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Abstract

We prove the existence of global in time weak nonnegative solutions to a family of nonlinear
fourth-order evolution equations, parametrized by a real parameter q ∈ (0, 1], which includes the
well known thin-film (q = 1/2) and the Derrida–Lebowitz–Speer–Spohn (DLSS) equation (q = 1),
subject to periodic boundary conditions in one spatial dimension. In contrast to the gradient flow
approach in [25], our method relies on dissipation property of the corresponding entropy functionals
(Tsallis entropies) resulting in required a priori estimates, and extends the existence result from
[25] to a wider range of the family members, namely to 0 < q < 1/2. Generalized Beckner-type
functional inequalities yield an exponential decay rate of (relative) entropies, which in further
implies the exponential stability in the L1-norm of the constant steady state. Finally, we provide
illustrative numerical examples supporting the analytical results.
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1. Introduction

The study object of this paper is Cauchy problem to a family of nonlinear fourth-order evolution
equations

∂tu = −
(
u2−q (logq u

)
xx

)
xx
, (1)

subject to the periodic boundary conditions, i.e. x ∈ T ' [0, 1), and given nonnegative initial datum
u(·, 0) = u0 ∈ L1(T). The family is parametrized by a real parameter q, where logq denotes the so
called q-logarithm [30] defined by

logq u =

{
log u , u > 0 and q = 1 ,
u1−q−1

1−q , u > 0 and q 6= 1 .
(2)
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The definition of q-logarithm as a generalization of the natural logarithm invokes mostly physical
reasons. It appears in the context of the Tsallis statistics [29, 30], a non-extensive generalization
of the classical Boltzmann–Gibbs statistical mechanics. Basic ingredient of the Tsallis statistics is
an entropic expression, parametrized by a real parameter α,

Sα(u) =
1

α− 1

(
1−

∫
u(x)αdx

)
called Tsallis entropy, which generalizes the Boltzmann entropy H(u) = −

∫
u log udx recovered

at the limit when α → 1. Tailored to macroscopic description of long-range interacting physical
systems exhibiting power-law behaviour, Tsallis statistics found applications in diverse disciplines
ranging from natural sciences to medicine and economics [18].

In this paper we focus on the range of parameters q ∈ (0, 1], since it will allow us to rigorously
carry out a thorough analysis — construction of global-in-time weak nonnegative solutions and
long-time behaviour analysis — of equation (1). Periodic boundary conditions are taken in order
to emphasize the structure of the equation without being concered about boudaries and in order to
“freely” integrate by parts. For these resons we could also take homogeneous Neumann and no-flux
boundary conditions, they would yield the same results. For q = 1, equation (1) becomes the well
known Derrida–Lebowitz–Speer–Spohn (DLSS) equation

∂tu = − (u (log u)xx)xx , (3)

which has been first established by Derrida et al. [15] in studying of interface fluctuations in the
Toom model, and later on it has been recognized as a quantum correction of the classical drift-
diffusion model describing the transport of charged particles in quantum semiconductors [13]. The
DLSS equation has been the subject of many papers showing its rich mathematical structure, in
particular, we refer to the existence of local-in-time positive classical solutions [6] and the existence
of global in time nonnegative weak solutions, as well as their long-term behaviour [24]. Setting
q = 1/2 in (1), simple calculus (assuming enough smoothness of solutions) reveals the famous
thin-film equation

∂tu = −2
(
u3/2

(
u1/2 − 1

)
xx

)
xx

= − (uuxxx)x (4)

describing the evolution of the fluid thickness in the Hele-Shaw cell [11]. This equation is commonly
studied within another family of fourth-order evolution equations — thin film equations

∂tu = −
(
uβuxxx

)
x

arising in lubrication approximation of various physical models of thin viscous fluids [5, 27]. The
literature on analysis of these equations is huge, thus we refer only to several prominent references
[3, 4, 12]. Let us still mention that the only thin-film equation possessing the symmetry structure of
the spatial differential operator as in (1) is equation (4), i.e. when β = 1. Other thin-film equations
(β > 0) allow for the symmetry structure in the leading order term of the operator, but also retain
a second-order perturbation term (cf. Section 6).
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For smooth positive solutions, equation (1) can be rewritten in equivalent conservation law form

∂tu = − 2

3− 2q

(
u
(
u1/2−q(u3/2−q)

xx

)
x

)
x
, (5)

which first appeared in [14], where Denzler and McCann related these equations to a family of
porous medium equations

∂tu = (u(logq u)x)x =
1

2− q
(
u2−q)

xx
, (6)

and constructed special solutions on R × (0,∞). Thorough analysis of equation (5) has been
undertaken in [25] showing rigorously a gradient flow structure. Namely, for 1/2 ≤ q ≤ 1 equation
(5), set on R× (0,∞), constitutes the gradient flow of the generalized Fisher information

Fq(u) =
2

(3− 2q)2

∫
R

(
u3/2−q

)2

x
dx

with respect to the L2–Wasserstein distance. Thus, the existence of weak solutions accompanied
with the long time asymptotics to the stationary profiles has been established. In particular, such
results were known before for the DLSS (q = 1) [20] and for the thin film (q = 1/2) equation
[19]. Recently, McCann and Seis [26] took further investigations on the long time behaviour of
nonnegative solutions constructed in [25]. Linearizing formally a rescaled version of equation (5)
around its stationary profile (corresponding Barenblatt-type profile) and using so called entropy-
information relation, which relates the generalized Fisher information Fq to entropy Hq (see eq. (7)
below) and its L2–Wasserstein gradient, they provided complete spectral information (eigenvalues
with the corresponding eigenfunctions) about displacement Hessian of Fq in terms of the spectral
information of the porous medium displacement Hessian, i.e. displacement Hessian of Hq. Based
on that powerful heuristics and known spectral information of the porous medium displacement
Hessian, they conjecture a complete asymptotic expansion of solutions to equation (5) for large
times.

Our approach is somewhat different, rather complementary to [25], and closely follows the
methods developed in [22, 24]. It is more elementary in the sense that a complete analysis relies on
a priori estimates conducted by the dissipation property of certain functionals (also called entropies1

or Lyapunov functionals) along solutions to (1). Natural Lyapunov functional for equation (1) reads

Hq(u) =
1

2− q

∫
T

(
u logq u− logq−1 u

)
dx , (7)

which for q = 1 reveals the classical Boltzmann–Gibbs entropy H1(u) =
∫
T (u log u− u+ 1) dx .

