
VELOCITY AVERAGING FOR DIFFUSIVE TRANSPORT EQUATIONS

WITH DISCONTINUOUS FLUX
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Abstract. We consider a diffusive transport equation with discontinuous flux and prove the
velocity averaging result under non-degeneracy conditions. In order to achieve the result,

we introduce a new variant of micro-local defect functionals which are able to “recognise”

changes of the type of the equation. As a corollary, we show the existence of a solution for the
Cauchy problem for nonlinear degenerate parabolic equation with discontinuous flux. We also

show existence of strong traces at t = 0 for so-called quasi-solutions to degenerate parabolic

equations under non-degeneracy conditions on the diffusion term.

1. Introduction

In [44, Theorem C] a result on velocity averaging for diffusive transport equations has been
stated, but the proof of the theorem cannot be found neither in that paper or in later contribu-
tions (we shall provide a more detailed insight later in the introduction). The aim of the paper
is to precisely proof [44, Theorem C] in the Lq-setting, q > 2, and to generalise the result on
equations with discontinuous coefficients.

To be more precise, we aim to prove a velocity averaging result for a diffusive transport
equation with discontinuous flux meaning that for the sequence (un) of solutions to the sequence
of equations of the form

divx

(
f(x, λ)un(x, λ)

)
= divx

(
divx (a(λ)un(x, λ))

)
+ ∂λGn(x, λ) + divxPn(x, λ) in D′(Rd+1) ,

(1)

for every ρ ∈ C1
c(R), the sequence

(∫
R ρ(λ)un(x, λ) dλ

)
is strongly precompact in L1

loc(Rd) (i.e.

it lies in a compact subset of L1
loc(Rd)).

Equation (1) has two main components. The transport part

divx(f(x, λ)un(x, λ))

and the diffusive part

divx

(
divx (a(λ)un(x, λ))

)
= divx

(
a(λ)∇xun(x, λ)

)
,

where un(x, λ) is unknown, a(λ) ∈ Rd×d is the diffusion matrix, f(x, λ) is the flux, x ∈ Rd is
the space (and time) variable and λ is called the velocity variable, but it can be considered as
a parameter. For the sake of generality, and simplicity of the exposition, we compressed the
space-time variable into a single variable x, while still our main intention is to study evolution
equations (see Remark 6). In the literature, velocity variable λ is often denoted by v. The
form of the remaining source terms in (1) is motivated by the kinetic formulation for degenerate
parabolic equations, as can be seen in Section 5 and Section 6.
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The transport component divx(f(x, λ)un(x, λ)) is a generalisation of the usual kinetic trans-
port term 〈v | ∇xh(x, v)〉, i.e. the equation

∂th+ 〈v | ∇xh〉 = divx∂
κ
v g, (t,x) ∈ (0,∞)× Rd, v ∈ Rd, g ∈ L2(Rd × Rd) , κ ∈ Nd ,

for which the velocity averaging results was proved in [1]. Independently of [1], the corresponding
results were discovered in [33] and further extended in [32]. The mentioned results were given
in the L2-setting. In [21], one can find the first Lp, p > 1, velocity averaging result obtained
using the approach of multiplier operators (see e.g. [34]). The optimal result in the sense of the
Lp-integrability of (un) has been achieved in [11, 51], while an L2 velocity averaging result for
pseudo-differential operators can be found in [27].

Such a type of result appeared to be very useful and it was a substantial part of the proof
of existence of the weak solution to the Boltzmann equation [20] as well as the regularity of
admissible solutions to scalar conservation laws [44]. In [44], one can also find the first result
concerning the velocity averaging for the transport equations with the flux of the form f = f(λ),
f ∈ C(R;Rd), under the non-degeneracy conditions which essentially mean that for any ξ ∈
Rd \ {0}, the mapping

λ 7→ 〈f(λ) | ξ〉 (2)

is possibly zero only on a negligible set.
As for the non-hyperbolic situation (a 6= 0), the velocity averaging results for ultra-parabolic

equations are proven in [40], while for the degenerate parabolic equations, i.e. the ones in which
a changes rank for different λ, by our best knowledge, the only results can be found in [29, 44, 55]
for the homogeneous flux f and diffusion matrix a (i.e. both independent of x) in the Lp-settig
for any p > 1. Let us note here again that in [44] details of the proof are not provided (see [44,
Theorem C]) since the authors conjectured that the proof could be accomplished by following the
method from [32]. However, such a method is actually applied in [55] and the authors needed an
additional assumption (see [55, (2.20)]) to finalise the arguments (see more precise explanation
below).

