition on the zero cross-section {0} × ω, formally reads:∫

Ω

(
DW h(x,∇hyh) : ∇hφ− h3(f2φ2 + f3φ3)

)
dx = 0 , (8)

for all test functions φ ∈ H1
ω(Ω,R3) = {φ ∈ H1(Ω) : φ|{0}×ω = 0}. This notion of station-

arity is the standard one, but possibly not best suited for the nonlinear elasticity. Namely, it
is still an open question whether under physical growth assumptions on the energy densities
W h, global or suitably defined local minimizers of Eh satisfy the Euler–Lagrange equation [3].
In this paper we additionally require linear growth and continuity of the stress (cf. hypothesis
H5 below). This is also done in [24, 26]. There is an alternative notion of first-order sta-
tionarity in elasticity, proposed by Ball in [3], and that concept is compatible with a physical
growth condition which roughly says that the energy blows up if the deformation degener-
ates. While the authors in [11] managed to deal with the alternative stationarity condition
and to systematically derive the corresponding stationarity conditions for the limit models,
our method is not compatible with that mainly because of the possibility of interpenetration
of the matter and we remain in the previously discussed setting.

Now we are in position to state the main result of the paper.

Theorem 1.1. Let the sequence (W h) describe an admissible composite material (see (C1),
(C2), (C3) below) and let (yh) ⊂ H1

ω(Ω,R3) be a sequence satisfying (2). Then the sequence
of deformations and sequences of scaled displacements (we take ŷh = yh) converge (on a
subsequence) as follows:

yh → x1e1strongly in H1(Ω,R3) ,

uh ⇀ u weakly in H1
0 (0, L) ,

vhi → vi strongly in H1
0 (0, L) , and vi ∈ H2

0 (0, L) for i = 2, 3 ,

wh ⇀ w weakly in H1
0 (0, L) .

Let fh = h3(f2e2 + f3e3) with f2, f3 ∈ L2(0, L) be an external load and assume that (yh) are
stationary points of the energy functional Eh, i.e. solve equation (8), then (u, v2, v3, w) is a
stationary point of the limit energy functional E0.

Big part of the proof of Theorem 1.1 (compactness) does not differ much from the case of
materials without a microstructure, which is already available in the literature. These results
are comprised and properly referenced in Theorems 2.1 and 2.4 below in Section 2. Hence,
the main focus here is the statement that stationarity of the sequence of deformations yh of
the energy functional Eh (in the sense of (8)) implies the stationarity of the point (u, v2, v3, w)
for the limit energy functional E0. The key in proving that statement are the orthogonality
properties provided in Lemma 2.5 and Lemma 3.1, respectively, which essentially allows us to
identify two sequences: the relaxation sequence (ψhm) from (7) and the sequence of correctors
(ψh) from (5) up to L2-concentrations, which are irrelevant for identification of weak limits.
Namely, Lemma 2.5 tells us that the orthogonality property is automatically satisfied by the
relaxation sequence (ψhm), while Lemma 3.1 proves this property for the sequence of correctors
(ψh) by using the equations. The proof of Lemma 3.1, together with the proof of Theorem
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1.1, and identification of limit Euler–Lagrange equations are the subject of Section 3, while
some technical results can be found in the Appendix. We emphasize at this point that, up to
some technical peculiarities, the same approach can be utilized for studying the convergence
of stationary points of the von Kármán plate model, and the analogous result holds true.

Finally, in Section 4 we consider materials with random microstructure satisfying the
von Kármán scaling and provide an explicit cell formula for the limit energy density of the
functional K(h) (cf. Proposition 2.6). This result also covers the case of materials with periodic
and almost periodic microstructure.

2. Preliminaries

2.1. Notation

The set Ω = (0, L)× ω ⊂ R3 is a Lipschitz domain describing the canonical configuration
of a rod of length L > 0 and shape ω ⊂ R2. Vectors e1, e2, e3 denote the canonical basis
of R3 and (x1, x

′) ∈ R3, with x′ = (x2, x3) ∈ R2, denote the coordinates of a point in R3

with respect to that basis. Also, we will frequently use the projection of a point x ∈ R3

to x′-plane, denoted by px′(x) = (0, x′)T . For a given thickness h > 0, the scaled gradient
is denoted by ∇h = (∂1,

1
h∂2,

1
h∂3). The space of real 3 × 3 matrices is denoted by R3×3,

while R3×3
sym, R3×3

skw and SO(3) denote the subspaces of symmetric, skew-symmetric, and special
orthogonal matrices, respectively. For a skew-symmetric matrix A we denote its axial vector
by axlA = (A32, A13, A21). By ι : R3 → R3×3 we denote the inclusion ι(v) = v⊗e1. Depending
on the context, by | · | we denote both the Lebesgue measure of a set and the euclidean norm
of a vector in Rd. The space of smooth functions on [0, L] which are vanishing at zero will be
denoted by C∞0 ([0, L]), while the space of smooth functions on Ω with compact support will
be denoted by C∞c (Ω). Given two functions φ, ψ ∈ L1(Ω,R3), we define the twist function
t(φ, ψ) : (0, L)→ R by

t(φ, ψ)(x1) =

∫
ω
(x2ψ − x3φ)dx′ .

Finally, the moments of a function Ψ ∈ L1(Ω,R3×3) are denoted as follows. The zeroth
moment Ψ : (0, L)→ R3×3 is defined by

Ψ(x1) =

∫
ω

Ψ(x)dx′ , (9)

and first-order moments Ψ̃, Ψ̂ : (0, L)→ R3×3 are defined by

Ψ̃(x1) =

∫
ω
x2Ψ(x)dx′ , Ψ̂(x1) =

∫
ω
x3Ψ(x)dx′ . (10)

2.2. von Kármán rod model – supplement

Let ω ⊂ R2 be a Lipschitz domain with Lebesgue measure |ω| = 1 and assume that
coordinate axes are chosen such that∫

ω
x2dx′ =

∫
ω
x3dx′ =

∫
ω
x2x3dx′ = 0 .

By Ωh = (0, L) × hω we denote the material domain of a rod-like body of thickness h > 0
and length L > 0. Performing the standard change of variables Ωh 3 x̂ 7→ x ∈ Ω, given
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by x1 = x̂1, x′ = 1
h x̂
′, we will in the sequel work on the canonical domain Ω = (0, L) × ω.

For every h > 0, the (scaled) energy functional of a deformation yh : Ω → R3 is given by
expression (1).

For the elastic energy densities W h we have more or less standard hypotheses for nonlinear
composite material, which are listed in the sequel.
Nonlinear material law. Let α, β, % and κ be positive constants such that α ≤ β. The class
W(α, β, %, κ) consists of all measurable functions W : R3×3 → [0,+∞] satisfying:

(H1) frame indifference: W (RF ) = W (F ) for all F ∈ R3×3 and R ∈ SO(3);

(H2) non-degeneracy:

W (F ) ≥ α dist2(F,SO(3)) for all F ∈ R3×3 ,

W (F ) ≤ β dist2(F,SO(3)) for all F ∈ R3×3 with dist2(F,SO(3)) ≤ % ;

(H3) minimality at identity: W (I) = 0;

(H4) quadratic expansion at identity: W (I + G) = Q(G) + o(|G|2) as G → 0 (G ∈ R3×3),
where Q : R3×3 → R is a quadratic form;

(H5) linear stress growth: |DW (F )| ≤ κ(|F |+ 1) for all F ∈ R3×3.

Admissible composite material. For α, β, % and κ positive constants as above, a family of
functions W h : Ω × R3×3 → [0,+∞] describes an admissible composite material of class
W(α, β, %, κ) if the following hypotheses hold:

(C1) for every h > 0, W h is almost everywhere equal to a Borel function on Ω× R3×3;

(C2) for every h > 0, W h(x, ·) ∈ W(α, β, %, κ) for a.e. x ∈ Ω;

(C3) there exists a monotone function r : [0,+∞)→ [0,+∞) such that r(δ) ↓ 0 as δ ↓ 0 and

∀G ∈ R3×3 , ∀h > 0 : ess sup
x∈Ω

|W h(x, I +G)−Qh(x,G)| ≤ r(|G|)|G|2 , (11)

where Qh(x, ·) are quadratic forms defined in (H4).

The given quadratic form Qh(x, ·) can be (uniquely) represented by a positive semidefinite
linear operator Ah(x), i.e.

Qh(x, F ) =
1

2
Ah(x)F : F , for all F ∈ R3×3 and for a.e. x ∈ Ω .

Assuming that Qh corresponds to an elastic energy density W h belonging to a family of elastic
energy densities describing an admissible composite material of the class W(α, β, %, κ), one
can easily prove that Qh is a Carathéodory function which satisfies:

(a) α| symF |2 ≤ Qh(x, F ) = Qh(x, symF ) ≤ β| symF |2, for all F ∈ R3×3;

(b) |Qh(x, F1)−Qh(x, F2)| ≤ β| symF1 − symF2|| symF1 + symF2|, for all F1, F2 ∈ R3×3.
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2.3. Rigidity and compactness

Using the theorem of geometric rigidity [14], the following result has been established in
[23].

Theorem 2.1. Let (yh) ⊂ H1(Ω,R3) be a sequence satisfying

lim sup
h↓0

1

h4

∫
Ω

dist2(∇hyh, SO(3))dx < +∞ .

Then there exist: a sequence of maps (Rh) ⊂ C∞([0, L], SO(3)), a sequence of constant
rotations (R̄h) ⊂ SO(3) and constants (ch) ⊂ R3 such that the sequence (ŷh), defined by
ŷh = (R̄h)T yh − ch, satisfies

‖∇hŷh −Rh‖L2(Ω) ≤ Ch2 , (12)

‖(Rh)′‖L2(0,L) ≤ Ch ,
‖Rh − I‖L2(0,L) ≤ Ch .

The sequence of constants (ch) in the previous theorem can be chosen such that∫
Ω

(ŷh1 − x1)dx = 0 ,

∫
Ω
ŷhi dx = 0 for i = 2, 3 .

Next, we introduce the following ansatz for (ŷh):

ŷh1 = x1 + h2

(
uh − x2

Rh21

h
− x3

Rh31

h

)
+ h2βh1 ,

ŷhi = hxi + hvhi + h2whx⊥i + h2βhi , for i = 2, 3 ,

(13)

where x⊥ = (0,−x3, x2), and functions uh, vh2 , vh3 , and wh are defined in (3) and (4).

Remark 2.2. Using (12), the Poincaré inequality, the fact that yh(0, x2, x3) = (0, hx2, hx3),
and the construction from [23], it can be shown that |Rh(0) − I| ≤ Ch3/2 for some C > 0.
Thus the boundary condition imply that R̄h can be taken to be equal to identity matrix and ch

can be taken to be zero (i.e., we can take ŷh = yh).

Remark 2.3. Observe that the proposed ansatz is a slight modification of the ansatz for the
same sequence (ŷh) from [23, Theorem 2.2 (f)]. In lieu of terms (vhi )′, i = 2, 3, we set 1

hR
h
i1,

respectively. This enables us to control the full scaled gradient of the corrector sequence (βh)
in the L2-norm (see Theorem 2.4 below), which is crucial for application of our method in
the analysis afterwards.