Note that if u is a probability density, then up to the factor −1/(2 − q), (7) equals to the Tsallis

1These entropies are strictly speaking no longer entropies in the physical sense, but nonnegative functionals with
the Lyapunov property.
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entropy of order α = 2 − q. Hence, the main motivation to study again equation (5) was the
discovery of its novel entropy structure, i.e. equation (1). Namely, equation (1) can be written as

∂tu = −
(
u2−q

(
δHq(u)

δu

)
xx

)
xx

,

with δHq(u)/δu = logq u, which immediately reveals the dissipation property of functional Hq
assuming appropriate boundary conditions. This structure has been used in [8] for the thin-film
equation (4) when studying the long-time asymptotics of strong solutions, and motivated the autor
to look for the same structure in other family members of (5), and furthermore, to explore the
structure for the existence and long-time behaviour analysis. Key estimate for our analysis is the
entropy dissipation inequality

d

dt
Hq(u) + κq

∫
T

(
1

γ2
(uγ)2

xx +
16

γ4
(uγ/2)4

x

)
dx ≤ 0 , (8)

where γ = 2 − 3q/2 > 0 and κq > 0 strictly positive constant given in Proposition 1 below. This
estimate motivates to rewrite equation (1) in a novel form

∂tu = −1

γ

(
u1−q/2(uγ)xx

)
xx

+
2− q
2δ2

(
(uδ)2

x

)
xx
, (9)

with δ = 3/2 − q > 0, which is equivalent to (1) for smooth positive solutions, and it will provide
the meaning to our notion of weak solutions.

Theorem 1. Let 0 < q ≤ 1, u0 ∈ L1(T) be a nonnegative function of finite entropies Hq(u0) <∞
and H1(u0) <∞, and unit mass

∫
T u0(x)dx = 1. Let T > 0 be given arbitrary terminal time, then

there exists a nonnegative function u ∈ W 1,m(0, T ;Y ) satisfying uγ ∈ L2(0, T ;W 2,r(T)) and the
following weak form of (9):∫ T

0
〈∂tu, φ〉dt+

∫ T

0

∫
T

(
1

γ
u1−q/2(uγ)xx −

2− q
2δ2

(uδ)2
x

)
φxx dx dt = 0 (10)

for all test functions φ ∈ Ln(0, T ;W 2,r′(T)). Exponents m, n, r, and r′ depend only on parameter
q, and are explicitely writen in the proof in Section 3, while Y denotes the dual of the Sobolev space
W 2,r′(T).

The existence result is obtained by following a somewhat standard procedure, which proved its
efficiency on several heavily nonlinear problems (cf. [7, 22, 24]). Starting from the original equation
(1), which enjoys a symmetry property in the spatial differential operator, we first solve the time
discrete problem by means of entropic and elliptic regularization, application of the Leray-Schauder
fixed point theorem, and identification of the limit function of the deregularization process as a weak
solution to the semi-discrete equation. Key ingredients of the procedure are entropy dissipation
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inequality (8) and Sobolev embeddings, while additional a priori estimates on discrete time deriva-
tives (cf. Proposition 5 from Appendix) are required in order to perform the limit of the vanishing
time-discretization. Note as well that our existence result extends the one from [25] in dimension
one, in the sense that we also provide the notion of weak solutions for 0 < q < 1/2. It is worth
to emphasize at this point that despite of the lack of the comparison principle for higher-order
equations in general, see for instance [1] as well as numerical examples in Section 5 which show
violation of the comparison principle, equation (1) preserves the nonnegativity of global weak so-
lutions for every q ∈ (0, 1]. Regarding the regularity issue, it has been proven in [6] for the DLSS
equation (q = 1), using a semigroup approach, that mild solutions are arbitrary regular (smooth)
as far as they remain strictly positive. For other equations (0 < q < 1), for which we have the
existence of weak solutions, regularity is more subtle, since these equations are both: degenerate
in the leading order term of the spatial differential operator and singular in lower order terms (see
eq. (14) below). Additional investigations will be needed in order to gain some quantitative results
concerning regularity issues.

Concerning the long time behaviour of equation (1), first observe that constant functions are
stationary solutions. It has been proven in [22] that for the DLSS equation (q = 1), u∞ ≡ 1
is exponentially stable in the sense of (relative) entropies as well as in the L1-norm. Employing
generalized Beckner-type functional inequalities, Poincaré and Csiszár-Kullback-Pinsker inequality,
analogous results for 0 < q < 1 are presented here, which are, to the best of the autor’s knowledge,
new.

Theorem 2. Let u0 ∈ L1(T) be a nonnegative unit mass function of finite entropies Hq(u0) < ∞
and H1(u0) <∞. For 0 < q < 1, let u be the weak solution to (9) in the sense of Theorem 1, then

Hq(u(t)) ≤ Hq(u0)e−2λqt , t ≥ 0 , (11)

where λq > 0 is a positive constant given explicitly by (47) in Section 4. Solution u also converges
exponentially in the L1-norm to the constant steady state

‖u(t)− 1‖L1 ≤
√

2Hq(u0)e−λqt , t ≥ 0 . (12)

The paper is organized as follows. In Section 2 we first discuss formal dissipation properties
by finding a whole family of Lyapunov functionals which are dissipated along smooth positive
solutions of equation (1) and proving the key dissipation inequality (8). Section 3 and 4 are devoted
to proofs of Theorem 1 and 2, respectively, while Section 5 numerically illustrates behaviour of
solutions to (1) for various values of parameter q. The manuscript is concluded with several remarks
regarding possible extensions of the results, and Appendix which comprises auxiliary results from
the literature tailored to the situation at hand.
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2. Formal dissipation properties

Assuming the existence of smooth and strictly positive solutions to equation (1), we discuss
their formal dissipation structure by finding a family of functionals of the form

Eα(u) =
1

α(α− 1)

∫
T
(uα − αu+ α− 1)dx , α 6= 0, 1 ,

E1(u) =

∫
T
(u log u− u+ 1)dx , α = 1 , (13)

E0(u) =

∫
T
(u− log u)dx , α = 0 ,

which satisfy the Lyapunov property, i.e. (d/dt) Eα(u(t)) ≤ 0 along solutions to (1) for all t > 0.
Observe that for all α ∈ R the integrand ψα(s) in (13) is nonnegative for all s > 0, thus, Eα(u) =∫
Td ψα(u)dx is nonnegative functional for all α ∈ R. At this point we do not restrict the range of

parameters q in (1). In order to find all α ∈ R for which Eα are Lyapunov to (1), we directly apply
the method developed in [21], where an exhaustive algorithmic approach for searching for entropies
is proposed by solving the corresponding polynomial decision problem.

