
STRONG TRACES TO DEGENERATE PARABOLIC EQUATIONS

M.ERCEG AND D. MITROVIĆ

Abstract. We prove existence of strong traces at t = 0 for quasi-solutions
to the degenerate parabolic equations under non-degeneracy assumptions. In

order to solve the problem, we introduce a defect measure type functional and

combine it with the blow up method.

1. Introduction

In the current contribution, we consider the advection diffusion equation:

∂tu+ divx f(u) = D2 ·A(u), (1)

where f ∈ C1(R; Rd), A ∈ C2(R;Md×d) and D2 · A(u) =
∑
k,j

∂2
xkxj

Akj(u) and A is

symmetric. Usually, it is written in the form (non convenient for us at the moment)

∂tu+ divx f(u) = divx(a(u)∇u),

where a(λ) = A′(λ) and divx(a(u)∇u) =
d∑
k,j

∂xj (akj(u)∂xku). Given equation is

very important and it describes phenomena containing the combined effects of non-
linear convection, degenerate diffusion, and nonlinear reaction. More precisely, the
equation describes a flow governed by

• the convection effects (bulk motion of particles) which are represented by
the first order terms;
• diffusion effects which are represented by the second order term and the ma-

trix A′(λ) = [aij(λ)]i,j=1,...,d describes directions and intensities of the diffu-
sion and it satisfies for a symmetric matrix σ = [σkj ]k,j=1,...,d ∈ C1(R;Md×d):

〈a(λ)ξ, ξ〉 =

d∑
k,j

akj(λ)ξjξk =

d∑
k=1

 d∑
j=1

σjk(λ)ξj

2

.

The equation is degenerate in the sense that the matrix a(λ) = A′(λ) can be equal
to zero in some direction. Roughly speaking, if this is the case (i.e. if for some
vector ξ ∈ Rd we have 〈A′(λ)ξ, ξ〉 = 0), then diffusion effects do not exist for the
state λ in the direction ξ.

The equation appears in a broad spectrum of applications, such as e.g. flow
in porous media [17], sedimentation-consolidation processes [9] and many others
which we omit here (see the Introduction from [12] for more details). Existence
and uniqueness for the Cauchy problem corresponding to (1) is well established in
quite general situations [10, 11, 12]. The question of existence of strong traces for
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entropy solutions to (1) is however intact. Let us recall that the function u = u(t,x)
has the trace u0 = u0(x) at t = 0 if L1

loc − lim
t→0

u(t, ·) = u0(·). More precisely, we

shall use the following definition.

Definition 1. Let u ∈ Lp(R+ ×Rd). A locally integrable function u0 defined on
Rd is called the strong trace of u at t = 0 if for any relatively compact set K ⊂⊂ Rd

it holds
lim
t→0
‖u(t, ·)− u0‖L1(K) = 0. (2)

The strong traces appeared in the context of limit of hyperbolic relaxation toward
scalar conservation laws [27, 35]. Also, they appeared to be very useful specially
related to the uniqueness of solution to scalar conservation laws with discontinuous
flux (see very restrictive list [2, 3, 13] and references therein).

One of the first results concerning the existence of traces was proved in [36]
for entropy solutions to scalar conservation laws [20] where the basic technique
for the proof – the blow up technique – was introduced. The results are further
extended in [30] for quasi-solutions to scalar conservation laws by combining the
blow up techniques and the H-measures. All the mentioned results were confined on
homogeneous scalar conservation laws. We extended them in [1] on heterogeneous
ultra-parabolic equations under special assumptions. Let us remark in passing
that existence of traces for entropy solutions for general multi-dimensional scalar
conservation laws is still open.

As for the (entropy) solutions to degenerate parabolic equations (see e.g. [10,
11, 12, 37]), there are no results for traces either in homogeneous or heterogeneous
setting. An obvious problem is inadequacy of the standard blow-up technique which
involves scaling of the variables. Namely, if we are in the hyperbolic setting we use
the scaling (t,x) 7→ (εt, εx) (the same with respect to both variables) [36] while in
the (ultra) parabolic setting, we need (t,x) 7→ (εt,

√
εx̄ + εx̂), x = (x̄, x̂) [1]. This

clearly causes problems if the equations changes type.
As we shall see, the defect measures techniques that we are going to introduce

here will be able to overcome mentioned obstacle. They are inspired by works
[23] where the defect measures are introduced, and [6, 34] where the one-scale H-
measures were introduced. Actually, the one scale H-measures are generalization
of the H-measures (or micro-local defect measures) [18, 33], while the H-measures
are introduced as a generalization of the defect measures from [23]. More precisely,
while defect measures take into account only the space variable, the H-measures
take into account space and dual variables and they are thus ”finer” than the defect
measures. The standard example is the following sequence

un(x) = exp(−ikx), x ∈ (−π, π), k is fixed,

and the corresponding defect measure is defined as the weak limit along a subse-
quence of (u2

n)n∈N in the space of Radon measures M([−π, π]). Interestingly, for
any k ∈ N, the defect measure is the same and it is equal to the Lebesgue measure
which means that the oscillation effects were not taken into account. This is not
the case with the H-measures which ”see” the oscillation effects as well. In the
recent couple of years, several variants of the H-measures and their generalization
appeared (see e.g. [4, 5, 21, 26]), and one of the last are one-scale H-measures
which, roughly speaking, allow test functions to depend on the parameter n ∈ N.
By combining this idea with the defect measures, we will get the tools necessary to
prove existence of the strong traces.
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The paper is organized as follows.
In Section 2, we recall and adapt variants of the defect measures that we are

going to use. Also, we introduce the non-degeneracy conditions. Remark that such
conditions are standard in approaches that involve kinetic formulations [21, 24, 32]
i.e. reduction of nonlinear equations to transport type equations [14, 15, 22, 31]
and then using the velocity averaging results [21, 24, 31, 32]. In the final section, we
prove existence of strong traces for quasi-solutions to (1) under the non-degeneracy
conditions.