Theorem 2.4. Let the assumption and notation of the previous theorem be retained and let
yh(0, x2, x3) = (0, hx2, hx3). For sequences (uh), (vhi ), i = 2, 3, and (wh) defined above, we
have the following convergence results which hold on a subsequence:

uh ⇀ u weakly in H1
0 (0, L) ,

vhi → vi strongly in H1
0 (0, L) , and vi ∈ H2

0 (0, L) for i = 2, 3 ,

wh ⇀ w weakly in H1
0 (0, L) .

Moreover, the sequence of corrector functions (βh) satisfies the uniform bounds: ‖βh‖L2(Ω) ≤
Ch and ‖∇hβh‖L2(Ω) ≤ C.
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Proof. The proof follows the lines of the proof of Theorem 2.2 from [23], but we include it
here for the reader’s convenience. From Remark 2.2 we conclude that we can take ŷh = yh.
Let us define

Ah :=
1

h
(Rh − I) .

From the previous theorem we have ‖Rh−I‖L2(0,L) ≤ Ch and ‖(Rh)′‖L2(0,L) ≤ Ch, which im-

plies the uniform bound ‖Ah‖H1(0,L) ≤ C. Therefore, (up to a subsequence) Ah ⇀ A weakly
in H1((0, L),R3×3). From the compactness of the Sobolev embedding H1((0, L),R3×3) ↪→
L∞((0, L),R3×3), we conclude Ah → A strongly in L∞((0, L),R3×3). Direct calculation re-
veals the identities

Ah + (Ah)T = −hAh(Ah)T and
1

h2
sym(Rh − I) =

1

2h
(Ah + (Ah)T ) ,

which respectively imply AT = −A and

1

h2
sym(Rh − I)→ 1

2
A2 strongly in L∞((0, L),R3×3) . (14)

Since ‖∇hyh − Rh‖L2(Ω) ≤ Ch2, using the triangle inequality and established convergence
results, we conclude

1

h
(∇hyh − I)→ A strongly in L2(Ω,R3×3) . (15)

By construction we have
∫ L

0 uh(x1)dx1 = 0. Thus, the Poincaré and Jensen inequalities
together with (14) imply

‖uh‖L2(0,L) ≤ CP ‖(uh)′‖L2(0,L) ≤
CP
h2
‖∂1y

h
1 − 1‖L2(Ω)

≤ CP
h2
‖∂1y

h
1 −Rh11‖L2(Ω) +

CP
h2
‖Rh11 − 1‖L2(Ω) ≤ C .

Therefore, up to a subsequence uh ⇀ u weakly in H1(0, L). Similarly,
∫ L

0 vhi (x1)dx1 = 0 for
i = 2, 3, and

‖(vhi )′‖L2(0,L) ≤
1

h
‖∂1y

h
i ‖L2(Ω) ≤ C .

Hence, (up to a subsequence) vhi ⇀ vi weakly in H1(0, L). Moreover, since

(vhi )′ =

∫
ω

∂1y
h
i

h
dx′ → Ai1 strongly in L2(Ω,R3×3) ,

one concludes that Ai1 = v′i for i = 2, 3. Since Ai1 ∈ H1(0, L), we conclude vi ∈ H2(0, L)
for i = 2, 3. Next, we consider the sequence of twist functions (wh). Note that they can be
written as

wh(x1) =
1

µ(ω)

∫
ω
x2

(
h−1yh3 − x3

h
− 1

h2

∫
ω
yh3 dx′

)
dx′

− 1

µ(ω)

∫
ω
x3

(
h−1yh2 − x2

h
− 1

h2

∫
ω
yh2 dx′

)
dx′ .
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For the above integrands we have (according to (15) and the Poincaré inequality):

h−1yh3 − x3

h
− 1

h2

∫
ω
yh3 dx′ → A32x2 strongly in L2(Ω) ;

h−1yh2 − x2

h
− 1

h2

∫
ω
yh2 dx′ → −A32x3 strongly in L2(Ω) .

Therefore, wh converges strongly in the L2-norm to the function w = A32 ∈ L2(0, L). Using
the a priori estimate ‖∇hyh − Rh‖L2 ≤ Ch2 and the normality of rotation matrix columns,
we conclude the uniform bound ‖(wh)′‖L2(0,L) ≤ C. Hence, wh ⇀ w weakly in the H1-norm.
Observe that the limit matrix A ∈ H1((0, L),R3×3) is completely identified by the limits
u,w ∈ H1(0, L) and v1, v2 ∈ H2(0, L) in the following way

A =

 0 −v′2 −v′3
v′2 0 −w
v′3 w 0

 . (16)

Finally, we consider the sequence of corrector functions (βh) given by:

βh1 (x) =
yh1 (x)− x1

h2
− uh(x1) + x2

Rh21(x1)

h
+ x3

Rh31(x1)

h
,

βhi (x) =
1

h

(
yhi (x)− hxi

h
− vhi (x1)− hwh(x1)x⊥i

)
, i = 2, 3 .

For brevity reasons, let us denote ∂hi = 1
h∂i, then for i = 2, 3 we compute

∂iβ
h
1 =

1

h2
∂iy

h
1 +

Rhi1
h

=
1

h

(
∂hi y

h
1 −Rh1i

)
+
Rhi1 +Rh1i

h
.

The first term on the right-hand side is bounded in the L2-norm due to ‖∇hyh −Rh‖L2(Ω) ≤
Ch2, and the second one due to (14). Thus, ‖∂iβh1 ‖L2(Ω) ≤ Ch for i = 2, 3. Since

∫
ω β

h
1 (x)dx′ =

0, using the Poincaré inequality we conclude

‖βh1 (x1, ·)‖2L2(ω) ≤ C
(
‖∂2β

h
1 (x1, ·)‖2L2(ω) + ‖∂3β

h
1 (x1, ·)‖2L2(ω)

)
for a.e. x1 ∈ (0, L) .

Integrating the latter inequality along x1-direction yields the L2(Ω)-bound on βh1 of order
O(h). The identity

∂1β
h
1 =

∂1y
h
1 − 1

h2
− (uh)′ + x2

(Rh21)′

h
+ x3

(Rh31)′

h
,

directly implies the uniform bound ‖∂1β
h
1 ‖L2(Ω) ≤ C. Straightforward calculations reveal

∂jβ
h
i =

1

h

(
∂hj y

h
i − δij − (−1)j(1− δij)hwh

)
, for i, j = 2, 3 ,

where we have used ∂jx
⊥
i = (−1)j(1− δij). Furthermore,

(sym∇βh)ij =
∂jβ

h
i + ∂iβ

h
j

2
=

1

h

(
sym(∇hyh − I)

)
ij
, for i, j = 2, 3 ,

9



which implies the uniform bound ‖(sym∇βh)ij‖L2(Ω) ≤ Ch for i, j = 2, 3. Note that for

a.e. x1 ∈ (0, L) the function (βh2 (x1, ·), βh3 (x1, ·)) belongs to the closed subspace

B =

{
α ∈ H1(ω,R2) :

∫
ω
α(x′)dx′ = 0 ,

∫
ω
(x3α2 − x2α3)dx′ = 0

}
,

on which a Korn type inequality [30] holds

‖βh2 (x1, ·)‖2H1(ω) + ‖βh3 (x1, ·)‖2H1(ω) ≤ C
∑
i,j=2,3

‖(sym∇βh(x1, ·))ij‖2L2(ω) .

Integrating the latter with respect to x1, yields the respective uniform H1(Ω)-bound. Hence,
we proved ‖βh‖L2(Ω) ≤ Ch. Finally,

∂1β
h
i =

1

h

(
∂1y

h
i

h
− (vhi )′ − h(wh)′x⊥i

)
=

1

h

(
∂1y

h
i −Rh1i
h

− 1

h

∫
ω
(∂1y

h
i −Rh1i)dx′ − h(wh)′x⊥i

)
, for i, j = 2, 3 ,

and the previously established convergence results imply ‖∂1β
h
i ‖L2(Ω) ≤ C. Thus, we have

proved ‖∇hβh‖L2(Ω) ≤ C. The boundary conditions for wh, vhi , u
h, vi, u follow from the bound-

ary condition for yh, Remark 2.2 and the above convergence results.

2.4. Strain and stress estimates

For every h > 0, using the rotation matrix function Rh, the strain tensor Gh is implicitly
defined through the following decomposition of the scaled deformation gradient

∇hyh = Rh(I + h2Gh) .

The explicit identity Gh = h−2(Rh)T (∇hyh − Rh) directly implies with (12) the L2-uniform
bound on the sequence (Gh). Hence, there exists G ∈ L2(Ω,R3×3) such that Gh ⇀ G on a
subsequence. Our aim is to describe the symmetrized strain symGh in more detail. First, we
explicitly involve the limit functions u,w ∈ H1(0, L) and v1, v2 ∈ H2(0, L) into our ansatz
(13) in the following way:

yh1 − x1

h2
= u− x2v

′
2 − x3v

′
3 + ψh1 ,

yhi − hxi
h2

=
vi
h

+ wx⊥i + ψhi , for i = 2, 3 ,

where

ψh1 = uh − u− x2

(Rh21

h
− v′2

)
− x3

(Rh31

h
− v′3

)
+ βh1 ,

ψhi =
1

h
(vhi − vi) + (wh − w)x⊥i + βhi , for i = 2, 3 .

10



Previously established convergence results imply that (ψh1 , hψ
h
2 , hψ

h
3 ) → 0 strongly in the

L2-norm. Moreover, the derivatives are given by

∂1ψ
h
1 = (uh)′ − u′ − x2

((Rh21)′

h
− v′′2

)
− x3

((Rh31)′

h
− v′′3

)
+ ∂1β

h
1 ,

∂hj ψ
h
1 =

v′j
h
−
Rhj1
h2

+ ∂hj β
h
1 , for j = 2, 3 ,

∂hj ψ
h
i =

(−1)j

h
(1− δij)(wh − w) + ∂hj β

h
i , for i, j = 2, 3 ,

∂1ψ
h
i =

1

h

(
(vhi )′ − v′i

)
+
(

(wh)′ − w′
)
x⊥i + ∂1β

h
i , for i = 2, 3 ,

which together with known convergence results immediately gives ‖ sym∇hψh‖L2(Ω) ≤ C.
Invoking (16), we obtain the following representation:

1

h2
sym

(
∇hyh − I

)
= u′e1 ⊗ e1 + sym(ı(A′px′)) + sym∇hψh , (17)

Additionally, using (βh2 (x1, ·), βh3 (x1, ·)) ∈ B for a.e. x1 ∈ (0, L), one can easily check that∫
ω
(x3ψ

h
2 − x2ψ

h
3 )dx′ = −(wh − w)

∫
ω
(x2

2 + x2
3)dx′ → 0 strongly in L2 .

Next, we compute the symmetrized strain using decomposition (17):

symGh =
1

h2
sym

(
(Rh)T∇hyh − I

)
=

1

h2
sym((Rh − I)T∇hyh) +

1

h2
sym(∇hyh − I)

=
1

h2
sym((Rh − I)T (∇hyh −Rh))− 1

h2
sym(Rh − I) +

1

h2
sym(∇hyh − I)

=: õh − 1

h2
sym(Rh − I) + u′e1 ⊗ e1 + sym(ı(A′px′)) + sym∇hψh

= u′e1 ⊗ e1 + sym(ı(A′px′))−
1

2
A2 + sym∇hψh + oh

=: symH + sym∇hψh + oh ,

where õh, oh → 0 strongly in L2(Ω,R3×3), and symH = u′e1 ⊗ e1 + sym(ı(A′px′))− 1
2A

2. In
this way we decomposed symGh into a fixed and a corrector part. A part of symH can be
further transferred to the corrector terms as follows:

symH =
(
u′ +

1

2

(
(v′2)2 + (v′3)2

))
e1 ⊗ e1 + sym(ı(A′px′))

+
1

2

 0 v′3w −v′2w
v′3w w2 + (v′2)2 v′2v

′
3

−v′2w v′2v
′
3 w2 + (v′3)2


=: sym(ı(md)) + sym∇hαh − sym ı(∂1α

h) ,

where

md =
(
u′ +

1

2
((v′2)2 + (v′3)2)

)
e1 +A′px′ , (18)

11



and

αh(x) = h

 x2v
′
3w − x3v

′
2w

1
2x2(w2 + (v′2)2) + 1

2x3v
′
2v
′
3

1
2x2v

′
2v
′
3 + 1

2x3(w2 + (v′3)2)

 .