To start with, we rewrite equation (1) in an equivalent (for smooth positive solutions) expanded
form

∂tu = −
(
u2−2q

(
uxxx + (2− 4q)

uxxux
u
− q(1− 2q)

u3
x

u2

))
x

, (14)

and in the following lines explain very briefly the main ideas, leaving the details to the reader.
Firstly, from (14) we identify the polynomial representation of the spatial differential operator

∂tu =
(
u3−2qPq

(ux
u
,
uxx
u
,
uxxx
u

))
x

(15)

with
Pq(ξ1, ξ2, ξ3) = −ξ3 − (2− 4q)ξ1ξ2 + q(1− 2q)ξ3

1 . (16)

The entropy production of Eα then reads

− d

dt
Eα(u(t)) =

∫
T
uα+2−2q

(ux
u

)
Pq

(ux
u
,
uxx
u
,
uxxx
u

)
dx , (17)

and the integrand is then formally represented by another polynomial Sq(ξ1, ξ2, ξ3, ξ4) = ξ1Pq(ξ1, ξ2, ξ3).
In order to achieve the integral inequality −(d/dt)Eα(u(t)) ≥ 0, we systematically use integration
by parts and operate on integrands using their polynomial representation. Following [21], basic
integration by parts formulae applied to (17) are represented by so called shift polynomials:

T1(ξ) = (α− 1− 2q)ξ4
1 + 3ξ2

1ξ2 ,

T2(ξ) = (α− 2q)ξ2
1ξ2 + ξ1ξ3 + ξ2

2 ,

T3(ξ) = (α+ 1− 2q)ξ1ξ3 + ξ4 ,
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Figure 1: Range of entropies (parameters α) versus equation parameter q.

while all other can be obtained as linear combinations of these. Exhaustive application of integration
by parts formulae to prove the sign of the entropy dissipation then amounts to a decision problem

∃ (c1, c2, c3) , ∀ ξ ∈ R4 , (Sq + c1T1 + c2T2 + c3T3)(ξ) ≥ 0

about the nonnegativity of the polynomial Sq + c1T1 + c2T2 + c3T3. This polynomial represents
all possible integrands equivalent to Sq in the sense of equality of the integral in (17). Indefinite
terms which appear in the above poynomial and cannot be controlled by any other terms are c3ξ4

and (c2 + c3(α+ 1− 2q)− 1)ξ1ξ3. That ultimatively requires c3 = 0 and c2 = 1, thus leading to a
simplified decision problem

∃ c1 , ∀ ξ ∈ R2 , (q(1− 2q) + c1(α− 1− 2q)) ξ4
1 + (3c1 + α− 2 + 2q)ξ2

1ξ2 + ξ2
2 ≥ 0 .

The latter can be solved directly using some computer algebra system like Mathematica or even
manually applying [21, Lemma 11], and results in the following algebraic relations between param-
eters α and q (cf. Figure 1.):

1− q ≤ α ≤ 5

2
− q . (18)

By the above procedure we have proven:

Theorem 3. Let u : T×(0,∞)→ R be a smooth and strictly positive solution to equation (1), then
functionals Eα defined by (13) are Lyapunov functionals for the equation for all α ∈ R satisfying
(18).

Remark. Result of the previous theorem can even be strengthened in the sense that if α < 1− q
or α > 5/2 − q, then Eα is not a Lyapunov functional. The proof follows directly employing [21,
Theorem 19].

The following corollary, which will be used in the construction of weak solutions, is a direct
consequence of the Lyapunov property of the natural entropy E1 for equation (1) when 0 ≤ q ≤ 1.
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Corollary 1. Let 0 ≤ q ≤ 1 and u ∈ H2(T) strictly positive then∫
T
u2−q(logq u)xx(log u)xxdx ≥ 0 . (19)

Among all Lyapunov functionals Eα to (1), we particularly utilize the dissipation property of
E2−q, previously (and later on) denoted by Hq. If u is a smooth strictly positive solution to equation
(1), then integration by parts implies the dissipation of Hq according to

− d

dt
Hq(u(t)) =

∫
T
u2−q (logq u

)2
xx

dx . (20)

Using the same techniques as of the above algorithmic search for entropies, we even provide lower
bounds on the entropy production (20), which will play a crucial role in the construction of weak
solutions to equation (1), i.e. (9), and in the study of their long time behaviour.

Proposition 1 (Entropy dissipation inequalities). Let u ∈ H2(T) be strictly positive, then the
following entropy dissipation inequalities hold:∫

T
u2−q (logq u

)2
xx

dx ≥ κq
∫
T

(
1

γ2
(uγ)2

xx +
16

γ4
(uγ/2)4

x

)
dx , (21)∫

T
u2−q (logq u

)2
xx

dx ≥ κ̃q
γ2

∫
T
(uγ)2

xx dx , (22)

where κq = 4/(52 − 24q + 9q2), and κ̃q = 4/(16 − 24q + 9q2) for q ∈ (0, 2/3] and κ̃q = 1 for
q ∈ (2/3, 1].

Proof. The left hand side of integral inequality (21) is represented by Rq(ξ) = ξ2
2 − 2qξ1ξ2 + q2ξ4

1 ,
while the right hand side is represented by Qq(ξ) = ξ2

2 +(2−3q)ξ2
1ξ2 +(2−3q+9q2/4)ξ4

1 . Employing
systematic integration by parts formulae leads to the decision problem

∃ (c1, c2, c3) , ∀ ξ ∈ R4 , (Rq − κQq + c1T1 + c2T2 + c3T3)(ξ) ≥ 0

with α = 2− q and questing after optimal κ > 0. Resolving the latter polynomial amounts to the
simplified decision problem

∃ c1 , ∀ ξ ∈ R4 ,

(
q2+ c1(1− 3q)− κ

(
2− 3q +

9

4
q2
))

ξ4
1

+ (3c1 − 2q − κ(2− 3q))ξ2
1ξ2 + (1− κ)ξ2

2 ≥ 0 ,

whose solution is algebraic relation

κ ≤ 4

52− 24q + 9q2
,

which immediately provides optimal κ. The proof of the second inequality follows the same, but
solving a slightly modified decision problem.
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Remark. Let u : T × (0,∞) → R be a smooth and strictly positive solution to equation (1)
with q ∈ (0, 1], then we have formally proven the following entropy production inequality

d

dt
Hq(u(·, t)) +

κ̃q
γ2

∫
T
(uγ)2

xx dx ≤ 0 , t > 0 .