2. Auxiliary statements, notions and notations

In this section, we shall introduce the notion of the defect measures – the basic
tools that we are going to use. The defect measures introduced in [23] describe loss
of the strong L2

loc compactness due to concentration effects, but they are insensi-
tive to oscillation effects. However, if we take the Fourier transform (F(un)) of
the sequence (un) generating the defect measure, and consider the defect measure
generated by (F(un)), we actually get an object describing the oscillation effects.
In this contribution, we know that we cannot have the concentration effects (we are
dealing with bounded sequences), so we can consider behaviour of the sequences of
interest only in the dual space. This in particular avoids question of extension of
bilinear functionals which typically appears in the frame of H-measures (see [22, 25]
in a more general situation).

In order to introduce the necessary tools, we need the notion of the Fourier
multiplier operator.

Definition 2. Let F and F−1 be the Fourier and inverse Fourier transform. The
mapping Aψ : L2(Rd)→ L2(Rd), ψ ∈ L∞(Rd), defined by

Aψ(u) = F−1(ψ(ξ)F(u))

is called the Fourier multiplier operator with the symbol ψ.

The fact that the symbol ψ is bounded provides L2-continuity of the mapping
Aψ. Question of necessary and sufficient conditions for Lp-continuity, p 6= 2, of
the mapping Aψ is still open. However, there exist a few criterions giving neces-
sary conditions for the Lp-continuity. One of them is the Marcinkiewicz multiplier
theorem one of whose consequences we shall need later.

Theorem 3. [19, Theorem 5.2.4.]. The multiplier operator Aψ with the symbol ψ
is continuous as the mapping Lr(Rd)→ Lr(Rd), r > 1, if it holds∣∣∣ξαDαψ(ξ)| ≤ C, ξ ∈ Rd\coordinate axis

for every multi-index α ∈ Nd
0 such that |α| = α1 + α2 + · · ·+ αd ≤ d.

Here, we used the notations ξα =
d∏
i=1

ξαii and Dα =
d∏
i=1

(
∂
∂ξi

)αi
.

Now, we can introduce the defect measure that we are going to use. In the sequel

t ∈ [0,∞) = R+, x ∈ Rd i.e. (t,x) ∈ Rd
+, and (y, λ) ∈ Rd+1.

The following theorem holds.
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Theorem 4. Let q : R → Md×d be a non-negative matrix valued continuous
function and let (ζn) be a positive sequence of real numbers. Let (un) be a sequence
bounded in L2(Rd

+ ×Rd+1), p ≥ 2, uniformly compactly supported with respect to

λ ∈ R in Kλ ⊂⊂ R. Let (vn) be a sequence bounded in L2(Rd
+×Rd

y). Then, there

exists a measure µ ∈ M(Rd+1 × [−1, 1]d+1) such that for every ψ ∈ C0(Rd+1 ×
[−1, 1]d+1), it holds along a subsequence

lim
n→∞

∫
Rd

+×Rd+1

un(t,x,y, λ)A
ψ
(
y,λ,

(ξ0,ξ)

|(ξ0,ξ)|+ζn〈q(λ)ξ,ξ〉+1

)(vn)(t,x,y)dtdxdydλ (3)

= 〈µ, ψ(y, λ,w)〉, (y, λ) ∈ Rd+1, w ∈ [−1, 1]d+1,

where, for every fixed (y, λ) ∈ Rd+1, the multiplier operator A
ψ(y,λ,

(ξ0,ξ)

|(ξ0,ξ)|+ζn〈q(λ)ξ,ξ〉+1
)

:

L2(Rd
+)→ L2(R1+d) is continuous and Aψ is the complex conjugate of A.

Remark 5. Remark that if we add a test function ϕ depending on (t,x) in (3) we
get a variant of the H-measure. If θn ≡ 0 and (un) is independent of λ, then we
have a variant introduced in [18, 33]. If q(λ) = Id and θn = 1

n then we get one-scale
H-measures [6, 34]. However, the situation is not that simple since we would get
a bilinear functional on C0(R1+d)×C0(Rd+1 × [−1, 1]d+1) in (3), and a nontrivial
question of extension to C0(R1+d ×Rd+1 × [−1, 1]d+1) would arise.

Proof: Consider the sequence of mappings µn : C0(Rd+1 × [−1, 1]d+1) → C
defined by

ψ 7→
∫
Rd

+×Rd+1

un(t,x,y, λ)A
ψ
(
y,λ,

(ξ0,ξ)

|(ξ0,ξ)|+ζn〈q(λ)ξ,ξ〉+1)

)(vn)(t,x,y)dtdxdydλ (4)

which is uniformly bounded in M(Rd+1 × [−1, 1]d+1).
Indeed, using the Plancherel theorem, we have for any ψ ∈ C0(Rd+1×[−1, 1]d+1)

∣∣ ∫
Rd

+×Rd+1

un(t,x,y, λ)A
ψ
(
y,λ,

(ξ0,ξ)

|(ξ0,ξ)|+ζn〈q(λ)ξ,ξ〉+1

)(vn)(t,x,y)dtdxdydλ
∣∣ (5)

=
∣∣ ∫
Rd+1

(y,λ)
×Rd+1

(ξ0,ξ)

ψ

(
y, λ,

(ξ0, ξ)

|(ξ0, ξ)|+ ζn〈q(λ)ξ, ξ〉+ 1

)
×

×F(un)(ξ0, ξ,y, λ)F(vn)(ξ0, ξ,y)dξ0dξdydλ
∣∣

≤
∫
Rd+1

(y,λ)

sup
w∈[−1,1]d+1

|ψ(y, λ,w)|×

× ‖F(un)(·, ·,y, λ)‖L2(Rd+1) ‖F(vn)(·, ·,y)‖L2(Rd+1)dydλ.