Let us now briefly explain a main idea of the technique from [29, 44, 55]. Since both flux
and diffusion matrix are independent of x, this enables a separation of coefficients and unknown
functions by means of the Fourier transform. Indeed, if f is independent of x, by applying the
Fourier transform to (1) with respect to x one sees that

ûn(ξ, λ) =
σ2|ξ|2ûn + i〈P̂n | ξ〉+ ∂λĜn
σ2|ξ|2 + i〈f | ξ〉+ 2π〈a ξ | ξ〉

, (3)

where we denoted by ξ the dual variable (the definition of the Fourier transform used here can
found in Notation below). In the case when a ≡ 0, informally speaking, from (3):

• by controlling the term ûn on the right-hand side of the latter expression by the constant
σ;

• by integrating by parts with respect to λ to remove the derivative from the functions
Ĝn;

• by employing the non-degeneracy conditions (2);

one can draw appropriate conclusions on the sequence (un).
The generalisation on the situation when a 6= 0 is not straightforward. First we need to

assume that

(∀ξ ∈ Rd \ {0}) meas
{
λ ∈ K ⊂⊂ R : 〈f(λ) | ξ〉 = 〈a(λ)ξ | ξ〉 = 0

}
= 0 , (4)

which are the non-degeneracy conditions corresponding to (1) (with the flux independent of x).
However, since the integration by parts with respect to λ (which is the second step in the

procedure above) affects the non-negativity of the matrix a, it seems that additional assumptions
on a are needed in order to conclude about the strong compactness of the velocity averages.
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In particular, such a result can be found in [55], which is aimed to the regularity properties
of the velocity averages (more precisely, Ws,r-regularity, s > 0, r ≥ 1). In the essence of the
proofs is the method described above (separation of the solution u from coefficients) together
with the so-called truncation property [55, Definition 2.1] (see [55, Lemma 2.3]) under a variant
of assumption (4) and an assumption on behavior of the λ-derivative of the symbol L(ξ, λ) =
i〈f(λ) | ξ〉 + 2π〈a(λ)ξ | ξ〉 of equation (1) on layers in ξ-space defined by the Littlewood–Palley
decomposition. In [29], the results are repeated in the stochastic setting.

We also mention results from [28, 30] where one can find velocity averaging results for degen-
erate parabolic equations obtained as a kinetic reformulation of the porous media equation.

Before stating our main result, let us first fix the notation used in the paper.

Notation. Throughout the paper we denote by 〈· | ·〉 the complex Euclidean scalar product on
Cd, which we take to be antilinear in the second argument. However, in our situations we shall
mainly work on Rd. By |· | we denote the corresponding norm of vectors, while the same notation
is used for the 2-norm for matrices. For a matrix A, by AT we denote its transpose. For the
complex conjugate of a complex number z we use z̄.

By x = (x1, x2, . . . , xd) we write points (vectors) in Rd, while by ξ = (ξ1, ξ2, . . . , ξd) we denote
the dual variables in the sense of the Fourier transform (if t occurs, then we use τ for the dual
variable). The Fourier transform we define by û(ξ) = Fu(ξ) =

∫
Rd e

−2πi〈ξ |x〉u(x) dx, and its

inverse by (u)∨(x) = F̄u(x) =
∫
Rd e

2πi〈ξ |x〉u(ξ) dx, while the Fourier multiplier operator by

Aψu = (ψû)∨. If Aψ is bounded on Lp(Rd) we call it the Lp-Fourier multiplier operator and ψ
the Lp-Fourier multiplier. We will often have that ψ depends (besides ξ) on λ which is always
considered as a parameter.

For a Lebesgue measurable subset A ⊆ Rd we denote by ClA, cA, meas(A) and χA the closure
of A, the complement of A, the Lebesgue measure of A, and the characteristic function over A,
respectively. The open (closed) ball in Rd centered at point x with radius r > 0 we will denote
by B(x, r) (B[x, r]), the unit sphere in Rd by Sd−1, and in Section 5 we will use the shorthand

Rd+1
+ := R+ × Rd. The signum function is denoted by sgn.

For a multi-index α = (α1, α2, . . . , αd) ∈ Nd0 we denote by |α| = α1 +α2 + · · ·+αd its length
and by ∂α = ∂α1

x1
∂α2
x2
· · · ∂αdxd partial derivatives.

By Lploc(Ω), Ω ⊆ Rd open and p ∈ [1,∞], we denote the Fréchet space of functions that are
contained in Lp(Ω′) for any compactly contained set Ω′ in Ω (Ω′ ⊂⊂ Ω), and analogously for
Sobolev spaces Ws,p

loc(Ω), s ∈ R, p ∈ [1,∞]. Cc(X) stands for the space of compactly supported
continuous functions on a locally compact space X. If X is compact then Cc(X) = C(X). For
the space of Lipschitz functions we use C0,1(X). Any dual product is denoted by 〈·, ·〉, which we
take to be linear in both arguments. L(X) stands for the space of bounded linear operators on
a normed space X.

