Strojno učenje 1
Opis predmeta
Strojno učenje grana je umjetne inteligencije koja se bave oblikovanjem algoritama koji svoju učinkovitost poboljšavaju na temelju empirijskih podataka. Strojno učenje jedno je od danas najaktivnijih i najuzbudljivijih područja računarske znanosti, ponajviše zbog brojnih mogućnosti primjene koje se protežu od raspoznavanja uzoraka i dubinske analize podataka do robotike, računalnog vida, bioinformatike i računalne lingvistike. Ovaj se kolegij bavi teorijom i načelima strojnog učenja te daje pregled njegovih primjena. Kolegij obuhvaća dva osnovna pristupa strojnom učenju: nadzirano učenje (klasifikacija i regresija) i nenadzirano učenje (grupiranje i smanjenje dimenzionalnosti).
Ishodi učenja
- Definirati osnovne pojmove strojnog učenja
- Razlikovati između generativnih i diskriminativnih, parametarskih i neparametarskih te probabilističkih i neprobabilističkih modela
- Objasniti teorijske pretpostavke, prednosti i nedostatke temeljnih algoritama strojnog učenja
- Primijeniti postupak odabira modela i statističkog vrednovanja uspješnosti naučenog modela
- Primijeniti razne algoritme klasifikacije, uključivo generativne, diskriminativne i neparametarske
- Primijeniti algoritme grupiranja podataka i postupke provjere grupiranja
- Dizajnirati i implementirati postupak za klasifikaciju/grupiranje podataka te provesti njegovu evaluaciju
- Procijeniti prikladnost nekog algoritma strojnog učenja za zadani zadatak
Oblici nastave
Predavanja
Predavanja se odvijaju kroz 13 tjedana s po dva termina od dva školska sata tjedno.
Auditorne vježbeAuditorne vježbe odvijaju se kroz 13 tjedna po potrebi.
LaboratorijProgramski zadatci koje studenti rješavaju samostalno te demonstriraju nastavniku odnosno asistentu.
Način ocjenjivanja
Kontinuirana nastava | Ispitni rok | |||||
---|---|---|---|---|---|---|
Vrsta provjere | Prag | Udio u ocjeni | Prag | Udio u ocjeni | ||
Laboratorijske vježbe | 30 % | 30 % | 0 % | 30 % | ||
Sudjelovanje u nastavi | 0 % | 5 % | 0 % | 0 % | ||
Međuispit: Pismeni | 35 % | 0 % | 0 % | |||
Završni ispit: Pismeni | 35 % | 0 % | ||||
Ispit: Pismeni | 0 % | 35 % | ||||
Ispit: Usmeni | 35 % |
Tjedni plan nastave
- Zadatci i primjene strojnog učenja. Prisutpi i paradigme strojnog učenja, hipoteze, model prostor parametra, prostor inačica, induktivno učenje i induktivna pristranost. Pristranost jezika i pristranost preferencije. Funkcija gubitka i funkcija pogreške. Prenaučenost i odabir morela. Minimizacija empirijskog i strukturnog rizika
- Regresija najmanjih kvadrata. procjena najveće izlgednosti za regresiju, Regularizirana regresija, Model maksimalne entropije, Funkcije za preslikavanje značajki
- Hipoteze, model. prostor parametra. prostor inačica. Perceptron (paradigme učenja, hebbovsko učenje, natjecateljsko učenje, Boltzmannovo učenje)
- Logistička regresija, poopćeni linerani modeli (eksponencijalna familija, procjenitelji ML i MAP)
- Metoda potpornih vektora za klasifikaciju.
- Lijeni klasifikatori (k-NN). Jezgrene funkcije (RBF, Mercerova jezgrena funkcija, linearna jezgrena funkcija). Jezgreni trik.
- Zajednice klasifikatora.
- Međuispit
- Procjenitelj najveće izglednosti, Procjenitelj najveće aposteriorne vjerojatnosti. Laplaceov procjenitelj, Beta-binomni model, Dirichlet-multinomni model
- Bajesovo pravilo za klasifikaciju, Naivan Bayesov klasifikator, Multivarijatni gaussovski Bayesov model
- Bayesove mreže. Monte Carlo zaključivanje.
- Gaussov mješavinski model za grupiranje, Algoritam k-srednjih vrijednosti
- Mjere vrednovanja zasnovane na matrici zabune (točnost, preciznost, odaziv, osjetljivost, F-mjera).
- (en) Feature selection (filter methods, subset selection, wrapper method)
- Završni ispit
Studijski programi
Sveučilišni diplomski
Izborni predmeti (1. semestar) (3. semestar)[FER3-HR] Automatika i robotika - profil
Jezgreni predmeti profila 2
(1. semestar)
[FER3-HR] Elektroenergetika - profil
Izborni predmeti
(1. semestar)
(3. semestar)
Izborni predmeti
(1. semestar)
(3. semestar)
[FER3-HR] Elektronika - profil
Izborni predmeti
(1. semestar)
(3. semestar)
Izborni predmeti
(1. semestar)
(3. semestar)
(1. semestar)
Izborni predmeti
(1. semestar)
Izborni predmeti profila
(1. semestar)
Jezgreni predmeti profila
(1. semestar)
[FER3-HR] Računalno inženjerstvo - profil
Izborni predmeti
(1. semestar)
(3. semestar)
Izborni predmeti profila
(3. semestar)
Izborni predmet profila
(1. semestar)
Izborni predmeti
(1. semestar)
(3. semestar)
[FER3-HR] Računarska znanost - profil
(1. semestar)
[FER3-HR] Znanost o mrežama - profil
Izborni predmeti
(1. semestar)
(3. semestar)
[FER3-HR] Znanost o podacima - profil
(1. semestar)
[FER2-HR] Obradba informacija - profil
preporučeni izborni predmeti
(3. semestar)
[FER2-HR] Programsko inženjerstvo i informacijski sustavi - profil
Teorijski predmeti profila
(1. semestar)
[FER2-HR] Računarska znanost - profil
Teorijski predmeti profila
(1. semestar)
Literatura
Laboratorijske vježbe

Miha Keber
mag. math.

Zoran Medić
mag. ing.

Ana Barić
mag. ing.

Domagoj Pluščec
mag. ing.

Fran Jelenić
mag. ing.
Za studente
Izvedba
ID 222786
Zimski semestar
5 ECTS
R3 Engleski jezik
R1 E-učenje
45 Predavanja
0 Seminar
15 Auditorne vježbe
15 Laboratorijske vježbe
0 Konstrukcijske vježbe
Ocjenjivanje
izvrstan
vrlo dobar
dobar
dovoljan