From here, using uniform compact support of (un) with respect to λ and the
Plancherel theorem, we immediately get

∣∣ ∫
Rd

+×Rd+1

un(t,x,y, λ)A
ψ
(
y,λ,

(ξ0,ξ)

|(ξ0,ξ)|+ζn〈q(λ)ξ,ξ〉+1

)(vn)(t,x,y)dtdxdydλ
∣∣

≤ ‖ψ‖C0(Rd+1×[−1,1]d+1)meas(Kλ)1/2‖un‖L2(Rd
+×R1+d)‖vn‖L2(Rd

+×Rd
y).
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Thus, we see that the sequence (µn) is bounded in M(Rd+1 × [−1, 1]d+1) (with
the bound equal to sup

n∈N
meas(Kλ)1/2‖un‖L2(Rd

+×R1+d)‖vn‖L2(Rd
+×Rd

y)). Using the

weak compactness for the space of Radon measures, we conclude that there exists

a subsequence (µn) (not relabelled) such that (3) holds. 2

In the next theorem we shall refine the object from the previous theorem i.e. we
shall prove that in a special situation µ can be more precisely estimated. To this
end, we denote

Λ0(ξ) = {λ ∈ R : 〈a(λ)
ξ

|ξ|
,
ξ

|ξ|
〉 = 0}

Λε = {λ ∈ R : 〈a(λ)
ξ

|ξ|
,
ξ

|ξ|
〉 > ε}.

We have the following theorem.

Theorem 6. Assume that, in addition to the assumptions of Theorem 4, there
exists a sequence δn such that

(i) lim
n→∞

σn
δ2n

=∞;

(ii) the sequences (ũn) = (un(δnt, δnx,y, λ)) and (ṽn) = (vn(δnt, δnx,y)) are
bounded in L1 ∩ L2(Rd

+ ×Rd+1) and L1 ∩ L2(Rd
+ ×Rd), respectively.

Then for the H-,=measure µ defined in Theorem 4, any bounded function ψ : Rd+1×
Rd+1 → R and any relatively compact Kλ ⊂⊂ R, it holds∣∣∣〈ψ, µ〉∣∣∣ ≤ C( sup

ξ0,ξ,y
‖ψ
(

y, λ,
(ξ0, ξ)

|(ξ0, ξ)|+ 1

)
‖L2(Kλ∩Λ0(ξ))+ sup

ξ0,ξ,y
‖ψ(y, λ, 0)‖L2(Kλ∩Λ0(ξ))

)
(6)

i.e. we have for a measure µ̃ ∈M(Rd+1 ×Rd+1)

〈ψ, µ〉 = 〈µ̃, ψ
(

y, λ,
(ξ0, ξ)

|(ξ0, ξ)|+ 1

)
χΛ0(ξ) + ψ(y, λ, 0)χΛ0(ξ)〉 (7)

where χA is the characteristic function of the set A.

Proof: We have∫
Rd

+×Rd+1

un(t,x,y, λ)A
ψ
(
y,λ,

(ξ0,ξ)

|(ξ0,ξ)|+ζn〈q(λ)ξ,ξ〉+1

)(vn)(t,x,y)dtdxdydλ (8)

≤
∣∣ ∫
Rd

+×Rd

∫
Λ0∩Kλ

un(t,x,y, λ)A
ψ
(
y,λ,

(ξ0,ξ)

|(ξ0,ξ)|+ζn〈q(λ)ξ,ξ〉+1

)(vn)(t,x,y)dtdxdydλ
∣∣

+
∣∣ ∫
Rd

+×Rd

∫
Λ0∩Kλ

un(t,x,y, λ)A
ψ
(
y,λ,

(ξ0,ξ)

|(ξ0,ξ)|+ζn〈q(λ)ξ,ξ〉+1

)(vn)(t,x,y)dtdxdydλ
∣∣

The first integral on the right-hand side above clearly provides the first summand
on the right-hand side of (6). As for the second integral, let us introduce here the
change of variables

(ξ0, ξ) =
1

δn
(ξ̃0, ξ̃).
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We get∣∣ ∫
Rd

+×Rd

∫
Kλ∩Λ0(ξ

un(t,x,y, λ)A
ψ
(
y,λ,

(ξ0,ξ)

|(ξ0,ξ)|+ζn〈q(λ)ξ,ξ〉

)(vn)(t,x,y)dtdxdydλ
∣∣ (9)

=
∣∣ ∫
Rd

y×R
d+1

(ξ̃0,ξ̃)

1

δ
(d+1)/2
n

F(vn)(
ξ̃0
δn
,
ξ̃

δn
,y)×

×
∫
Kλ∩Λ0(ξ̃

ψ

(
y, λ,

(ξ̃0, ξ̃)

|(ξ̃0, ξ̃)|+ ζn
δ2n
〈q(λ)ξ̃, ξ̃〉

)
1

δ
(d+1)/2
n

F(un)(
ξ̃0
δn
,
ξ̃

δn
,y, λ)dλdξ̃0dξ̃dy

∣∣
≤

∫
Rd

y×R
d+1

(ξ̃0,ξ̃)

1

δ
(d+1)/2
n

∣∣F(vn)(
ξ̃0
δn
,
ξ̃

δn
,y)
∣∣ ‖ψ(y, ·, (ξ̃0, ξ̃)

|(ξ̃0, ξ̃)|+ ζn
δ2n
〈q(·)ξ̃, ξ̃〉

)
‖L2(Kλ∩Λ0(x̃))×

× ‖ 1

δ
(d+1)/2
n

F(un)(
ξ̃0
δn
,
ξ̃

δn
,y, ·)‖L2(Kλ∩Λ0(ξ̃))dξ̃0dξ̃dy

∣∣.
Next, notice that

1

δ
(d+1)/2
n

F(un(·, ·,y, λ))(ξ̃0/δn, ξ̃/δn) = δ(d+1)/2
n F(un(δn ·, δn ·,y, λ))(ξ̃0, ξ̃)

1

δ
(d+1)/2
n

F(vn(·, ·,y))(ξ̃0/δn, ξ̃/δn) = δ(d+1)/2
n F(vn(δn ·, δn ·,y))(ξ̃0, ξ̃).

(10)

From here, according to the assumptions (i) and (ii) of the theorem, and taking
into account that Λ0 = Λε ∪ Λε and that meas(Λε)→ 0 as ε→ 0, we conclude the
theorem.

2

Having the latter theorem in mind, we can derive information about support of
the defect functional from the localization principle as follows.