Using the Beckner-type inequality, entropy production bound can be related to the entropy itself
(cf. Lemma 1 and the proof of Theorem 2) in Section 4), yielding to an evolution inequality for Hq,

d

dt
Hq(u(·, t)) + 2λqHq(u(·, t)) ≤ 0 , t > 0 ,

which implies the exponential decay of functionalHq along smooth positive solutions to equation (1)
at a constant rate 2λq > 0. Using then generalized Csiszár-Kullback-Pinsker inequality (cf. Theorem
5 in Appendix), implies in further the exponential convergence of smooth positive solutions to the
constant steady state in the L1-norm at the constant rate λq > 0. This remark is only to briefly
point out that smooth positive solutions (if such exist) exponentialy converge to the constant steady
state having the same mass, i.e. constants are formally exponentially stable states of equation (1)
assuming periodic boundary conditions. For the reader’s convenience, the same result will be
rigorously and more explanatory proved in Section 4 for weak solutions.

3. Construction of global weak solutions

This section is devised for the proof of Theorem 1 resolving step by step the construction of
global-in-time weak nonnegative solutions. Since the existence proof for q = 1 can be found in
[22, 24], here we tailor the proof for 0 < q < 1.

3.1. Semi-discrete problem

Let a time-discretization step τ > 0 be given, we start with solving the semi-discrete problem.

Proposition 2. Let u0 ∈ L1(T) be a nonnegative function of finite entropies Hq(u0) < ∞ and
H1(u0) < ∞ and of unit mass. Then there exists u, with uγ ∈ W 2,r(T) (recall γ = 2 − 3q/2), a
weak solution to the following elliptic problem:

1

τ

∫
T
(u− u0)φ dx = −

∫
T

(
1

γ
u1−q/2(uγ)xx −

2− q
2δ2

(uδ)2
x

)
φxx dx (23)

for all test functions φ ∈ W 2,r′(T), where r′ ≥ 1 denotes the Hölder conjugate of r determined
below. The solution is of the unit mass and the following discrete entropy estimate holds

Hq(u) + κqτ

∫
T

(
1

γ2
(uγ)2

xx +
16

γ4
(uγ/2)4

x

)
dx ≤ Hq(u0) , (24)

with κq > 0 given in Proposition 1.

9



Proof. We first consider elliptic problem — semidiscretization of equation (1):

1

τ
(u− u0) = −

(
u2−q (logq u

)
xx

)
xx

on T , (25)

which will only be our starting point to the construction of a weak solution. To prevail the nonlin-
earity in (25) we introduce a new entropy variable yε = Dhq,ε(u) = logq u+ε log u deduced from the
regularized entropy density hq,ε = hq+εh1 with ε > 0 fixed. The new variable both linearizes equa-
tion (25) and asserts invertibility uε = Dh−1

q,ε(yε), since D2hq,ε(w) > 0 for all w > 0. Additionally,

we regularize equation (25) by subtracting an elliptic operator ε(yε,xxxx + (u2−q
ε (log uε)xx)xx + yε)

on the right hand side of (25). The resulting equation then reads

1

τ
(uε − u0) = −

((
u2−q
ε + ε

)
yε,xx

)
xx
− εyε on T , (26)

and will be solved in next lines by means of the Leray–Schauder fixed point theorem.
For fixed yε ∈ L∞(T) let uε = Dh−1

q,ε(yε) and σ ∈ [0, 1], we introduce bilinear form a and linear
functional f on H2(T) as follows:

a(z, φ) =

∫
T
(σu2−q

ε + ε)zxxφxx dx+ ε

∫
T
zφ dx ,

f(φ) = −σ
τ

∫
T
(uε − u0)φ dx , ∀φ ∈ H2(T) .

Since yε ∈ L∞(T) and the change of variables Dh−1
q,ε is continuous, then u2−q

ε ∈ L∞(T), and it is
easily to check that a is bounded, as well as coercive

a(z, z) ≥ ε
∫
T
(z2
xx + z2)dx ≥ Cε‖z‖2H2 ,

due to the Poincaré inequality. Similarly, the continuity of f is also easily verified. Hence, the
Lax-Milgram lemma provides the existence of a unique solution z ∈ H2(T) to the elliptic problem

a(z, φ) = f(φ) , φ ∈ H2(T) . (27)

Next we define the mapping Sε : L∞(T)×[0, 1]→ L∞(T) by Sε(yε, σ) := z. Continuity of Sε follows
from the Lax-Milgram lemma — z depends continuously on (uε, σ), and from the continuity of the
change of variables — uε depends continuously on yε in the sense of the strong convergence in
L∞(T). The relative compactness is a direct consequence of the compact embedding H2(T) ↪→
L∞(T). In order to apply the Leray-Schauder fixed point theorem (version from [28]) on operator
Sε, it remains to find a closed, convex subset Bε ⊂ L∞(T) containing the zero element of L∞(T)
such that:

(ls1) Sε(yε, σ) 6= yε for all yε ∈ ∂Bε and σ ∈ [0, 1],

(ls2) Sε(∂Bε × {0}) ⊂ Bε.
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We shall choose
Bε = {yε ∈ L∞(T) : ‖yε‖L∞ ≤ ∆(ε)}

with a suitable ∆(ε) > 0 determined bellow, and will proove that all solutions yε ∈ L∞(T) of
Sε(yε, σ) = yε for some σ ∈ [0, 1] lie in the interior of Bε. It is easily seen that Sε(yε, 0) = 0 for all
yε ∈ L∞(Td), hence (ls2) is easily satisfied. What remains is to prove the σ-uniform boundedness
of all possible fixed points of Sε(·, σ) for all σ ∈ [0, 1]. Let σ ∈ (0, 1) be arbitrary and ȳε ∈ L∞(T)
such that Sε(ȳε, σ) = ȳε, then ȳε solves∫