Finally, we have decomposition

symGh = sym(ı(md)) + sym∇hψh + oh , (19)

with the updated corrector sequence ψh (by adding the function αh to the original ψh) and
the L2-zero convergent part oh.

The stress field Eh : Ω→ R3×3 is defined by

Eh :=
1

h2
DW h(·, I + h2Gh) .

The assumption (C3) on W h, in particular estimate (11), implies that W h is differentiable
a.e. in x ∈ Ω and

∀G ∈ R3×3 , ∀h > 0 : ess sup
x∈Ω

|DW h(x, I +G)− Ah(x)G| ≤ r(|G|)|G| ,

and therefore (see the property (a) of Qh),

|DW h(·, I + h2Gh)| ≤ r(h2|Gh|)h2|Gh|+ βh2|Gh|, a.e. in Ω .

Let us denote the set
Bh := {x ∈ Ω : h2|Gh(x)| ≤ 1} ,

then from the previous inequality

|DW h(·, I + h2Gh)| ≤ Ch2|Gh| pointwise in Bh ,

which yields
|Eh| ≤ C|Gh| pointwise in Bh .

On the other hand on Ω\Bh, i.e. on the set where |Gh| > h−2 a.e., applying hypothesis (H5)
we conclude

|Eh| ≤ κ

h2

(
|I + h2Gh|+ 1

)
≤ κ

h2

(
h2|Gh|+

√
3 + 1

)
≤ C|Gh| pointwise in Ω\Bh .

Therefore, we have a uniform estimate on the whole set,

|Eh| ≤ C|Gh| pointwise in Ω , (20)

which together with the uniform L2-bound for the strain sequence (Gh) implies the uniform
L2-bound on (Eh) and consequently the weak convergence (on a subsequence)

Eh ⇀ E in L2(Ω,R3×3) .

12



2.5. Representation of elastic energy functionals

In this subsection we briefly recall a variational approach for general (non-periodic) si-
multaneous homogenization and dimension reduction in the framework of three-dimensional
nonlinear elasticity theory. This approach has been thoroughly undertaken in case of von
Kármán plate [32] and bending rod [22], while the linear plate model has been outlined in [8].
The theorem on geometric rigidity provides a decomposition of the symmetrized strain to a
sum of a fixed and a corrector part (cf. previous section). Utilizing the corresponding Griso’s
decomposition [17, 18] gives a further characterization of the corrector part, which enables
an operational representation of the elastic energies (cf. Lemma 2.5 below), suitable for the
application of appropriate Γ-convergence techniques to eventually identify the limiting elastic
energy.

In the following we only provide basic steps of the method and state the final results. To
start with, let us define so called lower and upper Γ-limits. For a monotonically decreasing to
zero sequence of positive numbers (h) ⊂ (0,+∞), m ∈ L2(Ω,R3) and an open set O ⊂ (0, L),
we define:

K−(h)(m,O) = inf
{

lim inf
h↓0

∫
O×ω

Qh(x, sym ı(m) + sym∇hψh)dx |

(ψh1 , hψ
h
2 , hψ

h
3 )→ 0 in L2(O × ω,R3) , t(ψh2 , ψ

h
3 )→ 0 in L2(O)

}
;

K+
(h)(m,O) = inf

{
lim sup
h↓0

∫
O×ω

Qh(x, sym ı(m) + sym∇hψh)dx |

(ψh1 , hψ
h
2 , hψ

h
3 )→ 0 in L2(O × ω,R3) , t(ψh2 , ψ

h
3 )→ 0 in L2(O)

}
.

The above infimization is taken over all sequences (ψh) ⊂ H1(O × ω,R3) such that
(ψh1 , hψ

h
2 , hψ

h
3 )→ 0 and twist functions t(ψh2 , ψ

h
3 )→ 0 strongly in the L2-topology as h→ 0.

The identical proof to the one presented for Lemma 3.4 in [32] gives the continuity of K−(h)

and K+
(h) with respect to the first variable. Utilizing a diagonal procedure yields the equality

of K−(h) and K+
(h) for a subsequence, still denoted by (h), on L2(Ω,R3)×O, where O denotes

a family of open subsets of (0, L). More precisly this is done by choosing a countable dense
subset of L2(Ω,R3) and a countable dense family of open subsets of Ω and then using the
continuity property (see [8] for details). This asserts the definition of the functional

K(h)(m,O) := K−(h)(m,O) = K+
(h)(m,O) , ∀m ∈ L2(Ω,R3) , ∀O ∈ O . (21)

Adopting the strategy developed in [22, cf. Lemma 2.9 and Lemma 2.10] and [32, cf. Lemma
3.8] one can prove the following key lemma. The proof is given in [8, Lemma 2.1] and the
orthogonality property is proved in [22, the proof of (III) in Lemma 2.9].

Lemma 2.5. Let (h) ⊂ (0,+∞), h ↓ 0, be a sequence of positive numbers which satisfies (21)
for every open set O ⊂ (0, L). Then there exists a subsequence, still denoted by (h), which
satisfies that for every m ∈ L2(Ω,R3) there exists (ψhm) ⊂ H1(Ω,R3) such that for every open
subset O ⊂ (0, L), we have

K(h)(m,O) = lim
h↓0

∫
O×ω

Qh(x, sym ı(m) + sym∇hψhm)dx , (22)

and the following properties hold:

13



(a) (ψhm,1, hψ
h
m,2, hψ

h
m,3)→ 0 and t(ψhm,2, ψ

h
m,3)→ 0 strongly in the L2-norm as h ↓ 0.

(b) The sequence (| sym∇hψhm|2) is equi-integrable and there exist sequences
(Ψh

m) ⊂ H1((0, L),R3×3
skw ) and (ϑhm) ⊂ H1(Ω,R3) satisfying: Ψh

m → 0, ϑhm → 0 strongly in
the L2-norm, and

sym∇hψmh = sym ı((Ψh
m)′px′) + sym∇hϑhm .

Moreover, (|(Ψh
m)′|2) and (|∇hϑhm|2) are equi-integrable (on a subsequence) and the fol-

lowing inequality holds

lim sup
h↓0

(
‖Ψh

m‖H1(O) + ‖∇hϑhm‖L2(O×ω)

)
≤ C(β‖m‖2L2(O×ω) + 1) ,

for some C > 0 independent of O ⊂ (0, L).

(c) (orthogonality) If (ϕh) ⊂ H1(Ω,R3) is any other sequence that satisfies (a) and (sym∇hϕh)
is bounded in L2(Ω,R3×3), then

lim
h↓0

∫
Ω
Ah(sym ı(m) + sym∇hψhm) : sym∇hϕhdx = 0 . (23)

(d) (uniqueness) If (ϕh) ⊂ H1(Ω,R3) is any other sequence that satisfies (22) and (a), then

‖ sym∇hψhm − sym∇hϕh‖L2(Ω) → 0 ,

and (| sym∇hϕh|2) is equi-integrable.

An important feature of the method is the localization property of the relaxation sequence
(ψhm), i.e. if we know the relaxation sequence for the interval (0, L), the relaxation sequence
for an arbitrary open subset O ⊂ (0, L) and fixed m ∈ L2(Ω,R3), is simply obtained by
restriction. This follows from formula (22).

Finally, we provide the integral representation of the functional K(h) (cf. [22, Proposition

2.12]). Recall from (18) that md is of the form md = (u′ + 1
2((v′2)2 + (v′3)2))e1 + A′px′ .

Therefore, we consider the mapping m : L2(0, L) × L2((0, L),R3×3
skw ) → L2(Ω,R3) defined by

m(%,Ψ) = %e1 + Ψpx′ .

Proposition 2.6. Let (h) ⊂ (0,+∞) be a sequence monotonically decreasing to zero. Then
there exists a subsequence, still denoted by (h), and a measurable function Q0 : (0, L) × R ×
R3 → R depending on (h), such that for every open subset O ⊂ (0, L) and every (%,Ψ) ∈
L2(0, L)× L2((0, L),R3×3

skw ) we have

K(h)(m(%,Ψ), O) =

∫
O
Q0(x1, %(x1), axl Ψ(x1))dx1 . (24)

Moreover, for a.e. x1 ∈ (0, L), Q0(x1, ·, ·) : R4 → R is a bounded and coercive quadratic form.

At this point we also define function Q0
1 : (0, L)× R3 → R by

Q0
1(x1, v) = min

z∈R
Q0(x1, z, v) for all v ∈ R3 and a.e. x1 ∈ (0, L) ,

and function %0 : (0, L) × R3 → R satisfying Q0
1(x1, axlF ) = Q0(x1, %0(x1, axlF ), axlF ) for

all F ∈ R3×3
skw and a.e. x1 ∈ (0, L). One can also prove that Q0

1(x1, ·) is a bounded and coercive
quadratic form for a.e. x1 ∈ (0, L). The linear operators associated with the quadratic forms
Q0(x1, ·, ·) and Q0(x1, ·) are denoted by A0(x1) and A0

1(x1), respectively.
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2.6. Variational derivative of the limit elastic energy

Let (h) ⊂ (0,+∞) be a monotonically decreasing to zero sequence and let m ∈ L2(Ω,R3)
be given. According to Lemma 2.5, there exist a subsequence still denoted by (h) and a
relaxation sequence (ψhm) ⊂ H1(Ω,R3), depending on m, satisfying (ψhm,1, hψ

h
m,2, hψ

h
m,3)→ 0

and t(ψhm,2, ψ
h
m,3)→ 0 strongly in the L2-norm, such that the limit elastic energy K(h)(m) :=

K(h)(m, (0, L)) is given by

K(h)(m) = lim
h↓0

∫
Ω
Qh(x, sym ı(m) + sym∇hψhm)dx

= lim
h↓0

1

2

∫
Ω
Ah(sym ı(m) + sym∇hψhm) : (sym ı(m) + sym∇hψhm)dx .