Lemma 7. Let µ̃ be the defect measure defined in Theorem 6 and assume that the
conditions of Theorem 6 hold. Assume that the function F ∈ C0(Rd+1 × B(0, 1))
is such that for some α > 0

sup
(y,ξ0,ξ)∈Rd×R1+d

meas{λ ∈ Kλ : |iF
(

y, λ,
(ξ0, ξ)

|(ξ0, ξ)|+ 1

)
+ F (y, λ, 0)| ≤ σ} ≤ σα.

(11)
Furthermore, assume that(

F

(
y, λ,

(ξ0, ξ)

|(ξ0, ξ)|+ 1

)
χΛ0(ξ) + F (y, λ, 0)χΛ0(ξ)

)
dµ̃ ≡ 0. (12)

Then,

µ̃ ≡ 0.

Remark 8. It is enough to take any function tending to zero as σ → 0 in (11)
instead of σα.
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Proof: Fix an arbitrary δ > 0, and for ψ ∈ C0(Rd × Kλ × [−1, 1]d+1) consider
the test function

ψ (y, λ,w)
F (y, λ,w))

|F (y, λ,w)|2 + δ
.

From (12), we have with the notation from Theorem 6

0 = 〈 ψ|F |
2

|F |2 + δ
, µ〉 = 〈ψ, µ〉+ 〈 ψδ

|F |2 + δ
, µ〉. (13)

We let here δ → 0 and conclude

〈ψ, µ〉 = 0

which we intended to prove. It remains to prove that

lim
δ→0
〈 ψδ

|F |2 + δ
, µ〉 = 0. (14)

According to (7) and the bound (6), we have

〈 ψδ

|F |2 + δ
, µ〉 (15)

= δ〈

 ψ(y, λ, (ξ0,ξ)
|(ξ0,ξ)|2+1 )

|F (y, λ, (ξ0,ξ)
|(ξ0,ξ)|2+1 )|2 + δ

χΛ0
(ξ) +

ψ(y, λ, 0)

|F (y, λ, 0)|2 + δ
χΛ0(ξ)

 , µ̃〉.

According to the assumption (11), it is not difficult to see :-)

sup
ξ0,ξ,y

‖
ψ(y, λ, (ξ0,ξ)

|(ξ0,ξ)|2+1 )

|F (y, λ, (ξ0,ξ)
|(ξ0,ξ)|2+1 )|2 + δ

χΛ0
(ξ)‖L2(Kλ) ≤ c <∞;

sup
ξ0,ξ,y

‖ ψ(y, λ, 0)

|F (y, λ, 0)|2 + δ
χΛ0

(ξ)‖L2(Kλ) ≤ c <∞.

From here, (6) and (15), we conclude (14). 2

3. Existence of traces for quasi-solutions to (1)

In this section, we shall first define quasi-solutions to (1). The notion is intro-
duced in [30] and it is a generalization of the Kruzhkov-type admissibility concept
(see e.g. [10, 11, 20]). In a special situation, the quasi-solution is an entropy admis-
sible solution that singles out a physically relevant solutions to the equation (1).
The notion of quasi-solution will lead to an appropriate kinetic formulation of the
equation under consideration which will enable us to use the defect measures.

Definition 9. A measurable function u defined on Rd
+ is called a quasi-solution

to (1) if for every λ ∈ R the Kruzhkov type entropy equality holds

∂t|u− λ|+ div [sgn(u− λ)(f(u)− f(λ)]] (16)

−D2 · [sgn(u− λ)(A(u)−A(λ))] = −γ(t,x, λ),

where γ ∈ C(Rλ;w ?−M(Rd
+)) we call the quasi-entropy defect measure.

From the latter definition, the following kinetic formulation can be proved.
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Theorem 10. Denote F = f′λ and a = A′λ. If the function u is a quasi-solution to
(1) then the function

h(t,x, λ) = sgn(u(t,x)− λ) = −∂λ|u(t,x)− λ| (17)

is a weak solution to the following linear equation:

∂th+ div (F (λ)h)−D2 · [a(λ)h] = ∂λγ(t,x, λ) (18)

Proof: It is enough to find derivative of (16) with respect to λ ∈ R to obtain

(18). 2

Next, we introduce the non-degeneracy conditions.

Definition 11. Denote

L(λ, ξ0, ξ) =

i(ξ0 +
d∑
k=1

Fk(λ)ξk) + 〈a(λ)ξ, ξ〉

|(ξ0, ξ)|+ 〈a(λ)ξ, ξ〉
.

We say that the coefficients of equation (1) satisfy the non-degeneracy conditions
if there exists α > 0 such that for every σ > 0 and every finite interval I ⊂ R

esssupx∈K sup
|ξ|=1

meas{λ ∈ I : |L(λ, ξ0, ξ)| ≤ σ} ≤ C(I)σα, (19)

where C(I) is a constant depending only on I.

Such kind of assumptions are standard in the theory of velocity averaging lemmas
[21, 31, 32] (see in particular (see also [32, (2.18)-(2.19)])) which is substantially
used in the frame of the blow up method [36]. Here, we cannot use known velocity
averaging results due to specific form of the transport equation that we are going
to obtain after appropriate (blow up) change of variables (see (23)). Let us also
remark that instead of σα on the right-hand side of (19) we can use some other
function tending to zero as σ → 0.

The main theorem of the paper is:

Theorem 12. Assume that the quasi-solution u to (1) satisfies for some constant
M > 0

−M ≤ u(t,x) ≤M, a.e. (t,x) ∈ Rd
+.

Then, if the non-degeneracy conditions (11) are satisfied, the function u admits the
strong trace at t = 0 i.e. there exists u0 ∈ L∞(Rd) such that for any relatively
compact K ⊂⊂ Rd, it holds

lim
t→0

∫
K

|u(t,x)− u0(x)|dx = 0.

Let us first prove that a weak solution to (18) admits a weak trace.

Proposition 13. Let h ∈ L∞(Rd
+×R) be a distributional solution to (18). Denote

E = {t ∈ R+ : (t,x, λ) is the Lebesgue point of (20)

h(t,x, λ) for a.e. (x, λ) ∈ Rd ×R}.

