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Abstract

We derive a homogenization result for the system that describes a two-phase two-component
flow in heterogeneous porous media, written in fully equivalent global pressure formulation.
A global pressure, an artificial variable that allows us to decouple original equations, is used
as introduced in [3]. Under some realistic assumptions on the data, we obtain a nonlinear
homogenized problem by using the techniques of two-scale convergence.
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1 Introduction
Problems of multiphase multicomponent flow in porous media appear in many applications, as
in petroleum engineering, nuclear waste storage, CO2 sequestration and many others. For ex-
ample, in nuclear waste management one often meets flow of two phases, liquid and gas, that
are composed of two components, water and pure hydrogen H2. In that application it is of great
importance to know the pressure of the gas phase in a host rock, to avoid overpressurization.

Multiphase multicomponent flow in porous media is usually modeled by a system of nonlin-
ear partial differential equations that represent mass conservation of each component, combined
with initial and boundary conditions. These equations are strongly coupled, and in obtaining the
solution of such a system numerical simulations play a special role. For modelling such flow
problems, there are always multiple length scales in the physical coefficients for the governing
equations. On the other hand, the size of the repository model prohibits a full fine scale simu-
lation over many time steps, even with the advent of modern computers and parallel computing
technology. Therefore, a compromise has to be made between desired accuracy and available
computer resources. The standard compromise is to upscale the coefficients which allows the
use of a coarse computational grid. The upscaling or homogenization of multiphase flow through
heterogeneous porous media has been a problem of interest for many years and many methods
have been developed.

Previous results on the homogenization for two-phase two-component flow have been derived
in [2]. In this paper they used a concept of global pressure as introduced in [19] originally for
the incompressible case.

The goal of this paper is to rigorously derive the homogenized or effective model for two-
phase two-component flow in porous medium in a global pressure formulation that was intro-
duced in [3] and further studied in [7], [8], [4], [5], and which is fully equivalent to the original
phase equations formulation. Compared to results of [17], [18], [21], this new formulation al-
lows us to avoid additional regularizations, which makes our proof less technical. We consider
a system with diffusivity terms in both component equations. In our work we pose realistic as-
sumptions on data, similar to those in [21]. In particular, we cover more general case of Henry
law and ideal gas law since we do not assume strict positivity of the gass density. In this gen-
eral case, the degeneracy caused by possible vanishing of the gas pressure combined with the
degeneracy due to the saturation complicates the analysis of the system.

The rest of the paper is organized as follows. In Section 2 we introduce the notation, we
formulate the microscopic problem and we state the assumptions on data. For completeness,
we quote the existence result of weak solutions of the microscopic problem obtained in [7]. The
main result of this paper is the homogenized model presented in Section 3. The a priori estimates
with respect to the space and time variables of weak solutions of the microscopic problem are
obtained in Section 4. Next, Section 5 is devoted to the compactness results needed to obtain the
effective equations. Finally, our homogenization result is proven in Section 6, using the two-scale
convergence technique.
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2 Mathematical formulation
We start from a microscopic model which is defined on a domain with periodic microstructure.
Let us define such a domain more precisely. We consider a reservoir Ω ⊂ Rd , d = 2,3, to be
a bounded, connected, Lipschitz domain with a periodic structure. The reservoir boundary is
divided in two parts, ∂Ω = Γin j ∪Γimp, where Γin j denotes the injection boundary, and Γimp de-
notes the impervious one. In such a geometrical configuration of the reservoir, we take that the
porosity and the absolute permeability tensor are rapidly oscillating functions of the microscopic
scale y = x/ε , where x is the macroscopic scale and ε > 0 is a small parameter which charac-
terizes the periodicity of the blocks. Namely, let Φε(x) = Φ(x/ε) and Kε(x) = K(x/ε) be the
porosity and the absolute permeability of the porous medium, where Φ and K are Y -periodic
functions of y. Further, the unit cell is noted by Y = (0,1)d , the time interval of interest is (0,T )
and QT = Ω× (0,T ).