In the following we compute the variational derivative of K(h) at the point m. Let n ∈
L2(Ω,R3) be a test function. Then, by definition

δK(m)

δm
[n] = lim

ε↓0

K(m+ εn)−K(m)

ε
. (25)

With a trick of successive adding of the corresponding relaxation sequences and using the
orthogonality property (23), for a suitable subsequence of (h) we calculate:

K(h)(m+ εn)−K(h)(m)

= lim
h↓0

1

2

∫
Ω
Ah(sym ı(m+ εn) + sym∇hψhm+εn) : (sym ı(m+ εn) + sym∇hψhm+εn)dx

− lim
h↓0

1

2

∫
Ω
Ah(sym ı(m) + sym∇hψhm) : (sym ı(m) + sym∇hψhm)dx

= lim
h↓0

1

2

∫
Ω
Ah(sym ı(m+ εn) + sym∇hψhm+εn) : sym ı(m+ εn)dx

− lim
h↓0

1

2

∫
Ω
Ah(sym ı(m) + sym∇hψhm) : sym ı(m)dx

= lim
h↓0

1

2

∫
Ω
Ah(sym ı(m+ εn) + sym∇hψhm+εn) : (sym ı(m) + sym∇hψhm)dx

+ lim
h↓0

ε

2

∫
Ω
Ah(sym ı(m+ εn) + sym∇hψhm+εn) : (sym ı(n) + sym∇hψhn)dx

− lim
h↓0

1

2

∫
Ω
Ah(sym ı(m) + sym∇hψhm) : sym ı(m)dx

= lim
h↓0

1

2

∫
Ω
Ah(sym ı(m) + sym∇hψhm) : sym ı(m+ εn)dx

+ lim
h↓0

ε

2

∫
Ω
Ah(sym ı(n) + sym∇hψhn) : sym ı(m+ εn)dx

− lim
h↓0

1

2

∫
Ω
Ah(sym ı(m) + sym∇hψhm) : sym ı(m)dx

= lim
h↓0

ε

∫
Ω
Ah(sym ı(m) + sym∇hψhm) : sym ı(n)dx

+ lim
h↓0

ε2

2

∫
Ω
Ah(sym ı(n) + sym∇hψhn) : sym ı(n)dx.
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Finally, according to the definition (25) and utilizing the uniform L∞-bound for the sequence
of tensors (Ah), we infer

δK(h)(m)

δm
[n] = lim

h↓0

∫
Ω
Ah(sym ı(m) + sym∇hψhm) : sym ı(n)dx . (26)

3. Derivation of homogenized Euler–Lagrange equations — proof of Theorem 1.1

Taking the L2-derivative of the energy functional Eh defined by (1), one finds the Euler–
Lagrange equation in the weak form:

δEh(yh)

δyh
[φ] =

∫
Ω

(
DW h(x,∇hyh) : ∇hφ− h3(f2φ2 + f3φ3)

)
dx = 0 , (27)

for all test functions φ ∈ H1
ω(Ω,R3). Let yh be a stationary point of Eh, i.e. it satisfies

(27). From the frame indifference of W h it follows that RTDW h(x,RF ) = DW h(x, F ) for all
R ∈ SO(3), F ∈ R3×3 and a.e. x ∈ Ω, which implies (using that ∇hyh = Rh(I + h2Gh))

DW h(x,∇hyh) = RhDW h(x, I + h2Gh) = h2RhEh . (28)

Taylor expansion around the identity gives

DW h(x, I + h2Gh) = h2D2W h(x, I)Gh + ζh(x, h2Gh) ,

where ζh is such that |ζh(·, F )|/|F | ≤ r(|F |) uniformly in Ω, for all F ∈ R3×3 and h >
0. The latter follows from the assumption (11) on admissible composite materials. Since
D2W h(x, I) = Ah(x) and Ah(x) is a symmetric tensor, the above identity yields

Eh(x) = Ah(x) symGh(x) +
1

h2
ζh(x, h2Gh) , (29)

which after employing (19) leads to (recall that md =
(
u′ + 1

2((v′2)2 + (v′3)2)
)
e1 +A′px′):

Eh = Ah(sym ı(md) + sym∇hψh) +
1

h2
ζh(·, h2Gh) + Ahoh . (30)

3.1. Orthogonality property

In order to identify the fixed part md of the symmetrized strain as a stationary point of
the limit energy, we first prove the following result.

Lemma 3.1. Let (Ah) be a sequence of tensors describing an admissible composite material,
let md be the fixed part of the symmetrized strain defined by (18), and (ψh) ⊂ H1(Ω,R3) the
corresponding corrector sequence in (19) satisfying: (ψh1 , hψ

h
2 , hψ

h
3 ) → 0 and t(ψh2 , ψ

h
3 ) → 0

strongly in the L2-norm, and ‖ sym∇hψh‖L2(Ω) ≤ C. Then, for every sequence (ϕh) ⊂
H1(Ω,R3) satisfying: (ϕh1 , hϕ

h
2 , hϕ

h
3) → 0 and t(ϕh2 , ϕ

h
3) → 0 strongly in the L2-norm, and

(| sym∇hϕh|2) is equi-integrable, the following orthogonality property holds

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : sym∇hϕhdx = 0 . (31)
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Proof. Let (ψh) ⊂ H1(Ω,R3) and (ϕh) ⊂ H1(Ω,R3) be sequences satisfying the assumptions
of the lemma. Applying the Griso’s decomposition to the sequence (ϕh) (cf. [22, Corol-
lary 2.3]), there exist sequences (Φh) ⊂ H1((0, L),R3

skw), (φh) ⊂ H1(Ω,R3) and (oh) ⊂
L2(Ω,R3×3) satisfying:

sym∇hϕh = sym ı((Φh)′px′) + sym∇hφh + oh , (32)

Φh → 0, φh → 0, oh → 0 strongly in the L2-norm, and

‖Φh‖H1(0,L) + ‖φh‖L2(Ω) + ‖∇hφh‖L2(Ω) ≤ C‖ sym∇hϕh‖L2(Ω) , ∀h > 0 . (33)

Furthermore, there exist subsequences (Φh) and (φh) (still denoted by (h)) and sequences
(Φ̃h) ⊂ H1((0, L),R3) and (φ̃h) ⊂ H1(Ω,R3) such that |{Φh 6= Φ̃h} ∪ {(Φh)′ 6= (Φ̃h)′}| → 0
and |{φh 6= φ̃h} ∪ {∇φh 6= ∇φ̃h}| → 0 as h ↓ 0, and the sequences (|(Φ̃h)′|2) and (|∇hφ̃h|2)
are equi-integrable (cf. [16] and [22, Lemma 2.17]). Notice that, due to equi-integrability of
(| sym∇hϕh|2), the decomposition (32) is valid with (Φh) and (φh) replaced by (Φ̃h) and (φ̃h).
Also, observe that without loss of generality we can assume that for each h, Φ̃h and φ̃h are
smooth. The rest of the proof will be divided into two parts showing the property (31) using
the decomposition (32) with (Φ̃h) and (φ̃h).
Part 1. The equi-integrability property of the sequence (φ̃h) allows us to modify each φ̃h to
zero near the boundary (cf. [32, Lemma 3.6]), thus, making it an eligible test function in the
Euler–Lagrange equation (27). Using the identity (30) and the modified φ̃h as a test function
in the Euler–Lagrange equation (27), after division by h2, we obtain (according to (28))∫

Ω
RhAh(sym ı(md) + sym∇hψh) : ∇hφ̃hdx =

∫
Ω
Rh
(
Eh − 1

h2
ζh(·, h2Gh)− Ahoh

)
: ∇hφ̃hdx

=

∫
Ω
h(f2φ̃

h
2 + f3φ̃

h
3)−

∫
Ω
Rh
(

1

h2
ζh(·, h2Gh) + Ahoh

)
: ∇hφ̃hdx .

Obviously, the first integral on the right-hand side and the second term in the second integral
converge to 0 as h ↓ 0. Let us examine the term

1

h2

∫
Ω
Rhζh(·, h2Gh) : ∇hφ̃hdx .

Define the sets Sαh := {x ∈ Ω : h2|Gh(x)| ≤ hα} for 0 < α < 2. On Sαh we have

|ζh(·, h2Gh)|
h2|Gh|

|Gh| ≤ sup

{
|ζh(·, h2G̃h)|
h2|G̃h|

: h2|G̃h| ≤ hα
}
|Gh| ≤ r(hα)|Gh| .

Therefore,

1

h2

∣∣∣∣∣
∫
Sαh

Rhζh(·, h2Gh) : ∇hφ̃hdx

∣∣∣∣∣ ≤ r(hα)‖Rh‖L∞(Ω)‖Gh‖L2(Ω)‖∇hφ̃h‖L2(Ω) ≤ Cr(hα)→ 0 ,

as h ↓ 0. On the other hand, on Ω\Sαh we have a pointwise a.e. bound

1

h2
|ζh(·, h2Gh)| ≤ C|Gh| a.e. on Ω\Sαh ,
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which in fact holds pointwise a.e. on Ω. This follows by the traingle inequality from (29)
using (20) and |Ah(x)Gh(x)| ≤ β|Gh(x)| for a.e. x ∈ Ω. Therefore, using the Cauchy-Schwarz
we find

1

h2

∣∣∣∣∣
∫

Ω\Sαh
Rhζh(·, h2Gh) : ∇hφ̃hdx

∣∣∣∣∣ ≤ C
∫

Ω\Sαh
|Gh||∇hφ̃h|dx

≤ C

(∫
Ω\Sαh

|Gh|2dx

)1/2(∫
Ω\Sαh

|∇hφ̃h|2dx

)1/2

→ 0 .

The latter statement (convergence to zero) follows by the equi-integrability property and the
fact that |Ω\Sαh | → 0, which follows from the Chebyshev inequality. Thus, we have shown

lim
h↓0

∫
Ω
RhAh(sym ı(md) + sym∇hψh) : ∇hφ̃hdx = 0 .

Since Rh → I strongly in the L∞-norm, it follows that

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : ∇hφ̃hdx = 0 ,

while the symmetry property of Ah(sym ı(md) + sym∇hψh) eventually implies

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : sym∇hφ̃hdx = 0 . (34)

Part 2. Again, the equi-integrability property of the sequence (Φ̃h) allows us to modify each
Φ̃h to zero near the boundary, thus, making the following functions

φ̂h(x) =
(

Φ̃h
12(x1)x2 + Φ̃h

13(x1)x3 ,−
1

h

∫ x1

0
Φ̃h

12(s)ds+ Φ̃h
23(x1)x3 , (35)

− 1

h

∫ x1

0
Φ̃h

13(s)ds− Φ̃h
23(x1)x2

)
,

eligible test functions in the Euler–Lagrange equation (27). One easily calculates

sym∇hφ̂h =

 (Φ̃h
12)′(x1)x2 + (Φ̃h

13)′(x1)x3
1
2(Φ̃h

23)′(x1)x3 −1
2(Φ̃h

23)′(x1)x2
1
2(Φ̃h

23)′(x1)x3 0 0

−1
2(Φ̃h

23)′(x1)x2 0 0


= sym ı((Φ̃h)′px′) .

Using φ̂h as a test function in (27) together with the symmetry property of the matrix
DW h(·, F )F T , we obtain

1

h2

∫
Ω
DW h(x,Rh(I + h2Gh)) : ∇hφ̂hdx

=
1

h2

∫
Ω
RhDW h(x, I + h2Gh)(I + h2Gh)T (Rh)T : sym∇hφ̂hdx

− 1

h2

∫
Ω
RhDW h(x, I + h2Gh)

(
(Rh)T − I + h2(Gh)T (Rh)T

)
: ∇hφ̂hdx

=

∫
Ω
RhEh(I + h2Gh)T (Rh)T : sym ı((Φ̃h)′px′)dx

−
∫

Ω
RhEh

(
1

h
((Rh)T − I) + h(Gh)T (Rh)T

)
: h∇hφ̂hdx .
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Therefore, the Euler–Lagrange equation becomes∫
Ω
RhEh(I + h2Gh)T (Rh)T : sym ı((Φ̃h)′px′)dx

=

∫
Ω
RhEh

(
1

h
((Rh)T − I) + h(Gh)T (Rh)T

)
: h∇hφ̂hdx+ h

∫
Ω

(f2φ̂
h
2 + f3φ̂

h
3)dx .