There exists h0 ∈ L∞(Rd+1), such that

h(t, ·, ·) ⇀ h0, weakly-? in L∞(Rd+1), as t→ 0, t ∈ E.
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Proof: Since h ∈ L∞(Rd
+×R), the family {h(t, ·, ·)}t∈E is bounded in L∞(Rd+1).

Due to weak-? precompactness of L∞(Rd+1), there exists a sequence {tm}m∈N,
tm → 0, as m→∞, and h0 ∈ L∞(Rd+1), such that

h(tm, ·, ·) ⇀ h0(·, ·), weakly-? in L∞(Rd+1), as m→∞. (21)

For φ ∈ C∞c (Rd), ρ ∈ C1
c (R), denote

I(t) :=

∫
Rd+1

h(t,x, λ)ρ(λ)φ(x) dxdλ, t ∈ E.

With this notation, (21) means that

lim
m→∞

I(tm) =

∫
Rd+1

h0(x, λ)ρ(λ)φ(x) dxdλ =: I(0). (22)

Now, fix τ ∈ E and notice that for the regularization Iε = I ? ωε where ωε is the
standard convolution kernel, it holds

lim
ε→0

Iε(τ) = I(τ).

Then, fix m0 ∈ N, such that E 3 tm ≤ τ , for m ≥ m0, and remark that

I(τ)− I(tm) = lim
ε→0

∫ τ

tm

I ′ε(t) dt =

∫ τ

tm

∫
Rd+1

∂th(t,x, λ)ρ(λ)φ(x) dxdλ dt

=

d∑
i=1

∫
(tm,τ ]×Rd+1

h(t,x, λ)Fi(λ)ρ(λ)∂xiφ(x) dxdλdt

+

k∑
i,j=1

∫
(tm,τ ]×Rd+1

h(t,x, λ)aij(λ)ρ(λ)∂xixjφ(x) dxdλdt

−
∫

(tm,τ ]×Rd+1

φ(x)ρ′(λ) dγ(t,x, λ).

Now, since E is the set of full measure, we can choose the sequence (tm) of numbers
from E converging to zero. Now, passing to the limit as m → ∞, and having in
mind (22), we obtain

I(τ)− I(0) =

d∑
i=1

∫
(0,τ ]×Rd+1

h(t,x, λ)Fi(λ)ρ(λ)∂xiφ(x) dx dλ dt

+

k∑
i,j=1

∫
(0,τ ]×Rd+1

aij(λ)ρ(λ)h(t,x, λ)∂xixjφ(x) dx dλ dt

−
∫

(0,τ ]×Rd+1

ρ′(λ)φ(x) dγ(t,x, λ) −−→
τ→0

0.

Thus, for all φ ∈ C∞c (Rd), ρ ∈ C1
c (R),

lim
τ∈E,τ→0

∫
Rd+1

h(τ,x, λ)ρ(λ)φ(x) dλ dx =

∫
Rd+1

h0(x, λ)ρ(λ)φ(x) dλ dx.

Having in mind that h(τ, ·) is bounded for almost every τ ∈ R, and C∞c (Rd+1) is

dense in L1(Rd+1), we complete the proof. 2
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Next, change the variables in (18) in the following way, t = t̂
m , x1 = y1 +

x̂1

m , . . . , xd = yd + x̂d
m , i.e.

(t,x, λ) = (
t̂

m
,

x̂

m
+ y, λ), (23)

where y ∈ Rd is a fixed vector. We get for hm(t̂, x̂,y, λ) = h( t̂m ,
x̂
m + y, λ)

Lhm :=
1

m

(
∂t̂h

m +

d∑
k=1

∂x̂k (Fkh
m)

)
−

d∑
s,j=1

∂2
x̂sx̂j (asjh

m) =
1

m2
∂λγ

m, (24)

hm|t=0 =h0(εmx̂ + y, λ), (25)

where the initial conditions are understood in the weak sense. Let us remark that
the equality between γ and γm is understood in the sense of distributions:

〈γm, ϕ〉 = md+1

∫
Rd

+

ϕ(mt,m (x− y), λ)dγ(t,x, λ) (26)

for almost every λ ∈ R. If we prove that there exists α > 0 such that for any
ρ ∈ C1

c (R), the sequence∫
h(

t̂

mα
,

x̂

mα
+ y, λ)ρ(λ)dλ, m ∈ N, (27)

converges strongly in L1
loc(R

1+d × Rd) along a subsequence, we will obtain that
function u admits the trace in the sense of Definition 1. More precisely the following
proposition holds.

Proposition 14. Assume that for every ρ ∈ C1
c (R) the sequence given by (27)

converges toward
∫
h0(y, λ)ρ(λ)dλ in L1

loc(R
d
+ ×Rd

y) along a subsequence. Then,
the function u admits the strong trace at t = 0 and it is equal to h0.

Proof: Using the density arguments, we conclude that if the sequence from (27)
converges in L1

loc(R
d
+ ×Rd) for any ρ ∈ C1

c (R), then it will also converge for any

ρ ∈ L∞c (R). From there, we conclude that for any non-negative ϕ ∈ Cc(Rd
+×Rd),

it holds

lim
m→∞

∫
Rd

+

ϕ(t̂, x̂,y)|
∫ M

−M
(h(

t̂

mα
,

x̂

mα
+ y, λ)− h0(y, λ))ρ(λ)dλ|dydx̂dt̂ = 0.

Introducing the change of variables z = x̂
mα +y with respect to y here, we conclude

lim
ε→0

∫
Rd

∫
Rd

+

ϕ(t̂, x̂, z− x̂

mα
)× (28)

× |
∫ M

−M
(h(

t̂

mα
, z, λ)− h0(z− x̂

mα
, λ))dλ|dydx̂dt̂ = 0.