A porous medium is assumed to be filled with a fluid composed of two phases, liquid (de-
noted by index l) and gas denoted by g. Moreover, the fluid is considered as a mixture of two
components: a liquid component which does not evaporate, denoted by upper index w (suggest-
ing water), and a low-soluble component which is present mostly in the gas phase, denoted by
upper index h (suggesting hydrogen). The porous medium is assumed to be rigid and in a thermal
equilibrium, while the liquid component is assumed incompressible.

Let Sε
l = Sε

l (x, t), Sε
g = Sε

g(x, t) be the saturations of the wetting and the non-wetting phases,
respectively; pε

l = pε
l (x, t), pε

g = pε
g(x, t) are the pressures of the wetting and the non-wetting

phases, respectively; λl = λl(Sε
l ), λg = λg(Sε

g) be the relative mobilities of the wetting and the
non-wetting phases, respectively; and ρε

l , ρε
g be the mass densities of the wetting and the non-

wetting phases, respectively. For each phase σ ∈ {l,g}, the phase volumetric fluxes qε
σ are

defined by the Darcy-Muskat law:

ql
ε =−λlKε(x)(∇pε

l −ρlg) ,
qg

ε =−λgKε(x)
(
∇pε

g−ρgg
)
,

(1)

where g is the gravity acceleration. The porous medium is saturated by the two phases: the phase
saturations satisfy

Sε
l +Sε

g = 1. (2)

The phase pressures are related through a given capillary pressure law:

pc(Sε
g) = pε

g− pε
l . (3)

We note that here pc is a strictly decreasing function of liquid saturation, p′c(Sl) < 0. We will
take that pc(Sl = 1) = P0. The phase mobilities will be assumed to depend on capillary pressure,
not on saturation. Therefore it holds λg(P0) = 0 which corresponds to the case λg(Sg = 0) = 0 if
the gas mobility is considered as a function of saturation. In this work we will not consider the
cases of Sl = 0 or Sg = 0.

As we have already mentioned, in the gas phase we neglect the liquid component vaporization
and therefore the gas mass density depends only on the gas pressure:

ρ
ε
g = ρ̂g(pε

g). (4)
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In the case of the ideal gas law, (4) becomes ρ̂g(pg) =Cv pg with a constant Cv.
The quantity of the gas component dissolved in the liquid is described by the mass concentra-

tion ρ
h,ε
l which gives the mass of dissolved gas component in the volume of the liquid mixture.

For simpler notation we will denote ρ
h,ε
l by uε . From the assumption of thermodynamic equilib-

rium we conclude that
uε = û(pε

g). (5)

The function û can be a linear function if the Henry law is applicable. We suppose that the
function pε

g 7→ û(pε
g) is defined and invertible on [0,∞) and therefore we can express the gas

pressure as a function of û,

pε
g = p̂g(uε), (6)

where p̂g is the inverse of û.
For liquid density, due to hypothesis of small solubility and liquid incompressibility we as-

sume a constant liquid component mass concentration, i.e.:

ρ
w,ε
l = ρ

std
l , (7)

where ρstd
l is the standard liquid component mass density (a constant). The liquid mass density

is then: ρε
l = ρstd

l +uε .
The mass conservation law for each component gives then the following system of differential

equations:

ρ
std
l Φ

ε
∂Sε

l
∂ t

+div
(

ρ
std
l ql

ε + jw,ε
l

)
= 0, (8)

Φ
ε ∂

∂ t

(
uεSε

l +ρ
ε
g Sε

g
)
+div

(
uεql

ε +ρ
ε
g qg

ε + jh,ε
l

)
= 0, (9)

where jw,ε
l , jh,ε

l are the diffusive flux terms in the liquid phase (see equations (10)).
The diffusive fluxes in the liquid phase are given by the Fick law through the gradient of the

mass fractions uε/ρε
l and ρ

w,ε
l /ρε

l as in [14] and see also [13]:

jh,ε
l =−Φ

εSε
l Dρ

ε
l ∇(uε/ρ

ε
l ), jw,ε

l =−Φ
εSε

l Dρ
ε
l ∇(ρw,ε

l /ρ
ε
l ), (10)

where D is a molecular diffusion coefficient of dissolved gas in the liquid phase, possibly cor-
rected by the tortuosity factor of the porous medium (see [13]). Note that it holds jw,ε

l + jh,ε
l = 0.