T
(σū2−q

ε + ε)ȳε,xxφxxdx+ ε

∫
T
ȳεφ dx = −σ

τ

∫
T
(ūε − u0)φ dx , φ ∈ H2(T) , (28)

where ūε = Dh−1
q,ε(ȳε). Since ȳε ∈ L∞(T), then ūε is strictly positive. By construction, Sε(yε, σ) ∈

H2(T), thus we can take the test function φ = ȳε in (28). Then convexity of the entropy density
hq,ε and the entropy dissipation inequalities (19) and (21) imply

1

τ
(Hq,ε(ūε)−Hq,ε(u0)) ≤ 1

τ

∫
T
(ūε − u0)ȳε dx

= −
∫
T
ū2−q
ε

(
(logq ūε)

2
xx + 2ε(logq ūε)xx(log ūε)xx

+ ε2(log ūε)
2
xx

)
dx− ε

σ

∫
T
(ȳ2
ε,xx + ȳ2

ε)dx

≤ −κq
∫
T
(ūγε )2

xxdx− ε

σ

∫
T
(ȳ2
ε,xx + ȳ2

ε)dx ,

which yields

Hq,ε(ūε) + τκq

∫
T

(
(ūγε )2

xx +
16

γ2
(ūγ/2ε )4

x

)
dx+

τε

σ

∫
T
(ȳ2
ε,xx + ȳ2

ε)dx ≤ Hq,ε(u0) . (29)

The last inequality provides the uniform (σ-independent) bound on ȳε ∈ H2(T),

‖ȳε‖2H2 ≤
CHq,ε(u0)

τε
.

and the Sobolev embedding H2(T) ↪→ L∞(T) asserts ‖ȳε‖L∞ ≤ C/
√
τε. The latter yields the

existence of ∆(ε) > 0 and Bε ⊂ L∞(T) such that (ls2) holds. Finally, the Leray-Schauder theorem
can be applied providing the existence of a fixed point yε to Sε(·, 1), i.e. the existence of a weak
solution to (26).

The entropy estimate (29) implies that (uγε )xx is ε-uniformly bounded in L2(T) and u2−q
ε is

ε-uniformly bounded in L1(T). The latter implies the ε-uniform bound of uγε in Lr(T) with r =
1 + q/(4− 3q) ∈ (1, 2), which together with the first assertion yields the ε-uniform bound of uγε in

11



W 2,r(T). Therefore, up to extraction of a subsequence as ε ↓ 0:

uγε ⇀ uγ in W 2,r(T) ,

uγε → uγ in W 1,∞(T) ,

uε → u in L∞(T) .

Inequality (29) also implies the ε-uniform bound on u
γ/2
ε in W 1,4(T), and thus applying Proposition

4 from Appendix (cf. [23, Appendix]), we conclude the strong convergence

uδε → uδ in W 1,p(T) , with p = 3− 1/(3− 2q) ≥ 2 .

The last two terms on the left hand side of (29) give that
√
εyε is bounded in H2(T), which yields

εyε → 0 in H2(T) .

Since uε is strictly positive and H2-regular, we can write

u2−q
ε yε,xx = u2−q

ε (logq uε)xx + εu2−q
ε (log uε)xx

=
1

γ
u1−q/2
ε (uγε )xx −

2− q
2δ2

(uδε)
2
x +

ε

γ
uq/2ε

(
(uγε )xx − 4(uγ/2ε )2

x

)
. (30)

The last identity and the above convergence results are sufficient for passing to the limit when ε ↓ 0
in (26). The ε-term in (30) converges to 0 strongly in Lr(T), and the rest converges to

1

γ
u1−q/2(uγ)xx −

2− q
2δ2

(uδ)2
x weakly in Lr(T) .

This allows us to identify the limit function u as a weak solution to (23). The mass conservation
property,

∫
T udx = 1, follows directly by taking φ ≡ 1 as the test function in (23). Entropy estimate

(29) combined with the weak lower semicontinuity of the entropy and entropy dissipation bound
reveal the discrete entropy production inequality (24)

Hq(u) + τκq

∫
T

(
(uγ)2

xx +
16

γ2
(uγ/2)4

x

)
dx

≤ lim inf
ε↓0

(
Hq,ε(uε) + τκq

∫
T

(
(uγ)2

xx +
16

γ2
(uγ/2)4

x

)
dx

)
≤ lim inf

ε↓0
(Hq,ε(u0)) = Hq(u0) ,

which finishes the proof of Proposition 2.
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3.2. Passage to the limit τ ↓ 0

Let terminal time T > 0 be such that N = T/τ ∈ N. Using the previous semi-discrete procedure
we recursively construct solutions (ukτ ) solving elliptic problems from Proposition 2

1

τ
(u− uk−1

τ ) = −1

γ

(
u1−q/2(uγ)xx

)
xx

+
2− q
2δ2

(
(uδ)2

x

)
xx

on T , (31)

for k = 1, . . . , N , and define piecewise constant function uτ : (0, T )→ L1(T) by

uτ (t) := ukτ for (k − 1)τ < t ≤ kτ, k = 1, . . . , N ; uτ (0) = u0 . (32)

Multiplying (31) by a test function φ(t) ∈ W 2,r′(T), for (k − 1)τ < t ≤ kτ , and integrating over
(0, T ) (summing up) yields

1

τ

∫ T

0

∫
T
(uτ − στuτ )φ dxdt+

∫ T

0

∫
T

(
1

γ
u1−q/2
τ (uγτ )xx −

2− q
2δ2

(uδτ )2
x

)
φxx dx dt = 0 (33)

for all test functions φ ∈ L1(0, T ;W 2,r′(T)). In order to perform the limit τ ↓ 0, we need the
following a priori estimate, which will provide us with the sought compactness.

Proposition 3. There exists C > 0, independent of τ > 0, such that

τ−1‖uτ − στuτ‖Lm(τ,T ;Y ) + ‖uγτ‖L2(0,T ;W 2,r) ≤ C , (34)

where στuτ = uτ (·− τ) denotes the τ -shift operator, m = 2γ/(3−2q), and Y = (W 2,r′(T))′ denotes
the dual of the Sobolev space W 2,r′(T).