Using the definition of the function h (it is a sign function; see (17))∫ M

−M
hm(t̂, x̂,y, λ)dλ =

∫ M

−M
sign(λ− u(

t̂

mα
,

x̂

mα
+ y))dλ = 2u(

t̂

mα
,

x̂

mα
+ y).
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From here and the continuity in L1
loc for L1

loc functions (h0 in particular), we con-
clude from (28)

lim
m→∞

∫
Rd

∫
Rd

+

ϕ(t̂, x̂, z)|(2u(
t̂

mα
, z)−

∫ M

−M
h0(z, λ))dλ|dydx̂dt̂ = 0.

Due to arbitrariness of ϕ, we conclude

u(
t̂

mα
, z)→ 1

2

∫ M

−M
h0(z, λ))dλ, m→∞

in L1
loc(R

d
+) along the subsequence from the formulation of the proposition. This

means that for almost every t̂ ∈ R+

u(
t̂

mα
, z)→ 1

2

∫ M

−M
h0(z, λ))dλ = u0(z), m→∞ (29)

in L1
loc(R

d). Now, choose ρ(λ) = λχ[−M,M ](λ) where χ[−M,M ](λ) is the character-
istic function of the interval [−M,M ]. It holds according to Proposition 13∫ M

−M
λh(t,x, λ)dλ = u2(t,x)−M2 ?

⇀
1

2

∫ M

−M
λh0(y, λ)dλ−M2 in L∞(Rd ×Rd)

as t→ 0. Since u is bounded and since weak and strong limits coincide, from here
and (29) we see that it must be

u2(t, z)
?
⇀ u2

0(z) in L∞(Rd
+) as t→ 0.

Therefore, for ϕ ∈ Cc(Rd), it holds∫
Rd

(u(t, z)− u0(z))2ϕ(z)dz =

∫
Rd

(
u(t, z)2 − 2u(t, z)u0(z) + u0(z)2

)
ϕ(z)dz→ 0

as t→ 0 implying

u(t, ·)→ 1

2

∫ M

−M
h0(·, λ))dλ, t→ 0

in L1
loc(R

d). This concludes the proof. 2

Having the last proposition in mind, we clearly need the following theorem.

Theorem 15. Assume that the non-degeneracy conditions (19) from Definition 11
are satisfied.

Then, for any ρ ∈ C1
c (R), the sequence (

∫
R
ρ(λ)h(t̂/m1/(d+1), x̂/m1/(d+1) +

y, λ)dλ) is strongly precompact in L1
loc(R

d
+ ×Rd).

Proof: Assume in the sequel that d ≥ 2. Take an arbitrary ϕ ∈ L2(R1+d) ∩
C2
c (R1+d) and multiply (24) by

ϕm(t̂, x̂) =
1

mβ
ϕ(

(t̂, x̂)

m
2β
d+1

),
2β

d+ 1
< 1/2. (30)

We can rewrite the obtained equation in the following way (equality holds in the
weak sense):
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1

m

(
∂t̂(ϕm h

m) +

d∑
k=1

∂x̂k (Fk(λ)hmϕm)

)
−

d∑
s,j=1

asj(λ)∂2
x̂sx̂j (h

mϕm) (31)

− 1

m
(∂t̂ϕm h

m + hmF (λ) · ∇ϕm)

− 2

d∑
k,j=1

ajk(λ)∂xj (hm∂xkϕm) + hm

d∑
k,j=1

ajk(λ)∂xkxjϕm =
1

m2
ϕm∂λγ

m.

Denote um = ϕm h
m and remark that (um) is bounded in L2(Rd

+).
Next, recall that

〈a(λ)ξ, ξ〉 =

d∑
k=1

 d∑
j=1

σkj(λ)ξj

2

and thus, in particular, akj =
d∑
i=1

σkiσij . From here, it is easy to see that

〈a(λ)ξ,η〉 =

d∑
i=1

(
d∑
k=1

σki(λ)ξk

)  d∑
j=1

σji(λ)ηj

 , ξ,η ∈ Rd. (32)

Now, fix ρ ∈ C1
c (Rd+1) and introduce the sequence of functions

vm(t̂, x̂,y, λ) = ρ(y, λ)A
ψ(

(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1
) 1

1
m
|(ξ0,ξ)|+〈a(λ)ξ,ξ〉+

1
m

(ωm(·, ·,y))(t̂, x̂),

for a fixed sequence (ωm) (defined on Rd
+ × Rd) weakly-? converging to zero in

L∞ ∩L2(Rd
+×Rd) (the sequence will be specified later). In the sequel, to simplify

the notations, we shall omit the conjugation sign but we shall imply it whenever
we use the Plancherel theorem.

For every fixed m, we test (31) against vm. We get (we label each line below
since we will consider each of it separately):
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∫
Rd

+×Rd+1

ρ um i
(
A ξ0
|(ξ0,ξ)|+m〈aξ,ξ〉

ψ(
(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1
)
(ωm) (33)

+

d∑
k=1

Fk(λ)A ξk
|(ξ0,ξ)|+m〈aξ,ξ〉+1

ψ(
(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1
)
(ωm)

)
dt̂dx̂dydλ∫

Rd
+×Rd+1

(−∂tϕm hm − hmF (λ) · ∇ϕm) ρ(y, λ)× (34)

A
ψ(

(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1
) 1
|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1

(ωm(·, ·,y))(t̂, x̂)dt̂dx̂dydλ

+

∫
Rd

+×Rd+1

ρ umA m〈a(λ)ξ,ξ〉
|(ξ0,ξ)|+m〈aξ,ξ〉+1

ψ(
(ξ0,ξ)

|(ξ0,ξ)|+m〈aξ,ξ〉+1
)
(ωm)dt̂dx̂dydλ (35)

+2

∫
Rd

+×Rd+1

ρ hm
d∑

k,j=1

ajk(λ)∂xjϕm× (36)

× ∂xkAψ(
(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1
) 1

1
m
|(ξ0,ξ)|+〈a(λ)ξ,ξ〉+

1
m

(ωm)dt̂dx̂dydλ

+

∫
Rd

+×Rd+1

ρ hm

∂tϕm +

d∑
k,j=1

ajk(λ)∂xkxjϕm

× (37)