In the model described here both phases will always be present, which means that we will
consider capillary pressure to be a positive function defined on 〈0,1〉. In such two-phase regions
one can select as primary variables Sl (or pc) and pg, for example. Our approach will be, similarly
as in [15], [21] to select as primary variables pg and a global pressure introduced in [3], [6], [8].
One can calculate u from relation (6) and for calculating the capillary pressure one needs to
obtain the value of the liquid pressure pl(p, pg). After that we will obtain the liquid saturation
by inverting the capillary pressure, Sl = p−1

c (pg− pl).
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Let us now rewrite the equations (8) and (9), including expressions of Darcy velocities and
Fick’s law.

Φ
ε

∂Sε
l

∂ t
−div

(
λl(Sε

l )K
ε(∇pε

l −ρ
ε
l g)−Φ

εSε
l

1
ρε

l
D∇uε

)
= 0, (11)

Φ
ε ∂

∂ t

(
uεSε

l +ρ
ε
g Sε

g
)
−div

(
uε

λl(Sε
l )K

ε (∇pε
l −ρ

ε
l g)+ρ

ε
g λg(Sε

g)Kε
(
∇pε

g−ρ
ε
g g
))

−div

(
Φ

εSε
l

ρstd
l

ρε
l

D∇uε

)
= 0. (12)

Let us first consider in equations (11), (12) the liquid pressure pε
l and the gas pressure pε

g as
independent variables. The mass concentration uε and the gas mass density ρε

g are then calculated
from the gas pressure as uε = û(pε

g) and ρε
g = ρ̂g(pε

g). The saturation Sε
l is obtained from the

phase pressures by the capillary pressure law.
We denote the term under the time derivative in the equation (12) by rε

g := uεSε
l +ρε

g Sε
g.

In the following section we will introduce new primary variable, the global pressure, which
will be used instead of the liquid pressure.

2.1 Global pressure formulation
The motivation for the introduction of the global pressure is to decouple the original phase system
equations. It is achieved by writing the total flux Qε

t =Qw,ε +Qh,ε := ρε
l ql

ε +ρε
g qg

ε in a form
of the Darcy-Muskat law. In this work we use a global pressure formulation that was introduced
in [3] and further studied in [7], [8], [4], [5], and which is fully equivalent to the original phase
equations formulation. The microscopic equations for our two-phase two-component flow in
porous media in this fully equivalent global pressure formulation are as follows:

Φ
ε ∂

∂ t
(ρstd

l Sε
l )−div(

ρstd
l ωελ

ρε
l

Kε
∇pε −

ρstd
l ρε

g λg

ρε
l

Kε
∇pε

g)

+div(bw,εKεg)+div

(
Φ

ε
Sε

l ρstd
l

ρε
l

D∇uε

)
= 0,

(13)

Φ
ε ∂

∂ t
(uεSε

l +ρ
ε
g Sε

g)−div

(
uε

ρε
l

ω
ε
λKε

∇pε +
ρstd

l ρε
g λg

ρε
l

Kε
∇pε

g−bh,εKεg

)

−div

(
Φ

ε
Sε

l ρstd
l

ρε
l

D∇uε

)
= 0.

(14)

Here a new pressure variable pε , called the global pressure, is introduced, and we express the
liquid pressure as function of pε : pε

l = p̃l(pε ,Pε
c ). This function satisfies (see [6])

∇p̃l(pε ,Pε
c )+ fg∇Pε

c = ω̃(pε ,Pε
c )∇pε , (15)
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where

∂ p̃ε
g

∂ pε
(pε ,Pε

c ) =
∂ p̃ε

l
∂ pε

(pε ,Pε
c ) = ω̃(pε ,Pε

c ). (16)

The function ω̃ can be explicitly calculated, it is well defined, bounded and strictly positive for
Pε

c ≥ P0 and pε ∈ R, and therefore the application pε 7→ p̃l(pε ,Pε
c ) is invertible for all Pε

c ≥ P0.
There exist constants ωm,ωM > 0 such that ωm ≤ ω̃(pε ,Pε

c )≤ ωM.
In the obtained equation we consider the coefficients as functions of Pε

c instead of the satu-
ration directly, simply by relations f (Pε

c ) = f (Sε
l (P

ε
c )). The value of the saturation in the time

derivative term can be calculated from the relation Sε
l = p−1

c (Pε
c ).

