Nuclear Safety

Learning Outcomes

  1. Describe the basic safety concerns of nuclear power plants
  2. Explain the defence-in-depth strategy
  3. Apply existing safety analysis programs
  4. Prepare input data for simple safety calculations
  5. Classify different nuclear accidents
  6. Analyze calculation results with system codes
  7. Assess the radiological impact of the plant operation on the environment
  8. Analyze the importance of probabilistic safety analyzes

Forms of Teaching


Lectures will provide a theoretical background to the students.


These will be used to solve numerical examples to the students.


Solving practical examples using computer simulation.

Grading Method

Continuous Assessment Exam
Type Threshold Percent of Grade Threshold Percent of Grade
Homeworks 0 % 15 % 0 % 15 %
Mid Term Exam: Written 0 % 30 % 0 %
Final Exam: Written 0 % 45 %
Final Exam: Oral 10 %
Exam: Written 0 % 75 %
Exam: Oral 10 %

Week by Week Schedule

  1. Defence in depth concept, active and passive safety, Redundancy, diversity, physical separation, single failure criteria
  2. Environmental and equipment qualification, Control systems, process and nuclear instrumentation
  3. Reactor protections systems, set-points, margins, Engineering safety features, critical safety functions
  4. Thermal and mechanical model of fuel rod (fuel and cladding temparatues, cladding integrity), Two phase fluid flow and heat transfer, critical heat flow, critical mass velocity
  5. Condensation, noncondesables, aerosol behavior, H2 burn, Control volume concept and 6-equations 1D two phase flow models
  6. Nodal neutron diffuison codes and coupling
  7. Containment models and severe accident integrated codes
  8. Midterm exam
  9. In-vessel phase, Core degradation and melt, Fuel cladding oxidation; Hydrogen release
  10. Ex-vessel phase; Containment behaviour, Reactor pressure vessel and containment integrity, NPP severe accidents (TMI, Chernobyl, Fukushima)
  11. Geology, liquefaction, and seismic requirements, Hydrology, floods, weather conditions, Population density, transpot and industrial objects
  12. Primary and secondary source term, release categories for gas and liquid effluents
  13. Atmospheric dispersion, migration of radioactive material in soil, Protective action guidelines for sheltering, evacuation, relocation
  14. Bilogical effects of radioactive materials, health risk
  15. Final exam

Study Programmes

University graduate
Audio Technologies and Electroacoustics (profile)
Free Elective Courses (3. semester)
Communication and Space Technologies (profile)
Free Elective Courses (3. semester)
Computational Modelling in Engineering (profile)
Free Elective Courses (3. semester)
Computer Engineering (profile)
Free Elective Courses (3. semester)
Computer Science (profile)
Free Elective Courses (3. semester)
Control Systems and Robotics (profile)
Free Elective Courses (3. semester)
Data Science (profile)
Free Elective Courses (3. semester)
Electrical Power Engineering (profile)
Elective Courses of the Profile (3. semester)
Electric Machines, Drives and Automation (profile)
Free Elective Courses (3. semester)
Electronic and Computer Engineering (profile)
Free Elective Courses (3. semester)
Electronics (profile)
Free Elective Courses (3. semester)
Information and Communication Engineering (profile)
Free Elective Courses (3. semester)
Network Science (profile)
Free Elective Courses (3. semester)
Software Engineering and Information Systems (profile)
Free Elective Courses (3. semester)


(.), E.E. Lewis (1978.), Nuclear Power Reactor Safety, John Wiley,
(.), Gianni Petrangeli (2006.), Nuclear Safey, Butterworth-Heinemann,
(.), B. Pershagen (1989.), Light Water Reactor Safety, Pergamon Press,

For students


ID 222516
  Winter semester
L3 English Level
L1 e-Learning
30 Lectures
15 Exercises
8 Laboratory exercises

Grading System

90 Excellent
75 Very Good
60 Good
50 Acceptable

Similar Courses