(36)

Since (hφ̂h2 , hφ̂
h
3)→ 0 strongly in the L2-norm, the force term vanishes at the limit. According

to (33), ‖(Φ̃h)′‖L2(0,L) is uniformly bounded implying the strong convergence h∇hφ̂h → 0 in
the L2-norm, therefore,

lim
h↓0

1

h

∫
Ω
RhEh((Rh)T − I) : h∇hφ̂hdx = 0 .

In order to infer zero at the limit h ↓ 0 for the remaining term on the right-hand side in (36),
namely

h

∫
Ω
RhEh(Gh)T (Rh)T : h∇hφ̂hdx ,

we need to replace the sequence (Φ̃h) with the one obtained by means of Lemma A.1. We take

the sequence sh = 1/
√
h and obtain a sequence ( ˜̃Φh) satisfying ‖ ˜̃Φh‖W 1,∞(0,L) ≤ Csh for some

C > 0. Notice that we have ‖( ˜̃Φh)′ − (Φ̃h)′‖L2 → 0. We easily conclude ‖h∇h
˜̂
φh‖L∞ ≤ Csh

where, in view of (35), notation
˜̂
φh is self-explaining. From the latter we conclude that

lim
h↓0

h

∫
Ω
RhEh(Gh)T (Rh)T : h∇h

˜̂
φhdx = 0 ,

which implies

lim
h↓0

∫
Ω
RhEh(I + h2Gh)T (Rh)T : sym ı(( ˜̃Φh)′px′)dx = 0 .

Obviously,

lim
h↓0

∫
Ω
h2RhEh(Gh)T (Rh)T : sym ı(( ˜̃Φh)′px′)dx = 0 ,

and therefore,

lim
h↓0

∫
Ω
RhEh(Rh)T : sym ı(( ˜̃Φh)′px′)dx = 0 . (37)

Next, we prove that

lim
h↓0

∫
Ω
Eh : sym ı(( ˜̃Φh)′px′)dx = 0 . (38)

This follows by writing∫
Ω
Eh : sym ı(( ˜̃Φh)′px′)dx =

∫
Ω

(
Rh + (I −Rh)

)
Eh
(
Rh + (I −Rh)

)T
: sym ı(( ˜̃Φh)′px′)dx ,

and using the convergence result (37) with the fact that Rh → I strongly in the L∞-norm.
Now, recall that

Ah(sym ı(md) + sym∇hψh) = Eh − 1

h2
ζh(·, h2Gh) + oh ,
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where oh → 0 strongly in the L2-norm. Using truncation arguments on the sets Sαh and its
complement, as in the first part of the proof, we conclude

lim
h↓0

∫
Ω

1

h2
ζh(·, h2Gh) : sym ı(( ˜̃Φh)′px′)dx = 0 .

Since limh↓0
∫

Ω o
h : sym ı((Φ̃h)′px′)dx = 0 , convergence result (38) implies

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : sym ı(( ˜̃Φh)′px′)dx = 0.

From this it follows

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : sym ı((Φ̃h)′px′)dx = 0 .

3.2. Identification of the limit Euler–Lagrange equations

Let us now more precisely identify terms in the Euler–Lagrange equation (27) and consider
the limit when h ↓ 0. The same reasoning as in Part 2 of the proof of Lemma 3.1 gives, after
division by h2, the Euler–Lagrange equation (27) in the form∫

Ω
RhEh(I + h2Gh)T (Rh)T : sym∇hφh dx

=

∫
Ω
RhEh

(
1

h
((Rh)T − I) + h(Gh)T (Rh)T

)
: h∇hφh dx+ h

∫
Ω

(f2φ
h
2 + f3φ

h
3)dx ,

(39)

for all test functions φh ∈ H1
ω(Ω,R3). The aim is now to identify the limit equation in (39) as

h ↓ 0. We will do the computations under the assumption that lim suph↓0 ‖ sym∇hφh‖L∞ <
∞. Using the facts that, up to a term converging to zero strongly in the L2-norm,

Eh = Ah(sym ı(md) + sym∇hψh) +
1

h2
ζh(·, h2Gh) , (40)

Rh → I strongly in the L∞-norm, and

lim
h↓0

∫
Ω
h2RhEh(Gh)T (Rh)T : sym∇hφh dx = 0 ,

the limit h ↓ 0 (if it exists) of∫
Ω
RhEh(I + h2Gh)T (Rh)T : sym∇hφh dx

equals the limit

lim
h↓0

∫
Ω

(
Ah(sym ı(md) + sym∇hψh) +

1

h2
ζh(·, h2Gh)

)
: sym∇hφh dx .
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The remainder term 1
h2

∫
Ω ζ

h(·, h2Gh) : sym∇hφh dx vanishes in the same way as in the proof
of Lemma 3.1, and in the limit as h ↓ 0, equation (39) reduces to

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : sym∇hφh dx

= lim
h↓0

(∫
Ω
RhEh

(
1

h
((Rh)T − I) + h(Gh)T (Rh)T

)
: h∇hφh dx+ h

∫
Ω

(f2φ
h
2 + f3φ

h
3)dx

)
.

(41)

First, consider the test function φ(x) =
∫ x1

0 φ11(t)e1 with φ11 smooth. Since φ2 = φ3 = 0,
sym∇hφ = φ11(x1)e1 ⊗ e1, and h∇hφ→ 0 strongly in the L2-norm, (41) amounts to

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : φ11(x1)e1 ⊗ e1 dx = 0 . (42)

Next, consider test functions of the form φhij(x) = hxjφij(x1)ei for i = 1, 2, 3, j = 2, 3, where

φij is smooth with φij(0) = 0. The functions φhij obviously satisfy (φhij,1, hφ
h
ij,2, hφ

h
ij,3) → 0

and t(φhij,2, φ
h
ij,3)→ 0 strongly in the L2-norm. Calculating

sym∇hφhij = sym
(
hxjφ

′
ijei | δ2jφijei | δ3jφijei

)
,

we easily conclude from (41) that

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : φij(x1)ei ⊗ ej dx = 0 , (43)

for all i = 1, 2, 3, j = 2, 3. Finally, consider the test function given by

φh(x) =

(
Φ12(x1)x2 + Φ13(x1)x3 ,

1

h

∫ x1

0
Φ21(s)ds+ Φ23(x1)x3 ,

1

h

∫ x1

0
Φ31(s)ds+ Φ32(x1)x2

)
,

where Φ : [0, L] → R3×3
skw is smooth and Φ(0) = 0. On the right-hand side of (41), using

the convergence results: Rh → I strongly in the L∞-norm, hGh → 0 strongly in the L2-
norm, Ah → A (the definition of A is given in (16)) strongly in the L∞-norm, as well as the
approximation identity (40) for Eh, we are left with

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh)AT : Φ dx

+

∫ L

0

(
f2(x1)

∫ x1

0
Φ21(s)ds+ f3(x1)

∫ x1

0
Φ31(s)ds

)
dx1 .

Let us now consider the first term of the obtained expression. Due to the real matrix identity
XY : Z = −X : ZY , for Y being skew-symmetric matrix, the first term equals (up to a minus
sign)

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : ΦAdx ,

and since the first matrix is symmetric, the latter in fact equals to

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : sym(ΦA)dx . (44)
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The matrix ΦA can be explicitly computed, and its symmetric part is given by

sym(ΦA) =

 Φ12v
′
2 + Φ13v

′
3

1
2(Φ23v

′
3 + Φ13w) −1

2(Φ23v
′
2 + Φ12w)

1
2(Φ23v

′
3 + Φ13w) Φ12v

′
2 + Φ23w

1
2(Φ13v

′
2 + Φ12v

′
3)

−1
2(Φ23v

′
2 + Φ12w) 1

2(Φ13v
′
2 + Φ12v

′
3) Φ13v

′
3 + Φ23w

 .

Defining the sequence of test functions (ϕhA) by

ϕhA(x) = hx2

 Φ23v
′
3 + Φ13w

Φ12v
′
2 + Φ23w

Φ13v
′
2 + Φ12v

′
3

+ hx3

 −Φ23v
′
2 − Φ12w

Φ13v
′
2 + Φ12v

′
3

Φ13v
′
3 + Φ23w

 ,

it is straightforward to check that

sym(ΦA) = sym∇hϕhA + (Φ12v
′
2 + Φ13v

′
3)e1 ⊗ e1 + oh , (45)

where oh converges to zero strongly in the L2-norm as h ↓ 0. Observe that the sequence of
test functions (ϕhA) satisfies (ϕhA,1, hϕ

h
A,2, hϕ

h
A,3) → 0 and t(ϕhA,2, ϕ

h
A,3) → 0 strongly in the

L2-norm. Utilizing (45) in expression (44), we confer that due to the orthogonality property
(31), convergence result (42) and strongly to zero convergence of oh, the term in (44) vanishes
in the limit as h ↓ 0. Since,

sym∇hφh =

 Φ′12(x1)x2 + Φ′13(x1)x3
1
2Φ′23(x1)x3 −1

2Φ′23(x1)x2
1
2Φ′23(x1)x3 0 0
−1

2Φ′23(x1)x2 0 0

 = sym ı(Φ′px′) ,

(46)
the left-hand side in (41) can be written as

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : sym ı(Φ′px′) dx . (47)

Combining (42), (43) and (47), the resolved limiting Euler–Lagrange equation (41) reads

lim
h↓0

∫
Ω
Ah(sym ı(md) + sym∇hψh) : sym

(
φ11e1 ⊗ e1 +

3∑
i=1,j=2

φijei ⊗ ej + ı(Φ′px′)
)

dx

= −
∫ L

0
(f2Φ̃12 + f3Φ̃13)dx1 , (48)

where Φ̃1j(x1) =
∫ x1

0 Φ1j(s)ds for j = 2, 3. Now, to conclude the proof we claim, that the

obtained equation (neglecting the terms
∑3

i=1,j=2 φijei ⊗ ej in the first sum due to (43)) can
be interpreted as

δK(h)

δm
(md)

[
φ11e1 + Φ′px′

]
= −

∫ L

0
(f2Φ̃12 + f3Φ̃13)dx1 . (49)

Notice that, due to (42), we could also neglect the first term in (48), but we will make use of
it later. Since (sym∇hψh) is bounded in the L2-norm, according to [22, Lemma 2.17], there
exists a subsequence (still denoted by (h)) and sequence (ψ̃h) such that (| sym∇hψ̃h|2) is equi-
integrable and ‖ sym∇hψh − sym∇hψ̃h‖L2(Oh) → 0, where Oh ⊂ Ω such that |Ω\Oh| → 0.
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From (48) we see that the same limit equation will be obtained if we replace the corrector
sequence (ψh) by (ψ̃h). Let (ψhmd) be the relaxation sequence for md from Lemma 2.5. Using

the coercivity of Qh and the orthogonality properties (23) and (31) of both sequences (ψhmd)

and (ψ̃h), respectively, we find that

α‖ sym∇h(ψhmd − ψ̃
h)‖2L2 ≤

∫
Ω
Qh(x, sym∇h(ψhmd − ψ̃

h))dx

=
1

2

∫
Ω
Ah(sym ı(md) + sym∇hψhmd) : sym∇h(ψhmd − ψ̃

h)dx

− 1

2

∫
Ω
Ah(sym ı(md) + sym∇hψh) : sym∇h(ψhmd − ψ̃

h)dx→ 0

as h ↓ 0. Therefore, we can also replace the sequence (ψ̃h) by (ψhmd) in (48) and (49) follows
from (26). To prove the stationarity of the point (u, v2, v3, w) for the functional E0 from the
equation (49) we note the following:

δ(K(h) ◦md)

δu
(u, v2, v3, w)[ud] =

δK(h)

δm
(md)[u

de1] , ∀ud ∈ H1
0 (0, L) ,

δ(K(h) ◦md)

δvi
(u, v2, v3, w)[vdi ] =

δK(h)

δm
(md)[(v

d
i )′e1 + Φ′

vdi
px′ ] , for i = 2, 3, ∀vdi ∈ H2

0 (0, L) ,

δ(K(h) ◦md)

δw
(u, v2, v3, w)[wd] =

δK(h)

δm
(md)[Φ

′
wdpx′ ] , ∀wd ∈ H1

0 (0, L) .