In the system (13)-(14) the total mobility λ (pε
g,P

ε
c ), the fractional flow functions of the gas

and liquid phases fg(pε
g,P

ε
c ), fl(pε

g,P
ε
c ), and the mean density function ρ(pε

g,P
ε
c ) are given as

follows:

λ = ρ
ε
l λl(Pε

c )+ρ
ε
g λg(Pε

c ) (17)

fg =
ρε

g λg(Pε
c )

λ (pε
g,Pε

c )
, fl =

ρε
l λl(Pε

c )

λ (pε
g,Pε

c )
(18)

ρ =
(ρε

l )
2λl(Pε

c )+(ρε
g )

2λg(Pε
c )

λ (pε
g,Pε

c )
(19)

bw,ε = ρ
std
l ρ

ε
l λl(Pε

c ) (20)

bh,ε = uρ
ε
l λl(Pε

c )+(ρε
g )

2
λg(Pε

c ). (21)

Note that fg + fl = 1. Therefore we can express capillary pressure as a function of the global
pressure and the gas pressure, and this leads us to a system with two primary unknowns pε

g
and pε . All the coefficients in equations depend on pε and pε

g, through Pc(pε , pε
g), so we set

ωε = ω̃(p,Pc(p, pg)).
To the system (13)-(14) we add initial and boundary conditions.
Boundary conditions: We set

pε
g = 0, pε = 0 on Γin j× (0,T ) (22)

Qw,ε ·n = 0, Qh,ε ·n = 0 on Γimp× (0,T ) (23)

where n is the outward pointing unit normal on ∂Ω .
Initial conditions are given by

pε
g(x,0) = p0

g(x), pε(x,0) = p0(x) in Ω. (24)

Remark 1 In apriori estimates we will use also the auxiliary variable θ ε (as in [7]) which is
introduced by

θ
ε = β (Pε

c ) =
∫ Pε

c

0

√
λl(s)λg(s)ds, (25)

and which is well defined since β is strictly increasing.

6



Remark 2 Note that in the definition of the global pressure we have imposed the equality

ρ
ε
l λl∇pε

l +ρ
ε
g λg∇pε

g = ω
ε
λ∇pε . (26)

Next we present the assumptions on the data which will ensure the existence of a weak
solution of the system (13)-(14).

(A.1) The porosity Φ belongs to L∞(Ω), and there exist constants, φM ≥ φm > 0, such that φm ≤
Φ(x) ≤ φM a.e. in Ω. The diffusion coefficient D belongs to L∞(Ω), and there exists a
constant D0 > 0 such that D(x)≥ D0 a.e. in Ω.

(A.2) The permeability tensor K belongs to (L∞(Ω))d×d , and there exist constants kM ≥ km > 0,
such that for almost all x ∈Ω and all ξ ∈ Rd it holds:

km|ξ |2 ≤K(x)ξ ·ξ ≤ kM|ξ |2.

(A.3) The function û(pg) is increasing C1 function from [0,+∞) to [0,+∞) and û(0) = 0. There
exist constants umax > 0, u0 > 0 and Mg > 0 such that for all σ ≥ 0 it holds,

|û(σ)| ≤ umax, u0 ≤ û′(σ)≤Mg.

For σ ≤ 0 we extend û(σ) as a smooth, suficiently small, bounded function having global
C1 regularity. The main low solubility assumption is that the constant Mg is sufficiently
small.

(A.4) Function ρ̂g(pg) is a C1 non decreasing function on [0,∞), and there exist constants ρM > 0
and mg > 0 such that for all pg ≥ 0 it holds

0≤ ρ̂g(pg)≤ ρM, mg pg ≤ ρ̂g(pg), ρ̂g(0) = 0,
∫ 1

0

dσ

ρ̂g(σ)
< ∞.