×A
ψ(

(ξ0,ξ)

|(ξ0,ξ)|+m〈aξ,ξ〉+1
) 1

1
m
|(ξ0,ξ)|+〈aξ,ξ〉+

1
m

(ωm)dt̂dx̂dydλ

=
1

m2

∫
Rd

+×Rd+1

ϕm∂λvm(t̂, x̂, λ,y)dγm(t̂, x̂,y, λ). (38)

Let us consider line by line in (33)–(38) as m→∞.
As for (33), denote by µ the defect measure corresponding to the sequences

(um) = (ϕmh
m) and (ωm). Letting m→∞ in (33), we get

lim
m→∞

∫
Rd

+×Rd+1

ρ um i
(
A ξ0
|(ξ0,ξ)|+m〈aξ,ξ〉+1

ψ(
(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1
)
(ωm) (39)

+

d∑
k=1

Fk(λ)A ξk
|(ξ0,ξ)|+m〈aξ,ξ〉+1

ψ(
(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1
)
(ωm)

)
dt̂dx̂dλdy

= i〈ρ(y, λ)ψ

(
(ξ0, ξ)

|(ξ0, ξ)|+ 1

)
(

ξ0
|(ξ0, ξ)|+ 1

+

d∑
k=1

Fk(λ)
ξk

|(ξ0, ξ)|+ 1
), µ̃(y, λ, ξ0, ξ)〉.

The term (34) clearly tends to zero as m → ∞ sincethe derivative of ϕm tends
to zero in L2(Rd

+).
It is also easy to handle (35). Notice that

m〈aξ, ξ〉
|(ξ0, ξ)|+m〈aξ, ξ〉+ 1

= 1− |(ξ0, ξ)|+ 1

|(ξ0, ξ)|+m〈aξ, ξ〉
which means that we can rewrite (35) in the form



14 M.ERCEG AND D. MITROVIĆ

∫
Rd

+×Rd+1

ρ umA(1− |(ξ0,ξ)|+1

|(ξ0,ξ)|+m〈aξ,ξ〉+1

)
ψ(

(ξ0,ξ)

|(ξ0,ξ)|+m〈aξ,ξ〉
)
(ωm)dt̂dx̂dydλ

Letting m → ∞ here, we get after taking into account β < 4
d1

and the change of

variables (t̃, x̃) =
(

t
m2β/(d+1) ,

x
m2β/(d+1)

)
:

lim
m→∞

∫
Rd

+×Rd+1

ρ umA m〈a(λ)ξ,ξ〉
|(ξ0,ξ)|+m〈aξ,ξ〉

ψ(
(ξ0,ξ)

|(ξ0,ξ)|+〈aξ,ξ〉+1
)
(ωm)dt̂dx̂dλdy (40)

= 〈ρ(λ,y)ψ(0), µ̃(λ,y, ξ0, ξ)〉.

Now, let us handle term (36). Using (32), we can rewrite (36) as:

∫
Rd

+×Rd+1

ρhm
d∑

k,j=1

ajk(λ)∂xjϕm ∂xkAψ(
(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1
) 1

1
m
|(ξ0,ξ)|+〈a(λ)ξ,ξ〉+

1
m

(ωm)dt̂dx̂dλdy

=

∫
Rd

+×Rd+1

ρhm
d∑
s=1

(
σjs(λ)∂xjϕm

)
×

×

A
ψ(

(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉+1
)

d∑
k=1

σsk(λ)ξk

1
m
|ξ|+〈a(λ)ξ,ξ〉+ 1

m

(ωm)

 dt̂dx̂dλdy

Using (32), we see that it holds

d∑
k=1

σsk(λ)ξk

1
m |(ξ0, ξ)|+ 〈a(λ)ξ, ξ〉+ 1

m

=

d∑
k=1

σsk(λ)ξk

1
m |(ξ0, ξ)|+

d∑
s=1

(
d∑
k=1

σsk(λ)ξk)2 + 1
m

,

which, together with the Marcinkiwicz multiplier theorem (Theorem 3) readily
implies that for any fixed λ∥∥∥ 1√

m
A
ψ(

(ξ0,ξ)

|(ξ0,ξ)|+m〈a(λ)ξ,ξ〉
)

d∑
k=1

σsk(λ)ξk

1
m
|(ξ0,ξ)|+〈a(λ)ξ,ξ〉+

1
m

∥∥∥
Lp→Lp

≤ C(p)‖ψ‖Cd([−1,1]d+1), p > 1,

(41)
where C(p) is a constant depending on p (but it is independent of m). Next, notice
that for β > 2/(d+ 1) we have

√
mσjs(λ)∂xjϕm → 0 in Lr(Rd

+) (42)

for r large enough.
From (41) and (42), we conclude that term (36) tends to zero as m→∞.
In the completely same way, we conclude that term (37) tends to zero.
Let us now consider term (38). Remark first that it holds for any symbol ψ

depending on λ

∂λAψ(ωm) = A∂λψ(ωm).
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Now, it is a moment to choose (ωm). We take for a bounded function ω

ωm(t,x,y) = ϕm(t,x)ω(
t

m
,y +

x

m
).

It holds by the definition of the Fourier multiplier operators (below, (τ, z) ∈ R×Rd)

Aψ
(
ϕ
( ·
md/(d+1)

)
ω

(
(·,y + ·)

m

))
(md/(d+1)τ,md/(d+1)z) (43)

=

∫
e2πimd/(d+1) (τ,z)·(ξ0,ξ)ψ(ξ0, ξ)×

×
∫
e−2πi(t,x)·(ξ0,ξ)ϕ(

(t,x)

md/(d+1)
)ω(

t

m
,

x

m
+ y)dtdxdξ0dξ

=
(
md/(d+1)(ξ0, ξ) = (ξ̃0, ξ̃)

)
=

∫
1

md
e2πi(τ,z)·(ξ̃0,ξ̃)ψ

(
(ξ̃0, ξ̃)

md/(d+1)

)
×

×
∫
e
−2πi

(t,x)

md/(d+1)
·(ξ̃0,ξ̃)

ϕ

(
t

md/(d+1)
,

x

md/(d+1)

)
ω(

t

m
,

x

m
+ y)dtdxdξ̃0dξ̃

=
( (t,x)

md/(d+1)
= (t̃, x̃)

)
=

∫
e2πi(τ,z)·(ξ̃0,ξ̃)ψ

(
(ξ̃0, ξ̃)

md/(d+1)

)
×

×
∫
e−2πi(t̃,x̃)·(ξ̃0,ξ̃)ϕ(t̃, x̃)ω(

t̃

m1/(d+1)
,y +

x̃

m1/(d+1)
)dt̃dx̃dξ̃0dξ̃

= Aψ(·/md/(d+1))(ϕ(·, ·)ω(·/m1/(d+1),y + ·/m1/(d+1)))(τ, z).