Here

Φvd2
=

 0 −(vd2)′ 0
(vd2)′ 0 0

0 0 0

 , Φvd3
=

 0 0 −(vd3)′

0 0 0
(vd3)′ 0 0

 , Φwd =

 0 0 0
0 0 −wd
0 wd 0

 .

This finishes the proof of Theorem 1.1.

In the subsequent part of the section we identify the limit Euler–Lagrange equations.
Recalling the approximation identity (30), the weak convergence Eh ⇀ E in L2(Ω,R3×3),
and utilizing convergence properties for the remainder terms, we can pass to the limit in
equation (48) and obtain∫

Ω
E : sym

(
φ′11e1 ⊗ e1 +

3∑
i=1,j=2

φijei ⊗ ej + ı(Φ′px′)
)

dx = −
∫ L

0
(f2Φ̃12 + f3Φ̃13)dx1 .

In view of identity (46), the latter equals∫
Ω

(
E11φ

′
11 +

3∑
i=1,j=2

Eijφij + x2E11Φ′12(x1) + x3E11Φ′13(x1) (50)

+ x3E12Φ′23(x1)− x2E13Φ′23(x1)
)

dx = −
∫ L

0
(f2Φ̃12 + f3Φ̃13)dx1 .
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Using the moment notation (9)–(10) and the fact that Φ̃′1j = Φ1j for j = 2, 3, (51) becomes

∫ L

0

(
E11φ

′
11 +

3∑
i=1,j=2

Eijφij + Ẽ11Φ̃′′12 + Ê11Φ̃′′13 + Ê12Φ′23 − Ẽ13Φ′23

)
dx1

= −
∫ L

0
(f2Φ̃12 + f3Φ̃13)dx1 . (51)

Now by the arbitrariness of test functions, we easily derive the corresponding strong formu-
lation for the moments. The zeroth-order moments satisfy

E = 0 in (0, L) . (52)

The first-order moments Ẽ11 and Ê11 satisfy second-order boundary-value problems:

Ẽ′′11 + f2 = 0 in (0, L) ,

Ẽ11(L) = Ẽ′11(L) = 0 ,

and

Ê′′11 + f3 = 0 in (0, L) ,

Ê11(L) = Ê′11(L) = 0 ,

respectively. Finally, the first-order moments Ê12 and Ẽ13 satisfy the first-order problem

Ê′12 − Ẽ′13 = 0 in (0, L) ,

Ê12(L) = Ẽ13(L) .

It remains to derive constitutive equations, which connect the moments of the limit stress
with limit displacements and twist functions. For % ∈ L2(0, L) and Ψ ∈ L2((0, L),R3×3

skw ),
recall the functional

K(h)(m(%,Ψ)) =

∫ L

0
Q0(x1, %(x1), axl Ψ(x1))dx1 ,

where m(%,Ψ)(x) = %(x1)e1 + Ψ(x1)px′ , and the functional

K0
(h)(Ψ) =

∫ L

0
Q0

1(x1, axl Ψ(x1))dx1 =

∫ L

0
Q0(x1, %0(x1, axl Ψ(x1)), axl Ψ(x1))dx1

= K(h)(m0(%0,Ψ)) ,

where %0 : (0, L)×R3 → R is optimal for a given axl Ψ. By Lemma 2.5 (identity (22)), there
exist sequences (ψhm) ⊂ H1(Ω,R3) and (ψh0 ) ⊂ H1(Ω,R3) such that:

K(h)(m(%,Ψ)) = lim
h↓0

∫
Ω
Qh(x, sym ı(m(%,Ψ)) + sym∇hψhm)dx ,

K0
(h)(Ψ) = lim

h↓0

∫
Ω
Qh(x, sym ı(m0(%,Ψ)) + sym∇hψh0 )dx .
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Using the orthogonality property (23) and tricks as in Section 2.6, we calculate:

δK(h)(m(%,Ψ))

δ%
[φ] = lim

h↓0

∫
Ω
Ah(sym ı(m(%,Ψ)) + sym∇hψhm) : ı(φe1)dx , (53)

δK0
(h)(Ψ)

δΨ
[Φ] = lim

h↓0

∫
Ω
Ah(sym ı(m0(%,Ψ)) + sym∇hψh0 ) : sym ı(Φpx′)dx , (54)

for all φ ∈ C∞0 ([0, L]) and Φ ∈ C∞0 ([0, L],R3×3
skw ). On the other hand, from the representation

of the function Q0
1 as a pointwise quadratic form, we have

δK0
(h)(Ψ)

δΨ
[Φ] =

∫ L

0
A0

1(x1) axl Ψ(x1) · axl Φ(x1)dx1 . (55)

Now, if we consider md(x) = (u′ + 1
2((v′2)2 + (v′3)2))e1 + A′px′ , it follows from formulae (42)

and (53) that
δK(h)(m(a,A′))

δ%
[φ] = 0

for all φ ∈ C∞0 ([0, L]), where a(x1) = u′ + 1
2((v′2)2 + (v′3)2). In particular, this implies

the optimality of the function a for matrix function A′ in the sense that Q0
1(·, axlA′) =

Q0(·, a, axlA′). Equating expressions in (54) and (55) for Ψ = A′ and %0 = a, we obtain the
identity ∫ L

0
A0

1(x1) axlA′(x1) · axl Φ(x1)dx1 =

∫
Ω
E : ı(Φpx′)dx ,

for all Φ ∈ C∞0 ([0, L],R3×3
skw ). From the latter we recognize the following system

−(A0
1 axlA′)3 = Ẽ11 ,

(A0
1 axlA′)2 = Ê11 ,

−(A0
1 axlA′)1 = Ê12 − Ẽ13 ,

which is a linear second-order system for the limit displacements v2, v3 and the limit twist
function w, and which needs to be accompanied by the following boundary conditions vi(0) =
v′i(L) = 0 for i = 2, 3, and w(0) = 0. The obtained boundary-value problem represents the
homogenized Euler–Lagrange equations for the von Kármán rod model. Finally, the scaled
displacement u can deduced from the optimality property of the function a for the matrix
function A′ and the initial condition u(0) = 0.

4. Stochastic Homogenization

In this section we will give an explicit cell formula for the quadratic form Q0 (limit energy
density in expression (24)) under the assumption of random material along the characteristic
dimension of the rod. Providing the cell formula for the limit energy in the stochastic setting,
we will also recover periodic and almost periodic structures. The methods we are using here
are largely based on works [12], [20] and [33]. Firstly, we will introduce the general notion
and tools of stochastic homogenization, thereafter we will explore the tools needed for thin
structures and finally derive and prove the cell formulae.
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4.1. Stochastic homogenization

Definition 4.1. A family (Tx)x∈Rn of measurable bijective mappings Tx : Ξ → Ξ on the
probability space (Ξ,F ,P) is called a dynamical system on Ξ with respect to P if:

1. T is additive, i.e. Tx ◦ Ty = Tx+y for all x, y ∈ Rn;

2. T is measure- and measurability-preserving, i.e. TxB is measurable and P(TxB) = P(B)
for all x ∈ Rn and B ∈ F ;

3. The mapping A : Ξ× Rn → Ξ, defined by A(ρ, x) = Tx(ρ), is measurable in the pair of
σ-algebras (F × Ln,F ), where Ln denotes the family of Lebesgue measurable sets.

The key property, which will allow us to derive the cell formula, is ergodicity.

Definition 4.2. A dynamical system T is called ergodic, if one of the following (equivalent)
conditions is fulfilled:

1. If f : Ξ → Ξ is measurable s.t. f(ρ) = f(Txρ) for all x ∈ Rn and a.e. ρ ∈ Ξ, then f is
P-a.e. equal to a constant.

2. If for some B ∈ F for all x ∈ Rn the set (TxB ∪ B) \ (TxB ∩ B) is a null set, then
P(B) ∈ {0, 1}.

One of the most important consequences of ergodicity is the famous Birkhoff’s ergodicity
theorem:

Theorem 4.1. Let T be an ergodic, dynamical system and g ∈ L1(Ξ). Then

lim
t→∞

1

tn|A|

∫
tA
g(Txρ̃)dx =

∫
Ξ
g(ρ)dP(ρ) (56)

for almost all ρ̃, for all bounded Borel sets A ⊂ Rn with |A| > 0.

Let Lp(Ξ) denotes the set of measurable p-integrable functions b : Ξ → R. In order to
guarantee that the spaces Lp(Ξ) for p ≥ 1 are separable we assume that the σ-algebra F is
countably generated. The dynamical system allows for more structure on the space Ξ. Denote
by U(x) the unitary operator

U(x) : L2(Ξ)→ L2(Ξ), U(x)b = b ◦ Tx .

If for b ∈ L2(Ξ) and 1 ≤ k ≤ n the limit

lim
h↓0

b(Th·ekρ)− b(ρ)

h

exists in the L2-sense, then we call it the k-th derivative of b and denote it by Dkb. The
operators Dk are infinitesimal generators of the maps Txk . Thus, iD1, . . . , iDn are commuting,
self-adjoint, closed and densely defined linear operators on the separable Hilbert space L2(Ξ).
Let Dk(Ξ) denote the domain of the operator Dk, and define the space W 1,2(Ξ) as

W 1,2(Ξ) := D1(Ξ) ∩ . . . ∩ Dn(Ξ),
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equipped with norm

‖b‖2W 1,2(Ξ) = ‖b‖2L2(Ξ) +
n∑
k=1

‖Dib‖2L2(Ξ).

We also define the semi-norm

|b|2W 1,2(Ξ) =

n∑
k=1

‖Dib‖2L2(Ξ) ,

and analogously the following Sobolev-type spaces:

W k,2(Ξ) := {b ∈ L2(Ξ) : Dα1
1 . . . Dαn

n b ∈ L2(Ξ), α1 + . . .+ αn ≤ k} ,

W∞,2(Ξ) :=
⋂
k≥0

W k,2(Ξ) .

Furthermore, we define the set of stochastically smooth functions as

C∞(Ξ) := {f ∈W∞,2(Ξ) : ∀(α1, . . . , αn) ∈ Nn0 , Dα1
1 . . . Dαn

n b ∈ L∞(Ξ)}.