For σ ≤ 0 we set ρ̂g(σ) = 0 for all σ ≤ 0.

(A.5) Relative mobilities λl,λg are defined as λl(Sl) = krl(Sl)/µl and λg(Sl) = krg(Sl)/µg where
the constants µl > 0 and µg > 0 are the liquid and the gas viscosities, and krl(Sl), krg(Sl)
are the relative permeability functions, satisfying λl,λg ∈C([0,1]), λl(0) = 0 and λg(1) =
0; the function λl is a non decreasing and λg is non increasing function of Sl . Moreover,
there exist a constant λm > 0 such that for all Sl ∈ [0,1]

λm ≤ λ := ρlλl +ρgλg

We assume also that there exists a constant al > 0 such that for all Sl ∈ [0,1]:

alS2
l ≤ λl(Sl). (27)
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(A.6) The capillary pressure function, pc ∈C1(0,1), is monotone decreasing function satisfying
pc(Sl)> 0 for Sl ∈ (0,1) and p′c(Sl)≤−M0 < 0 for Sl ∈ (0,1) and some constant M0 < 0.
There exists a positive constant Mpc∫ 1

0
pc(s)ds = Mpc <+∞, lim

Sl→0+
Sl pc(Sl) = 0. (28)

The inverse functions p−1
c is extended as p−1

c (σ) = 1 for σ ≤ 0.

(A.7) There exist C > 0 and τ ∈ (0,1) such that for all S1,S2 ∈ [0,1]

C
∣∣∣∣∫ S2

S1

√
λl(s)λg(s))ds

∣∣∣∣τ ≥ |S1−S2|. (29)

Let us recall that the primary variables are p and pg. The secondary variables are the functions
u, ρg, Sl and Sg and pl , defined as u = û(pg), ρg = ρ̂g(pg), Pc = Pc(p, pg), Sl = p−1

c (Pc) and
Sg = 1−Sl , pl = pg−Pc. By (A.3) and (A.4) the functions u and ρg are bounded and for Sl , due
to (A.6), we have

0 < Sl ≤ 1. (30)

Variational formulation is obtained by standard arguments. We define

V = {ϕ ∈ H1(Ω) : ϕ = 0 on ΓD}

The following existence result has been proven in [26]:

Theorem 1 Let (A.1)-(A.7) hold and assume (p0, p0
g) ∈ L2(Ω)×L2(Ω), p0

g ≥ 0. Let ε > 0, then
there exist functions pε and pε

g satisfying

pε
l ∈ L2(QT ), pε , pε

g ∈ L2(0,T ;V ),

Φ
ε
∂t(uεSε

l +ρ
ε
g Sε

g), Φ
ε
∂tSε

l ∈ L2(0,T ;V ′),

such that: for all ϕ ∈ L2(0,T ;V )∫ T

0
〈Φε

∂Sε
l

∂ t
,ϕ〉dt +

∫
QT

[
ωελ

ρε
l

Kε
∇pε −

ρε
g λg

ρε
l

Kε
∇pε

g−Φ
εSε

l
1

ρε
l

û′(pε
g)D∇pε

g] ·∇ϕdxdt

=
∫

QT

ρ
ε
l λlKεg ·∇ϕdxdt;

(31)

for all ψ ∈ L2(0,T ;V )∫ T

0
〈Φε ∂

∂ t

(
uεSε

l +ρ
ε
g Sε

g
)
,ψ〉dt

+
∫

QT

(
uε

ρε
l

ω
ε
λKε

∇pε +
ρstd

l ρε
g λg

ρε
l

Kε
∇pε

g +Φ
εSε

l
ρstd

l
ρε

l
û′(pε

g)D∇pε
g

)
·∇ψdxdt

=
∫

QT

bh,εKεg ·∇ψdxdt.