Proof. Integrating (24) over the time interval [0, T ] we get

Hq(uτ (T )) + κq

∫ T

0

∫
T

(
(uγτ )2

xx +
16

γ2
(uγ/2τ )4

x

)
dxdt ≤ Hq(u0) , (35)

from which we conclude the following τ -uniform bounds:

‖(uγτ )xx‖L2(0,T ;Lr) ≤ C , (36)

‖(uγ/2τ )x‖L4(0,T ;L4) ≤ C , (37)

‖uγτ‖L∞(0,T ;Lr) ≤ C . (38)

The first and the third bound imply the desired bound ‖uγτ‖L2(0,T ;W 2,r) ≤ C. Continuous embed-
ding W 2,r(T) ↪→ L∞(T) provides the uniform bound ‖uγτ‖L2(0,T ;L∞) ≤ C, which in further yields

‖u1−q/2
τ ‖Ls(0,T ;L∞) ≤ C with s = 4− 2q/(2− q) ≥ 2.
Next we prove the uniform bound on the first term in (34), i.e. there exists a constant C > 0

such that
1

τ

∣∣∣∣∫ T

0

∫
T
(uτ − στuτ )ϕ(x, t)dxdt

∣∣∣∣ ≤ C‖ϕ‖Ln(0,T ;W 2,r′ ) (39)
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holds for all test functions ϕ ∈ Ln(0, T ;W 2,r′(T)), and n determined below. In order to prove (39)
we discuss the boundedness of those two terms on the right hand side of (31) separately. First,
using Hölder’s inequality and above uniform bounds, we have∣∣∣∣∫ T

0

∫
T
u1−q/2
τ (uγτ )xxϕxx dxdt

∣∣∣∣ ≤ ∫ T

0
‖u1−q/2

τ ‖L∞‖(uγτ )xx‖Lr‖ϕxx‖Lr′dt

≤ ‖u1−q/2
τ ‖Ls(0,T ;L∞)‖(uγτ )xx‖L2(0,T ;Lr)‖ϕxx‖Ls′ (0,T ;Lr′ )

≤ C‖ϕ‖Ls′ (0,T ;W 2,r′ ) ,

where n = (4 − 3q)/(1 − q) is obtained from 1/n = 1/2 − 1/s. Identity (uδτ )2
x = (4 − 3q)/(6 −

4q)u
1−q/2
τ (u

γ/2
τ )2

x a.e. in T× (0, T ) and the above uniform bounds give us

‖(uδτ )2
x‖Lm(0,T ;L2) ≤ C ,

with m = 2γ/(3 − 2q) obtained from 1/m = 1/2 + 1/s. It is easily to check that n is the Hölder
conjugate of m, hence the Hölder inequality reveals∣∣∣∣∫ T

0

∫
T
(uδτ )2

xϕxx dxdt

∣∣∣∣ ≤ ‖(uδτ )x‖2Lm(0,T ;L2)‖ϕxx‖Ln(0,T ;L2)

≤ C‖ϕ‖Ln(0,T ;W 2,r′ ) .

A priori estimate (34) implies the existence (up to subsequences) of weak limits v ∈ L2(0, T ;W 2,r(T))
and ∂tu ∈ Lm(0, T ;Y ), such that as τ ↓ 0:

uγτ ⇀ v weakly in L2(0, T ;W 2,r(T)) , (40)

τ−1(uτ − στuτ ) ⇀ ∂tu weakly in Lm(0, T ;Y ) . (41)

Since r ≥ 1, W 2,r(T) embedds compactly into W 1,s(T) for any 1 ≤ s <∞, Proposition 5, given in
Appendix, implies the compactness of (uτ ) in L2γ(0, T ;W 1,s(T)) for any 1 ≤ s <∞, i.e.

uτ → u strongly in L2γ(0, T ;W 1,s(T)) . (42)

The latter asserts pointwise convergences uτ → u a.e. and uγτ → uγ a.e., which finally allow to
identify v = uγ . Again, applying Proposition 4, we obtain

uδτ → uδ strongly in Lp(0, T ;W 1,p(T)) . (43)

The above convergence results are sufficient for passing to the limit in (33) as τ ↓ 0 and to identify
u as a weak solution of equation (9) in the sense of Theorem 1, i.e.∫ T

0
〈∂tu, φ〉Y,W 2,r′dt+

∫ T

0

∫
T

(
1

γ
u1−q/2(uγ)xx −

2− q
2δ2

(uδ)2
x

)
φxx dx dt = 0

for all test functions φ ∈ Ln(0, T ;W 2,r′(T)).

14



4. Long time behaviour of weak solutions

As already mentioned in the introduction, the idea for this paper arose from studying the work
of Carrillo and Toscani [8] on the long time asymptotics of strong solutions to the thin-film equation
(4). Posing the equation on the real line and starting with a nonnegative initial datum (compactly
supported or of finite second moment), they proved an algebraic decay rate in the L1-norm of
the strong solution towards the unique self-similar profile. Moreover, the same strategy could be
formally applied to a broader class of fourth-order diffusion equations (cf. [8, Eq. (6.10)]), which
includes our equation (1). However, we will not follow that direction, but to conclude the analysis,
we turn our view to the global spatially periodic weak solutions constructed in the previous section
and prove Theorem 2.

For the DLSS equation (q = 1), long-time behaviour of weak solutions showing an exponential
decay in the L1-norm to the constant steady state has been established in [22]. Thus we focus on
parameters q ∈ (0, 1). In lieu of the logarithmic Sobolev inequality, used in [22] for the DLSS equa-
tion, here we invoke a generalized Beckner-type inequality, recently proved in [9], which provides
required entropy – entropy dissipation inequality in our case.