The space C∞(Ξ) is dense in L2(Ξ) ([6], Lemma 2.1(b)) and separable ([6], Lemma 2.2). At
this point we would like to emphasize, that in the stochastic setting we do not have Poincaré-
or Sobolev-type estimates. Hence, the L2-integrability of higher-order derivatives does not
yield an L∞-bound on the derivatives. Especially, the space W 1,2(Ξ) is in general incomplete
w.r.t. to the seminorm | · |W 1,2(Ξ). Therefore, we introduce its completion denoted asW1,2(Ξ).
Differential operators Dk then extend uniquely as operators W 1,2(Ξ)→ L2(Ξ) to continuous
operators W1,2(Ξ) → L2(Ξ). The n-tuple of differential operators D = (D1, . . . , Dn) will be
called stochastic gradient.

We say that elements ρ̃ ∈ Ξ are typical, if the identity in the Birkhoff’s ergodicity theorem
(56) holds for all g ∈ C∞(Ξ), and a trajectory x 7→ Txρ̃ will be called typical, if ρ̃ is typical.
Note that separability of C∞(Ξ) implies that almost every ρ ∈ Ξ is typical. This enables us
to prove the following.

Lemma 4.2. Let n = 1. Then for every b ∈ L2(Ξ) with
∫

Ξ b(ρ)dP(ρ) = 0, there exists
g ∈ W1,2(Ξ) such that

D1g = b .

Remark 4.3. Notice that the zero mean value is necessary, since
∫
D1g(ρ)dP(ρ) = 0 for any

g ∈ W1,2(Ξ).

Proof. By [12, Proposition A.9.], there exists a decomposition

L2(Ξ) = F 2
pot(Ξ)⊕ F 2

sol(Ξ)⊕ R ,

where

F 2
pot(Ξ) := ClL2{Dχ : χ ∈W 1,2(Ξ)} ,
F 2
sol(Ξ) := ClL2{D × χ : χ ∈W 1,2(Ξ)} .

For n = 1 we have D × χ = 0 by definition, and the statement follows.
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The concept of two-scale convergence was first introduced by Nguetseng in [29] for periodic
problems, while Allaire further developed the concept and methods to a versatile tool [1]. For
the stochastic setting, the first definition was given in [6]. However, that concept is not well
suited for our purpose and we will instead use the following (slightly altered) definitions and
results given in [33].

Definition 4.3 (Weak stochastic two-scale convergence). Let (Txρ̃)x∈Rn be a typical trajectory
and (vε) bounded sequence of functions in L2(Ω). We say that (vε) stochastically weakly two-

scale converges to vρ̃ ∈ L2(Ω× Ξ) w.r.t. ρ̃ and we write vε
2−⇀ vρ̃ if

lim
ε↓0

∫
Ω
vε(x)ϕ(x)b(Tε−1xρ̃)dx =

∫
Ξ

∫
Ω
vρ̃(x, ρ)ϕ(x)b(ρ)dxdP(ρ)

for all ϕ ∈ C∞c (Ω) and b ∈ C∞(Ξ). Vector-valued functions are said to stochastically weakly
two-scale converge, if every component stochastically weakly two-scale converges.

Remark 4.4. The difference in this definition to the original one in [33] is the space C∞(Ξ)
instead of C0(Ξ) for the test functions b. This allows us to skip the assumption of a metric
on Ξ. Observe that the limit v may depend on the choice of the typical element, moreover,
the sequence (vε) may convergence for some typical elements, while not for others. From now
on we fix a typical ρ̃ ∈ Ξ and suppress any dependence on it.

Definition 4.4 (Strong stochastic two-scale convergence). Let (vε) ⊂ L2(Ω) be a weakly
stochastic two-scale convergent sequence with limit v0 ∈ L2(Ω×Ξ). We say that (vε) converges
strongly stochastic two-scale to v0 if additionally

lim
ε↓0

∫
Ω
vε(x)uε(x)dx =

∫
Ξ

∫
Ω
v0(x, ρ)u0(x, ρ)dxdP(ρ)

for every (uε) ⊂ L2(Ω) weakly stochastically two-scale converging to u0 ∈ L2(Ω × Ξ). We

denote that by vε
2−→ v0.

Lemma 4.5 (Extension of the test functions). If vε
2−⇀ v, then

lim
ε↓0

∫
Ω
vε(x)ϕ(x)b(Tε−1x1 ρ̃)dx =

∫
Ξ

∫
Ω
v(x, ρ)ϕ(x)b(ρ)dxdP(ρ)

holds also for b ∈ L2(Ξ).

Lemma 4.6 (Compactness). Let (vε) be a bounded sequence in L2(Ω), then there exists a

subsequence (not relabeled) and v ∈ L2(Ω× Ξ) such that vε
2−⇀ v.

Lemma 4.7. Let (uε) be a bounded sequence in W 1,2(Ω). Then on a subsequence (not rela-
beled) uε ⇀ u0 in W 1,2(Ω) and there exists u1 ∈ L2(Ω,W1,2(Ξ)) such that

uε
2−⇀ u0 and ∇uε 2−⇀ ∇u0 +Du1 .

The next lemma shows that convex/quadratic functionals are compatible with this concept
of two-scale convergence. A similar statement with proof can be found in [20].
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Lemma 4.8 (Lower-semicontinuity and continuity of quadratic functionals). Let (uε) be a

bounded sequence in L2(Ω,Rn) such that uε
2−⇀ u0 ∈ L2(Ω×Ξ,Rn). Let Q : Ξ×Rn → [0,∞)

be a measurable map such that for a.e. ρ ∈ Ξ, Q(ρ, ·) is a bounded positive semidefinite
quadratic form, i.e. there exists α > 0 such that

|Q(ρ, v)| ≤ α|v|2 , ∀v ∈ Rn .

Then

lim
ε↓0

∫
Ω
Q
(
Tε−1x1 ρ̃, u

ε(x)
)
dx ≥

∫
Ω

∫
Ξ
Q
(
ρ, u0(ρ, x)

)
dP(ρ)dx.

If additionally uε
2−→ u0, then

lim
ε↓0

∫
Ω
Q
(
Tε−1x1 ρ̃, u

k(x)
)

dx =

∫
Ω

∫
Ξ
Q
(
ρ, u0(ρ, x)

)
dP(ρ)dx.

4.2. Application in elasticity

In this subsection we closely follow [27], where analogous results where derived for the
periodic case. Since most of the statements can be proved in the same fashion, we will skip
those. In the following we work only with a one-dimensional dynamical systems T , i.e. n = 1.
We could assume additional microstructure in the cross section (see for instance [22] for the
periodic case of bending plate), but for simplicity omit that.

Let (εh) be a sequence of positive numbers, such that εh ↓ 0 for h ↓ 0. The random energy
density W h : R3 × Ξ× R3×3 → [0,+∞] is then defined by

W h(x, ρ, F ) = W (Tε−1
h x1

ρ, F ) , (57)

where

(S1) for a.e. ρ ∈ Ξ, W (ρ, ·) is continuous function on R3×3;

(S2) for a.e. ρ ∈ Ξ, W (ρ, ·) ∈ W(α, β, %, κ);

(S3) there exists a monotone function r : R+ → (0,+∞) such that r(δ) ↓ 0 as δ ↓ 0 and

∀G ∈ R3×3 , ∀h > 0 : ess sup
x∈Ω

|W h(x, ρ, I +G)−Qh(x, ρ,G)| ≤ r(|G|)|G|2 ,

where Qh(x, ρ, ·) are quadratic forms defined as in (H4).

The limiting material properties depend strongly on the relation between h and εh, more
specifically on γ ∈ [0,+∞] defined by

γ := lim
h↓0

h

εh
.

To study the above introduced energies we need Sobolev-type spaces not only in Ξ, but also
on Ξ× ω. Hence, we define

W 1,2(Ξ× ω) := W 1,2(ω,L2(Ξ)) ∩ L2(ω,W 1,2(Ξ)) ,
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equipped with seminorm

|u|2W 1,2(Ξ×ω) = ‖D1u‖2L2(Ξ×ω) + ‖∂2u‖2L2(Ξ×ω) + ‖∂3u‖2L2(Ξ×ω) .

Similarly as in the purely stochastic Sobolev space, byW1,2(Ξ×ω) we denote the completion
of W 1,2(Ξ × ω) w.r.t. the seminorm | · |W 1,2(Ξ×ω). The following statement about stochastic
two-scale limit of scaled gradients can be proved as in [20].

Lemma 4.9. Let (uh) ⊂ W 1,2(Ω,R3) and u0 ∈ L2(Ω,R3) such that uh → u0 strongly in
L2(Ω,R3) and let (∇huh) be uniformly bounded in L2(Ω,R3×3). Then u0 depends only on x1.
Moreover,

1. if γ ∈ {0,∞}, then there exists{
u1 ∈ L2((0, L), (W1,2(Ξ))3) and u2 ∈ L2((0, L)× Ξ,W 1,2(ω,R3)) , γ = 0 ,

u1 ∈ L2(Ω, (W1,2(Ξ))3) and u2 ∈ L2(I,W 1,2(ω,R3)) , γ =∞ ,

and
∇huh

2−⇀ (∂1u
0 +D1u

1 | ∇x′u2) .

2. If γ ∈ (0,∞), then there is a subsequence (not relabeled) and a function u1 ∈ L2((0, L),W1,2(Ξ×
ω,R3)) such that

∇huh
2−⇀ (∂1u

0 +D1u
1 | 1
γ
∇x′u1) .

4.3. Cell formula

Definition 4.5. For a.e. ρ ∈ Ξ let Q(ρ, ·) be a quadratic form associated with the energy
density W (ρ, ·). For every % ∈ R and Ψ ∈ R3×3

skw , define the mapping Q0
γ : R× R3 → R by

Q0
γ(%, axl Ψ)

:=


inf
∫

Ξ

∫
ω Q
(
ρ, ι(%e1 + Ψpx′ + (D1Ψ1)px′) + (D1ϑ

1 | ∇x′ϑ2)
)
dx′dP(ρ) , γ = 0 ;

inf
∫

Ξ

∫
ω Q
(
ρ, ι(%e1 + Ψpx′) +

(
D1ϑ

1 | 1
γ∇x′ϑ

1
))

dx′dP(ρ) , 0 < γ <∞ ;

inf
∫

Ξ

∫
ω Q
(
ρ, ι(%e1 + Ψpx′) + (D1ϑ

1 | ∇x′ϑ2)
)
dx′dP(ρ) , γ =∞ ,

where the infimum is taken over all Ψ1, ϑ1, ϑ2 satisfying: Ψ1 ∈ W1,2(Ξ,R3×3
skw ),

ϑ1 ∈


W1,2(Ξ)3 , γ = 0 ,

W1,2(Ξ× ω)3 , 0 < γ <∞ ,

L2(ω,W1,2(Ξ)3) , γ =∞ ,

and ϑ2 ∈

{
L2(Ξ,W 1,2(ω,R3)) , γ = 0 ,

W 1,2(ω,R3) , γ =∞ .

Proposition 4.10. Let (W h) be a family of energy densities describing a random material
for rods defined by (57). Then the limit energy density Q0, defined in (24), is given by Q0

γ

from Definition 4.5.

Proof. We only prove the result for 0 < γ < ∞. The other two cases are very similar.
Using the previous general homogenization result it suffices to prove that for m = m(%,Ψ) =
%e1 + Ψpx′ it holds

lim
r↓0

( 1

2r
K(h)(m,x

0
1 + (−r, r))

)
= Q0

γ(%, axl Ψ) ,
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for all % ∈ R and Ψ ∈ R3×3
skw , for every Lebesgue point x0

1, where K(h) is given by (22). By

Lemma 2.5, for given m, there exist sequences of functions (Ψh) ⊂ H1((0, L),R3×3
skw ) and

(ϑh) ⊂ H1(Ω,R3), with properties stated there, such that

lim
r↓0

( 1

2r
K(h)(m,x

0
1 + (−r, r))

)
=

lim
r↓0

1

2r
lim
h↓0

∫
(x01+(−r,r))×ω

Q
(
Tε−1x1 ρ̃, ι(m) + sym ι((Ψh)′px′) + sym∇hϑh

)
dx .