(32)
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Furthermore, for all ψ ∈V the functions

t 7→
∫

Ω

Φ
εSε

l ψdx, t 7→
∫

Ω

Φ((uε −ρ
ε
g )S

ε
l +ρ

ε
g )ψdx

are continuous in [0,T ] and the initial condition is satisfied in the following sense:(∫
Ω

Φ
εSε

l ψdx
)
(0) =

∫
Ω

Φ
εs0ψdx,

(∫
Ω

Φ
ε(uεSε

l +ρ
ε
g Sε

g)ψdx
)
(0) =

∫
Ω

Φ(û(p0
g)s0 + ρ̂g(p0

g)(1− s0))ψdx,

for all ψ ∈V , where s0 = p−1
c (Pε

c (p0, p0
g)).

3 Homogenization result
As we have already pointed out, we study the asymptotic behaviour of the solution to the problem
(13)-(14), (22)-(23), (24) as ε → 0. In particular, we are going to show that the effective model
valid in QT reads as follows.

〈Φ〉 ∂

∂ t
(ρstd

l Sl)−div(
ρstd

l ωλ

ρl
K∗∇p−

ρstd
l ρgλg

ρl
K∗∇pg)

+div(bwK∗g)+div

(
〈Φ〉

Slρ
std
l

ρl
D∇u

)
= 0,

(33)

〈Φ〉 ∂

∂ t
(uSl +ρgSg)−div

(
u
ρl

ωλK∗∇p+
ρstd

l ρgλg

ρl
K∗∇pg−bhK∗g

)

−div

(
〈Φ〉

Slρ
std
l

ρl
D∇u

)
= 0.

(34)

Here 〈u〉 denotes the mean value of the function u over the unit cell Y and the homogenized
tensor K∗ is given by

K∗ei =
∫

Y
K(ei +∇yχi(y))dy. (35)

Here, χi(y) (for i = 1, . . . ,d) is a solution of the cell problem{
− divy (K(y)(ei +∇yχi(y))) = 0 in Y,

χi(y) Y − periodic,
(36)

with ei being the unit vector in the i-th direction.
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The coefficients bw,bh are given by

bw = ρ
std
l ρlλl(Pc) (37)

bh = uρlλl(Pc)+(ρg)
2
λg(Pc). (38)

The boundary conditions for the system (33)-(34) are

pg = 0, p = 0 on Γin j× (0,T ) (39)

Qw ·n = 0, Qh ·n = 0 on Γimp× (0,T ) (40)

where

Qw =−ρlλlK∗(x)(∇pl−ρlg) ,
Qh =−ρgλgK∗(x)(∇pg−ρgg) .

The initial conditions for the system (33)-(34) read

pg(x,0) = p0
g(x), p(x,0) = p0(x) in Ω. (41)

Now we can state the main result of this paper.

Theorem 2 Let (A.1)-(A.7) hold. Let (pε , pε
g) be a weak solution of the problem (13)-(14), (22)-

(23), (24). Then, up to a subsequence, it holds

pε ⇀ p weakly in L2(0,T ;H1(Ω)),

pε
g ⇀ pg weakly in L2(0,T ;H1(Ω)) and a.e. in QT ,

uε ⇀ u weakly in L2(0,T ;H1(Ω)),

Sε
l → Sl strongly in L2(QT ) and a.e. in QT ,

rε
g = uεSε

l +ρ
ε
g Sε

g→ rg := uSl +ρgSg strongly in L2(QT ) and a.e. in QT ,

∇pε(x, t) 2s
⇀ ∇p(x, t)+∇yw1(x,y, t),

∇pε
g(x, t)

2s
⇀ ∇pg(x, t)+∇yw2(x,y, t).

The pair (p, pg) is a weak solution of the problem (33)-(41).

Here 2s
⇀ denotes the two-scale convergence whose definition is recalled at the beginning of Sec-

tion 6. Theorem 2 is proven in Section 6.

4 A priori estimates
In this section we develop the a priori estimates that will serve to prove Theorem 2.

10



A priori estimates that will be used in the proof of the main result are based on the following
equality, which can be easily checked:

ρ
ε
g λgKε

∇pε
g ·∇pε

g +ρ
ε
l λlKε

∇pε
l ·∇pε

l = λω
2K∇P ·∇P+

ρgρl

λ
K∇θ ·∇θ .