Therefore, introducing the change of variables

(τ, z) =
(t̂, x̂)

m2β/(d+1)

in (38) we get

1

m2

∫
Rd

+×Rd+1

ϕm∂λvm(t̂, x̂, λ,y)dγm(t̂, x̂,y, λ) (44)

=
1

m2

∫
Rd

+×Rd+1

ϕ(τ, z)∂λ(ρ(λ,y)×

×Aψm(λ,ξ)

(
ϕw(

·
m1/(d+1)

,
·

m1/(d+1)
+ y)

)
(τ, z))dλdγ̃m(τ, z, λ,y),

where

ψm = ψ

(
(ξ0, ξ)

|(ξ0, ξ)|+m1/(d+1)〈aξ, ξ〉+ 1

)
m2− 1

d+1

|(ξ0, ξ)|+m−1/(d+1)〈aξ, ξ〉+ 1

and∫
φ(τ, z,y, λ)dγ̃m =

∫
R1+d

+ ×Rd+1

mφ(m1/(d+1)t,m1/(d+1)(x−y), λ,y)dydγ(t,x, λ).
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Let us first prove that

1

m1/(d+1)
γ̃m → 0 in Mloc(R

d
+ ×Rd+1). (45)

To this end, denote by Br = {|x| ≤ r; x ∈ Rd} the ball centred at zero with the
diameter r > 0 in the L∞-norm. Denote by κ(t,x) the indicator function of the set
(0, r) × B(0, r) and take φ ∈ Cc(Rd+1) arbitrary supported in BL × [−L,L]. We
have

1

m1/(d+1)

∫
(0,r)×Br×Rd+1

φ(λ,y)dγ̃m

=
1

m1/(d+1)

∫
Rd+×Rd+1

mφ(λ,y)κ(m1/(d+1)t,m1/(d+1)(x− y))dydγ(t,x, λ).

Introducing the change of variables, τ = m1/(d+1)t, z = m1/(d+1)(x− y). We get:

1

m1/(d+1)

∫
(0,r)×Br×Rd+1

φ(λ,y)dγ̃m

=
1

m1/(d+1)

∫
Rd

+

∫
Rd+1

κ(τ, z)φ(λ,y)dydγ(
t

m1/(d+1)
,

x

m1/(d+1)
, λ)→ 0, m→ 0,

which proves (45). Remark that the change of variables used here, since it is linear,
applies also on measures (i.e. we can consider it as a function γ = γ(t,x, λ)dtdxdλ).

Next, using the Marcinkiewicz multiplier theorem (Theorem 3), we see that
ψm

m
2− 1

d+1
and ∂λψm

m
2− 1

d+1
define for every fixed λ ∈ R the continuous multiplier operators

A ψm

m
2− 1

d+1

=
1

m2− 1
d+1

Aψm : Lp(Rd
+)→W 1,p(Rd)

A ∂λψm

m
2− 1

d+1

=
1

m2− 1
d+1

A∂λψm : Lp(Rd
+)→W 1,p(Rd),

(46)

where p > 1 is arbitrary. From here and the Sobolev embedding theorems, we
conclude that

∂λ(ρ(λ,y)Aψm(ϕω(
τ

m1/(d+1)
,y +

z

m1/(d+1)
)))

remains bounded in Lp(Rd+1;C(Rd
+)), p > 1 is arbitrary. Therefore, from here,

(44) and (45), we conclude that (38) also tends to zero as m→∞.
From the previous considerations, we conclude that after taking limit as m→∞

in (33)–(38), we reach to

∫
Rd+1×Rd+1

ψ(ξ)ρ(y, λ)

(
(

ξ0
|(ξ0, ξ)|+ 1

+

d∑
k=1

Fk(λ)
ξ0

|(ξ0, ξ)|+ 1
)χΛ0(ξ)

+ χΛ0(ξ)

)
dµ̃(y, λ, ξ0, ξ) = 0.

From here, using Lemma 7 and having in mind conditions (19), we conclude that
the defect measure µ̃ is zero and therefore µ ≡ 0 as well. Inserting ψ ≡ 1 in (3) we
obtain

lim
m→∞

∫
Rd

+×Rd+1

ρ(λ,y)um(t̂, x̂,y, λ)ωm(t̂, x̂)dt̂dx̂dydλ = 0. (47)
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Now, we choose in (47)

ωm(t̂, x̂) = ϕm(t̂, x̂)ω(
t̂

m
,

x̂

m
+ y)

=

∫
R

ρ(y, λ)ϕm(t̂, x̂)
(
hm(t̂, x̂,y, λ)− h0(y, λ)

)
dλ ⇀ 0 in L∞(Rd

+ ×Rd+1).

If we recall that hm(t̂, x̂, λ) = h( t̂m ,y + x̂
m , λ) and introduce the change of variables

( t̂
md/(d+1) ,

x̂
md/(d+1) ) = (τ, z) in (47), we get:∫

Rd
+×Rd

ϕ2(τ, z)

(∫
R

ρ(λ,y)(h(
τ

m1/(d+1)
,y +

z

m1/(d+1)
, λ)−h0(y, λ))dλ

)2

dτdzdy→ 0

as m→ 0. The proof is concluded. 2

Now, we have the proof of the main theorem.
Proof of Theorem 12 The proof directly follows from Theorem 15 and Propo-

sition 14. 2
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