Using the lower-semicontinuity of quadratic functionals with respect to the stochastic two-
scale convergence we obtain

lim
r↓0

( 1

2r
K(h)(m,x

0
1 + (−r, r))

)
= lim

r↓0

1

2r
lim
h↓0

∫
(x01+(−r,r))×ω

Q
(
Tε−1x1 ρ̃, ι(m) + sym((Ψh)′px′) + sym∇hϑh

)
dx

≥ lim
r↓0

1

2r
inf
U

∫
(x01+(−r,r))

∫
Ξ×ω

Q
(
ρ, ι(m) + U

)
dP(ρ)dx ,

where the infimum is taken over all possible two-scale limits of

sym ι((Ψh)′px′) + sym∇hϑh ,

i.e. {
sym ι(D1Ψ1px′) + sym

1

γ
∇x′ϑ1 : Ψ1 ∈ W1,2(Ξ,R3×3

skw) , ϑ1 ∈ W1,2(Ξ× ω)3

}
.

Notice that the first term can be absorbed into the second one. To show this we define ϑ̃1 by

ϑ̃1(ρ, x′) :=

Ψ12(ρ)x2 + Ψ13(ρ)x3

− 1
γ Ψ̂12(ρ) + Ψ23(ρ)x3

− 1
γ Ψ̂13(ρ)−Ψ23(ρ)x2

 ,

where ·̂ denotes the primitive of the function. A short calculation reveals that

sym(
1

γ
∇x′ ϑ̃1) = sym((D1Ψ)px′) .

Therefore, the set of weak stochastic two-scale limits is given by{
1

γ
∇x′ϑ1 : ϑ1 ∈ (W1,2(Ξ× ω))3

}
.

Hence, we deduce

lim
r↓0

( 1

2r
K(h)(m,x

0
1 + (−r, r))

)
≥ Q0

γ(%, axl Ψ) .

For the reverse inequality we fix %,Ψ, and let ϑ1 ∈ (W 1,2(Ξ× ω))3 be such that∫
Ξ

∫
ω
Q
(
ρ, ι(%e1 + Ψpx′) +

(
D1ϑ

1 | 1
γ
∇x′ϑ1

))
dx′dP(ρ) ≤ ε+Q0

γ(%, axl Ψ) .

31



Defining

ϑh(x1, x
′) =

h

γ
ϑ1(Tε−1x1 ρ̃, x

′) ,

we observe

sym
(
∇hϑh

) 2−→ sym
(
D1ϑ

1 | 1
γ
∇x′ϑ1

)
.

By continuity of quadratic functions w.r.t. stochastic two-scale convergence we have

ε+Q0
γ(%, axl Ψ)

≥
∫

Ξ

∫
ω
Q
(
ρ, ι(%e1 + Ψpx′) + sym

(
D1ϑ

1 | 1
γ
∇x′ϑ1

))
dx′dP(ρ)

= lim
r↓0

1

2r

∫
x1+(−r,r)

lim
h↓0

∫
ω
Q
(
Tε−1x1 ρ̃, ι(ρe1 + Ψpx′) + sym

(
∇hϑh

))
dx′dP(ρ) ,

which finishes the proof.

Appendix

Lemma A.1. Let p > 1, Ω ⊂ Rd open, bounded set and (uk) ⊂ W 1,p(Ω,Rm) a bounded
sequence such that (|∇uk|p) is equi-integrable. Let (sk)k be an increasing sequence of positive
reals such that sk → +∞ for k → +∞. Then there exists a subsequence still denoted by
(uk) and a sequence (zk) ⊂ W 1,∞(Ω,Rm) satisfying: |zk 6= uk| → 0 as k → +∞, (|∇zk|p) is
equi-integrable and ‖zk‖W 1,∞ ≤ Csk for some C > 0 depending only on dimension d.

Proof. The proof is implicitly contained in the proof of Lemma 1.2 (decomposition lemma)
from [16], but we include it here for reasons of completeness. As in [16], the proof is divided
into two steps. In the first we assume that Ω is an extension domain, while in the second we
remove this restriction generalizing the statement for an arbitrary open set.

Step 1. Let Ω ⊂ Rd be an extension domain, i.e. an open, bounded set for which there
exists an extension operator TΩ : W 1,p(Ω,Rm)→W 1,p(Rd,Rm) satisfying:

TΩu = u on Ω , ‖TΩu‖W 1,p(Rd) ≤ C‖u‖W 1,p(Ω) .

In the following we identify the sequence (uk) ⊂ W 1,p(Ω,Rm) with its extension sequence
(TΩuk) ⊂W 1,p(Rd,Rm). Let us introduce the Hardy-Littlewood maximal function

M(u)(x) := sup
r>0

1

|B(x, r)|

∫
B(x,r)

|u(y)|dy ,

defined for any Borel measurable function u : Rd → Rm. It is known that for p > 1 and
u ∈W 1,p(Rd,Rm),

‖M(u)‖Lp + ‖M(∇u)‖Lp ≤ C‖u‖W 1,p .

According to [16, Lemma 4.1] (cf. [13]), for every k ∈ N, there exists zk ∈ W 1,∞(Rd,Rm)
such that uk = zk on the set Sk := {M(∇uk)(x) < sk} and ‖zk‖W 1,∞ ≤ Csk, where C > 0
depends only on d. Using the argument as in the proof of [14, Proposition A2.], we obtain an
estimate on the Lebesgue measure of the complement of set Sk,

|Sck| ≤
C

spk

∫
{|uk|+|∇uk|>sk/2}

(|uk|+ |∇uk|)pdx , for all k ∈ N . (58)
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The strong convergence of (uk) and the equi-integrability property of (|∇uk|p) imply that
|Sck| = |uk 6= zk| → 0 as k →∞. Let A ⊂ Rd be a bounded open subset, then due to the fact
that {uk = zk} = {uk = zk ,∇uk = ∇zk}, up to a set of the Lebesgue measure zero, we have∫

A
|∇zk|pdx =

∫
A∩Sk

|∇uk|pdx+

∫
A∩Sck

|∇zk|pdx , for all k ∈ N .

Since (|∇uk|p) is equi-integrable, the first term on the right-hand side can be made arbitrary
small for |A| small enough. For the second term, using (58), we estimate∫

Sck
|∇zk|pdx ≤ ‖∇zk‖pL∞ |S

c
k| ≤ C

∫
{|uk|+|∇uk|>sk/2}

(|uk|+ |∇uk|)pdx , for all k ∈ N ,

and conclude, as above, that limk→∞
∫
Sck
|∇zk|pdx = 0. Hence, we proved that for every ε > 0

there exists δ > 0 and k0 ∈ N, such that for all open subsets A ⊂ Rd with |A| ≤ δ and for all
k ≥ k0 it holds ∫

A
|∇zk|pdx ≤ ε ,

which by definition means the equi-integrability of the sequence (|∇zk|p).
Step 2. Let Ω be an arbitrary open, bounded set. For a given bounded sequence (uk) ⊂

W 1,p(Ω,Rm), there exists a subsequence such that

uk ⇀ u in W 1,p(Ω,Rm) , uk → u in Lploc(Ω,R
m) .

Let (Ωl) be an increasing sequence of compactly contained subdomains of Ω satisfying |Ω\Ωl| →
0 as l→∞, and let (ζl) ⊂ C∞c (Ω, [0, 1]) be a sequence of cut-off functions such that ζl(x) = 1
for x ∈ Ωl. Define ũk := uk − u, and observe that

lim sup
l→∞

lim sup
k→∞

‖ζlũk‖Lp = 0

and

lim sup
l→∞

lim sup
k→∞

‖∇(ζlũk)‖Lp = lim sup
l→∞

lim sup
k→∞

‖∇ζl ⊗ ũk + ζl∇ũk‖Lp

≤ lim sup
k→∞

‖∇ũk‖Lp <∞ .

Then, a standard diagonalization procedure applies (cf. [2, Lemma 1.15]) and provides a
bounded sequence (ζl(k)ũk) ⊂ W 1,p

0 (Ω,Rm), which can be extended by zero to Rd. Since,
(|∇(ζl(k)ũk)|p) is equi-integrable, applying the arguments of Step 1, there exists a sequence
(z̃k) ⊂ W 1,p(Ω,Rm) satisfying: |z̃k 6= ζl(k)ũk| → 0 as k → +∞, (|∇z̃k|p) is equi-integrable
and ‖z̃k‖W 1,∞ ≤ Csk for some C > 0. Since, |z̃k + u 6= uk| ≤ |z̃k 6= ζl(k)ũk| + |Ω\Ωl(k)| → 0,
(|∇(z̃k + u)|p) is equi-integrable, and ‖z̃k + u‖W 1,∞ ≤ Csk for some C > 0, we identify
zk = z̃k + u as the sought sequence.

Remark A.2. If we assume in the previous lemma that Ω is a Lipschitz domain, as it is
the case in our model of the rod, where Ω = (0, L)× ω and ω is Lipschitz, then Ω is also an
extension domain and according to the arguments in Step 1, we can replace the whole sequence
(uk) by its Lipschitz counterpart.
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[8] M. Bukal, I. Velčić, On the simultaneous homogenization and dimension reduction in
elasticity and locality of Γ-closure, arXiv:1508.05979 (2016).

[9] P. Courilleau, J. Mossino, Compensated compactness for nonlinear homogenization and
reduction of dimension, Calc. Var. Partial Differ. Equ. 20 (2004) 65–91.

[10] G. Dal Maso. An introduction to Γ-convergence. Birkhäuser Boston Inc., Boston, 1993.

[11] E. Davoli, M. G. Mora, Convergence of equilibria of thin elastic rods under physical
growth conditions for the energy density. Proc. R. Soc. Edinburgh: A 142 (2012) 501–
524.

[12] M. Duerinckx, A. Gloria, Stochastic homogenization of nonconvex unbounded integral
functionals with convex growth, arXiv:1507.05000 (2015).

[13] L. C. Evans, R. F. Gariepy, Lecture notes on measure theory and fine properties of
functions, CRC Press, Boca Raton, 1992.

[14] G. Friesecke, R. D. James, S. Müller, A theorem on geometric rigidity and the derivation
of nonlinear plate theory from three-dimensional elasticity, Comm. Pure Appl. Math. 55
(2002) 1461–1506.

[15] G. Friesecke, R. D. James, S. Müller, A hierarchy of plate models derived from nonlinear
elasticity by gamma-convergence, Arch. Ration. Mech. Anal. 180 (2006) 183–236.

[16] I. Fonseca, S. Müller, and P. Pedregal, Analysis of concentration and oscillation effects
generated by gradients, SIAM J. Math. Anal. 29 (1998) 736–756.

34



[17] G. Griso, Asymptotic behavior of structures made of plates, Anal. Appl. 3 (2005) 325–
356.

[18] G. Griso, Decompositions of displacements of thin structures, J. Math. Pures Appl. 89
(2008) 199–223.

[19] B. Gustafsson, J. Mossino, Compensated compactness for homogenization and reduction
of dimension: the case of elastic laminates, Asymptot. Anal. 47 (2006) 139–169.
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