Motivated by [21], we introduce the test functions

ϕ
ε = pε

l −N(pε
g), ψ = M(pε

g),

where

M(pε
g) =

∫ (pε
g)

+

0

1
ρ̂g(σ)

dσ , N(pε
g) =

∫ (pε
g)

+

0

û(σ)

ρ̂g(σ)
dσ . (42)

The functions M and N are extended by zero for negative pressures.
We set

E (pε , pε
g) = Sε

l
(
û(pε

g)M(pε
g)−N(pε

g)
)
+Sε

g
(
ρ̂g(pε

g)M(pε
g)− pε

g
)
−
∫ Sε

l

0
pc(s)ds,

where the dependence of E on global pressure is given through Sε
l (pε , pε

g).

Remark 3 From Lemma 6 in [21] we have for pg ≥ 0:

−Mpc ≤ E (p, pg)≤C(|pg|+1). (43)

Note that the test functions pε
l −N(pε

g) and M(pε
g) satisfy the following identity:

∂Sε
l

∂ t

(
pε

l −N(pε
g)
)
+

∂

∂ t

(
uεSε

l +ρ
ε
g Sε

g
)

M(pε
g) =

∂

∂ t
E (pε , pε

g).

By using the functions M, N and E the following result can be proved as in [21].

Lemma 1 Let the assumptions (A.1)-(A.7) be fulfilled and let the initial conditions p0 and p0
g be

such that E (p0, p0
g)∈ L1(Ω). Then there is a constant C independent of ε such that each solution

of (31), (32) satisfies: ∫
QT

{
λl(Sε

l )|∇pε
l |

2 +λg(Sε
l )|∇pε

g|2 + |∇uε |2
}
≤C, (44)∫

QT

{
|∇pε |2 + |∇pε

g|2 + |∇uε |2
}
≤C, (45)∥∥∂t(Φ

ε [uεSε
l +ρ

ε
g Sε

g])
∥∥

L2(0,T ;H−1(Ω))
+‖∂t(Φ

εSε
l )‖L2(0,T ;H−1(Ω)) ≤C. (46)
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5 A compactness result
In this section we establish the compactness results for the families {Sε}ε>0 and {rε

g}ε>0 in the
space L2(QT ). The proof is based on the compactness lemma from [2], which we now recall.

Lemma 2 (Lemma 4.2, [2]) Let the function Φ=Φ(y) be a Y -periodic function, Φ∈ L∞(Y ), and
there are positive constants φm,φM such that 0 < φm ≤Φ(y)≤ φM < 1 a.e. in Y , Φε(x) = Φ( x

ε
)

and let {vε}ε>0 ⊂ L2(QT ) be a family of functions satisfying the properties:

1. the function vε is uniformly bounded in the space L∞(QT ), i.e. 0≤ vε ≤C;

2. there exists a function ϖ such that ϖ(ξ )→ 0 as ξ → 0 and the following inequality holds
true: ∫

QT

|vε(x+h, t)− vε(x, t)|2dxdt ≤Cϖ(|h|);

3. the function vε is such that

‖ ∂

∂ t
(Φεvε)‖L2(0,T ;H−1(Ω)) ≤C.

Then the family {vε}ε>0 is a compact set in L2(QT ).

By using Lemma 2 and uniform in ε a priori estimates from Lemma 1, we can prove the
following results.

Proposition 1 Assuming (A.1)-(A.7), the families {Sε}ε>0 and {rε
g}ε>0 are compact in L2(QT ).

Corollary 1 There exist functions S ∈ L2(QT ) and rg ∈ L2(QT ) such that, up to a subsequence,

Sε → S a. e. in QT , (47)
rε

g → rg a. e. in QT . (48)

6 The proof of the homogenization result
The goal of this section is to rigorously justify the convergence results for the homogenized
problem (13)-(14), (22)-(23), (24) given by Theorem 2. In order to pass to the limit as ε → 0 in
the weak formulation (31)-(32), we use the a priori estimates and the compactness results of the
previous two sections. Moreover, we use the two-scale convergence technique, see e.g. [1].