Lemma 1 ([9, Lemma 4]). Let 1 ≤ r < 2 and p ≥ 1/r, and let w ∈ H1(T), then the following
generalized Beckner-type inequality holds

‖w‖2−rLr

(∫
T
|w|rdx−

(∫
T
|w|1/pdx

)pr )
≤ CB‖∂xw‖2L2 (44)

where CB = r(pr − 1)/(4π2(2− r)).
Proof of Theorem 2. For τ > 0, let u1

τ , u
2
τ , . . . be recursively constructed sequence of unit mass

solutions as in (31). The discrete entropy estimate (24)2 gives

Hq(ukτ ) + κ̃qτ

∫
T

(
1

γ2
(uk γτ )2

xx

)
dx ≤ Hq(uk−1

τ ) , k ≥ 1 (45)

with κ̃q given in (22). Employing the Beckner-type inequality (44) for w = (ukτ )γ , r = (2 − q)/γ
and p = γ we infer (∫

T
(ukτ )2−qdx

)(2−r)/r
Hq(ukτ ) ≤ CB

(2− q)(1− q)

∫
T
(uk γτ )2

x dx . (46)

Furthermore, invoking the Poincaré inequality in (46) yields the discrete entropy – entropy dissi-
pation inequality(∫

T
(ukτ )2−qdx

)(2−r)/r
Hq(ukτ ) ≤ CB

4π2(2− q)(1− q)

∫
T
(uk γτ )2

xx dx ,

2In fact we can take an improved estimate analogous to (22).
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where (4π2)−1 arises as the square of the optimal Poincaré constant on T [16]. Combining the
latter with (45) gives a recursive inequality

Hq(ukτ ) + 2λkqτHq(ukτ ) ≤ Hq(uk−1
τ ) , k ≥ 1 ,

where

λkq =
2π2κ̃q(2− q)(1− q)

γ2CB
‖ukτ‖(2−r)γL2−q .

Since 1 = ‖u0‖L1 = ‖ukτ‖L1 ≤ ‖ukτ‖L2−q , we conclude that λkq ≥ λq, where

λq =
2π2κ̃q(2− q)(1− q)

γ2CB
=

16π4κ̃q(1− q)
γ2

, (47)

and thus
Hq(ukτ ) + 2λqτHq(ukτ ) ≤ Hq(uk−1

τ ) , k ≥ 1 .

The latter inductively implies

Hq(uτ (t)) ≤ (1 + 2λqτ)−t/τHq(u0)

for all t ∈ ((k − 1)τ, kτ ], and uτ defined as in (32). Since uτ (t) → u(t) pointwise a.e. as τ ↓ 0 and
(1 + 2λqτ)−t/τ converges to exp(−2λqt), thus on the limit τ ↓ 0 we find

Hq(u(t)) ≤ Hq(u0)e−2λqt , t > 0 .

Applying the Csiszár-Kullback-Pinsker inequality [2] (see Theorem 5 in Appendix)

‖u(t)− 1‖L1 ≤
√

2Hq(u(t)) , t > 0 ,

finishes the proof.

Remark. For unit mass solutions, i.e.
∫
T udx = 1, entropy Hq coincides with the relative entropy

defined by

Hq,rel(u|u∞) =
1

2− q

∫
T
u logq

( u

u∞

)
u1−q
∞ dx . (48)

Omitting relative entropies before, we simplified the technical aspect of the previous discussion, but
the decay results from Theorem 2 straightforwardly extend to non-unit mass solutions involving
relative entropies instead. In that case, however, convergence rate λ̃q depends on the mass of the
initial data (cf. expression for λkq above)

λ̃q =
16π4κ̃q(1− q)

γ2
‖u0‖2(1−q)

L1 . (49)

Numerical example of the next section illustrates this analytical observation.
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5. Illustrative numerics

For illustration purposes, equation (1) is solved using finite differences. Let xi = ih, i =
0, . . . , N − 1 be an equidistant grid on the one-dimensional torus T ' [0, 1), let tk = kτ , k ∈ N and
let Uki be approximation of u(xi, tk). Setting periodic boundary conditions Ukl = Ukl mod N for all
l ∈ Z and k ∈ N, implicit Euler in time and central difference discretization in space of equation
(1) yield the following nonlinear system of algebraic equations

1

τ
(Uki − Uk−1

i ) = −δ〈2〉
(

(Uki )2−qδ〈2〉 logq U
k
i

)
, i = 0, . . . , N, k ≥ 1 , (50)

where δ〈2〉Ukl = (Ukl+1 − 2Ukl + Ukl−1)/h2 denotes the second-order central difference operator. The

nonlinear system in unknown Uk = (Uk0 , . . . , U
k
N−1) ∈ RN is then solved using Newton’s method

with typically 3 to 4 iterations and as initial guess we take Uk−1, the solution from the previous
time step. In all our computations we take the time discretization step τ = 10−7 and the grid
resolution h = 0.005.
Example 1 (unit mass solutions). For the first illustrative example we take initial datum
u0(x) = (cos(πx)16 + 0.1)/M , where M = 0.2909 is the normalizing constant such that u0 is of
the unit mass. Then we solve system (50) for three different values of parameter q: 0.1, 0.5, and
0.9. Figure 2 shows the evolution of the numerical solution to (1) starting with the initial datum
u0. Numerical solutions have been computed at four time instants: t1 = 5 · 10−6 (Figure 2a),
t2 = 5 · 10−5 (Figure 2b), t3 = 2 · 10−4 (Figure 2c), and t4 = 1.5 · 10−3 (Figure 2d). One observes
differences in numerical evolution for different parameters q, but eventually they all converge to
the same constant steady state u∞ = 1. Figure 3 reveals numerically the exponential decay of the
corresponding entropies Hq.
Example 2 (non-unit mass solutions). By this example we consider numerical solutions to
equation (1) starting with initial datum u0(x) = cos(πx)16 + 0.1, which is of non-unit mass M =
0.2909. Figures 4a–4d below show numerical solutions for the same parameters q = 0.1, 0.5, 0.9
and at the same time instants t1, . . . , t4 as above. Furthermore, Figure 5 reveals an exponential
decay of the corresponding relative entropies Hq,rel, defined by (48), but also significant differences
in convergence rates, which reflect the modified convergence rate (49), i.e. its dependence on the
mass and parameter q.

6. Concluding remarks

In this paper we analyzed a family of nonlinear fourth-order evolution equations (1), which
can be considered as a fourth-order generalization of the porous medium equations. Contrary to
the previously developed gradient flow approach [25], which recognizes these equations as gradient
flows of generalized Fisher information with respect to the L2-Wasserstein distance, our approach
relates these equations to the Tsallis entropies of order 2− q. Based on the dissipation property of
the Tsallis entropy (upon convenient change of the sign), we proved the existence of global in time
weak nonnegative spatially periodic solutions for the range of parameters q ∈ (0, 1], extending the
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Figure 2: Numerical evolution of equation (1) for unit mass initial datum u0.
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Figure 3: Entropy decay (logarithmic scale).

existence result from [25] to the wider range of parameters, namely to 0 < q < 1/2. Additionally,
using generalized Beckner-type functional inequalities, we also provide an exponential decay of
(relative) entropies, as well as the exponential stability in the L1-norm of the constant steady state.
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Figure 4: Numerical evolution of equation (1) for non-unit mass initial datum u0.
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To conclude the paper, in the following we briefly comment on several questions which have not
been touched here, but deserve to be discussed in more detail.