We begin this section with some definitions and standard results on two-scale convergence
taken from [1], slightly modified for the case of homogenization with a parameter t (like for
example in [9]). However, we point out that these modifications do not affect the proofs from [1]
in any essential way.

By D(Q) we denote the space of infinitely smooth and compactly supported functions in
Q with values in R, by C∞

p (Y ) the space of infinitely differentiable functions in Rd which are
periodic of period Y and by H1

p(Y ) the space of functions in H1
loc(R

d) which are periodic of
period Y .

12



Definition 1 An admissible test function is any function ϕ ∈ L2(QT ;C∞
p (Y )) which satisfies

lim
ε→0

∫
QT

|ϕ(x, x
ε
, t)|2dxdt =

∫
QT×Y

|ϕ(x,y, t)|2dxdydt.

Definition 2 A sequence of functions vε ∈ L2(QT ) two-scale converges to v ∈ L2(QT ×Y ), de-

noted by vε(x, t) 2s
⇀ v(x,y, t), if for any admissible test function ϕ(x,y, t),

lim
ε→0

∫
QT

vε(x, t)ϕ(x,
x
ε
, t)dxdt =

∫
QT×Y

v(x,y, t)ϕ(x,y, t)dydxdt.

We denote by H = {u ∈ H1
p(Y ) :

∫
Y udy = 0}= H1

p(Y )/R.

Theorem 3 Let (uε ) be a bounded sequence in L2(0,T ;H1(Ω)) with a subsequence that con-
verges weakly to a limit u in L2(0,T ;H1(Ω)). Then, along this subsequence, (uε ) two-scale
converges to u(x, t). Also, there exists a function u1 in L2(QT ;H) such that, up to a subsequence,
(∇uε) two-scale converges to ∇xu+∇yu1.

Theorem 4 ( [11, Theorem 9]) Let 1 < p,q < +∞ with 1
p +

1
q = 1. Let (uε) be a sequence in

Lp(QT ) which two-scale converges to u. Then

lim
ε→0

∫
QT

uε(x, t)ψ(x,
x
ε
, t)dxdt =

∫
QT

∫
Y

u(x,y, t)ψ(x,y, t)dydxdt,

for every ψ of the form ψ(x,y, t) = ψ1(x, t)ψ2(y), ψ1 ∈ Lrq(QT ), ψ2 ∈ Lsq
p (Y ) with 1≤ r,s≤+∞

and such that 1
r +

1
s = 1.

The uniform estimates and the compactness results for the functions pε , pε
g, Sε and rε

g
obtained in the previous sections will be used for passing to the limit in the weak formula-
tion (31)-(32). More precisely, the a priori estimates from Lemma 1 imply that there exist
p, pg ∈ L2(0,T ;V ) such that, up to a subsequence,

pε ⇀ p in L2(0,T ;V ), pε
g ⇀ pg in L2(0,T ;V ).

From the same a priori estimates and Theorem 3, there exist functions

w1(x,y, t),w2(x,y, t) ∈ L2(QT ;H)

such that

∇pε(x, t) 2s
⇀ ∇p(x, t)+∇yw1(x,y, t), (49)

∇pε
g(x, t)

2s
⇀ ∇pg(x, t)+∇yw2(x,y, t). (50)

The rest of the proof consists of passing to the limit as ε → 0 in the weak formulation (13)-
(14). It is achieved in a standard way by considering for the both equations (13), (14) the test
function of the form

ϕ(x,
x
ε
, t) = ϕ(x, t)+ εζ (x,

x
ε
, t) = ϕ(x, t)+ εζ1(x, t)ζ2(

x
ε
),

where ϕ ∈ D(QT ), ζ1 ∈ D(QT ), ζ2 ∈ C∞
p (Y ) and employing the a priori estimates, the strong

convergence results, the two-scale convergence results and Lebesgue’s theorem, with the latter
result being applicable due to the almost everywhere convergence from Corollary 1, the continu-
ity and the boundedness of the coefficients.
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