Multi-dimensional case. In the paper we only discussed the one-dimensional equation. Spatially
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d-dimensional equation (1), i.e. logq-form of the fourth-order equation from [25] reads (cf. [22])

∂tu = −
d∑

i,j=1

∂2
ij

(
u2−q∂2

ij

(
logq u

))
+

1

2

d∑
i,j=1

(
∂2
ij(u

2−2q)∂2
iju− ∂2

ii(u
2−2q)∂2

jju
)
.

We expect that the above one-dimensional analysis extends to the multi-dimensional case, at
least in physically relevant dimensions d = 2, 3, where Sobolev embeddings are still strong
enough.

(Non)-Uniqueness. It is known for the DLSS equation (q = 1) that there exists a countable
family of time-independent weak solutions

ū(x, t) = cos2(nπx) , x ∈ T , t > 0 , n ∈ N ,

which obviously do not converge to the constant steady state [22]. However, the weak solutions
constructed in [22, Theorem 1], which dissipate the physical entropy and converge to the
constant steady state, gain certain regularity and according to [17] these are unique in that
class of regularity. Whether similar story applies to equations (1) for 0 < q < 1, is still an
open question.

Derivation. Equations (1) appeared in the literature [14] in the conservation law form (5), and in
the sense of the gradient flow world they can be interpreted as fourth-order porous medium
equations. However, these equations have not been yet derived from physical grounds. In
analogy with the DLSS equation, it is the author’s belief that equations (1) could also be
interpreted as “higher-order approximations” of some non-local porous medium–type models.

More general fourth-order diffusion equations. To which extent is our method applicable to
more general fourth-order diffusion equations proposed in [8]

∂tu = −
(
Φ(u)

(
h′(u)

)
xx

)
xx
,

where Φ is increasing from Φ(0) = 0, and is related to the nonnegative convex function h by
Φ′(u) = uh′′(u)? This question might be answered with additional assumptions on Φ and h.

Relation to other thin-film equations. General fourth-order thin-film equation with param-
eter β > 0 can be written in a form with symmetrized leading order term of the spatial
differential operator, but a nonlinear second-order term retains, unless β = 1,

∂tu = −
(
uβuxxx

)
x

= −
(
u3β/2

(
logβ/2 u

)
xx

)
xx
− β(β − 1)

2

(
uβ−2u3

x

)
x
.

Whether this insight brings any novelty into the studying of thin-film equations is not clear
at the moment and could be the subject of some future investigations.
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Appendix

First, we recall a particular variant of the Leray–Schauder theorem that has been proven in
[28].

Theorem 4 (Leray–Schauder). Let X be a Banach space and let B ⊂ X be a closed and convex set
such that the zero element of X is contained in the interior of B. Furthermore, let S : B×[0, 1]→ X
be a continuous map such that its range S(B × [0, 1]) is relatively compact in X. Assume that
S(x, σ) 6= x for all x ∈ ∂B and σ ∈ [0, 1] and that S(∂B × {0}) ⊂ B. Then there exists x0 ∈ B
such that S(x0, 1) = x0.

Next result is proved in [23, Appendix], and we use it to obtain strong convergence of the
sequence (uδε) in Section 3.1, provided strong convergence of the sequence (uγε ) and a uniform

bound on (u
γ/2
ε ), in notation of Section 3.

Proposition 4. Let 0 < β < γ < α <∞, 1 < p, q, r <∞ be given, where αp = βq = γr. Assume
that (un) is a sequence of strictly positive functions on T with the following properties:

1. uαn converges strongly to uα in W 1,p(T), and

2. uβn is bounded in W 1,q(T).

Then uγn converges strongly to uγ in W 1,r(T). The respective result holds for sequences of nonneg-
ative functions un : (0, T ) × T → R upon replacing W 1,s(T) by Ls(0, T ;W 1,s(T)) for, respectively,
s = p, q, r.

A variant of the Aubin-Lions-Dubinskĭı lemma, which provides compactness of a sequence of
piecewise constant functions in certain parabolic spaces, is our next auxiliary tool. The following
proposition is a direct analogue of Theorem 3 from [10], but which involves higher-order Sobolev
spaces instead. The proof follows exactly the same lines as in [10], hence we omit it here.

Proposition 5. Let (uτ ) be a sequence of nonnegative functions which are constant on each subin-
terval ((k− 1)τ, kτ ], 1 ≤ k ≤ N , T = Nτ , and let 0 < γ <∞ and 1 < r <∞. Let Y = (W 2,r′(T))′

denotes the dual of the Sobolev space W 2,r′(T), where r′ is the Hölder conjugate of r. If there exists
a positive constant C > 0, independent of τ > 0, such that

τ−1‖uτ − στuτ‖L1(τ,T ;Y ) + ‖uγτ‖L2(0,T ;W 2,r) ≤ C , (51)

then (uτ ) is relatively compact in L2γ(0, T ;W 1,s(T)) for any 1 ≤ s ≤ ∞.

Finally, we give a generalized version of the Csiszár-Kullback-Pinsker inequality whose proof
can be found in [2, Section 2.2].

Theorem 5. Let Ω ⊂ Rd be a domain and u, v ∈ L1(Ω) satisfy u ≥ 0, v > 0, and
∫

Ω u(x)dx =∫
Ω v(x)dx = 1. Let ψ ∈ C0([0,+∞) ∩ C4(0,+∞) be such that ψ(1) = 0, ψ′′(1) + ψ′′′(1) > 0, ψ is

convex, and 1/ψ′′ is concave on (0,+∞). Then

‖u− v‖2L1(Ω) ≤
2

ψ′′(1)

∫
Ω
ψ
(u
v

)
v dx.

21



It is straightforward to check that functions ψq(s) = (s2−q − (2− q)s+ 1− q)/((2− q)(1− q))
satisfy the above conditions exactly for q ∈ (0, 1). Taking Ω = T and v = 1, immediately reveals

‖u− 1‖2L1(T) ≤ 2Hq(u) for all q ∈ (0, 1) .
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(TU Wien) and Prof. D. Matthes (TU München) for their valuable remarks and encouraging di-
cusussions.

References
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