When applicable, functions defined on a subset of Rd shall often be identified by their exten-
sions by zero to the whole space.

In order to introduce the main results of the paper, we need the following assumptions on
(un) and the coefficients appearing in (1):

Assumptions

a) (un) is uniformly compactly supported on open Ω× S ⊂⊂ Rdx × Rλ, d ≥ 2, and weakly
(weakly-? for q =∞) converges to zero in Lq(Rd × R) for some q ∈ (2,∞];

b) a = σTσ, where σ ∈ C0,1(S;Rd×d);
c) f ∈ Lp(Ω × S;Rd) for some p > q

q−1 (p > 1 if q = ∞), and for any compact K ⊆ S it

holds

ess sup
x∈Ω

sup
ξ∈Sd−1

meas
{
λ ∈ K : 〈f(x, λ) | ξ〉 = 〈a(λ)ξ | ξ〉 = 0

}
= 0 ; (5)

d) Gn → 0 strongly in Lr0loc(Rλ; W
−1/2,r0
loc (Rdx)) for some r0 ∈ (1,∞);
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e) Pn = (Pn1 , . . . , P
n
d )→ 0 strongly in Lp0

loc(Rdx × Rλ;Rd) for some p0 ∈ (1,∞).

Our main result is the following velocity averaging result for (1).

Theorem 1. Let d ≥ 2 and let (un) satisfies (a) and the sequence of equations (1) whose
coefficients satisfy conditions (b)–(e).

Then there exists a subsequence (un′) such that for any ρ ∈ Cc(S),∫
S

ρ(λ)un′(x, λ) dλ −→ 0 strongly in L1
loc(Rd) . (6)

The theorem above generalises the compactness results of [44, 55] to the case of the flux dis-
continuous with respect to the space variable, while the diffusion matrix remains homogeneous,
i.e. dependent only on λ. Moreover, the non-degeneracy condition (5) can be seen as a natural
generalisation of (4) to the heterogeneous setting. The heterogeneity prevents us of using the
above explaind method based on the Fourier transform, thus in our proof we follow the approach
of [26, 40], which is elaborated below. However, we are not able to obtain the result for (un)
bounded in Lp if p ≤ 2, as achieved in [44, 55].

Assumption (b) from the above, on the diffusion matrix a, can be relaxed (see Remark 23),
and the proofs remain essentially the same. The following corollary holds.

Corollary 2. Assume that (a), (c), (d), (e) from the above are satisfied, and

b̃) the mapping λ 7→ a(λ) = σT (λ)σ(λ) ∈ Rd×d is such that for almost every λ0 ∈ S ⊂⊂ R
there exists ε > 0 such that σ ∈ C0,1((λ0 − ε, λ0 + ε);Rd×d).

Then (6) holds.

Moreover, under stronger assumptions on (Gn) we have the following result.

Corollary 3. If we replace (b) and (d) by

b’) a ∈ C0,1(S;Rd×d) is such that, for every λ ∈ S, a(λ) is a symmetric and positive semi-
definite matrix;

d’) Gn → 0 strongly in Lr0loc(Rdx × Rλ) for some r0 ∈ (1,∞);

the statement of Theorem 1 still holds.

Compering the result of Corollary 2, when applied to the homogeneous setting (f = f(λ)), to
[44, Theorem C], one can see that the former does not reveal completely the latter, where only

smoothness and positive semi-definiteness of a is required, i.e. (b’) instead of (b̃). Nevertheless,

conditions (b) and (b̃) still cover many interesting cases of the degenerate diffusion effects. Let
us illustrate this on the following example.

Example 4. a) It is clear that all matrix functions of the form a(λ) = Q(λ)TΛ(λ)Q(λ)
satisfy condition (b), where, for any λ ∈ S, Q(λ) is orthogonal and Λ(λ) is positive-

definite and diagonal, and Q,
√

Λ ∈ C0,1(S;Rd×d). Indeed, in this case we can take

σ(λ) =
√

Λ(λ)Q(λ).
For instance,

a(λ) =

(
1√

λ2 + 1

[
λ 1
1 −λ

])[
0 0
0 λ2 + 1

](
1√

λ2 + 1

[
λ 1
1 −λ

])
=

[
1 −λ
−λ λ2

]
, (7)

is of the above form. Therefore, situations where the kernel of a(λ) depends on λ are
allowed, which overcomes the results of [40, 49] for ultra-parabolic equations.

b) Assumption (b) trivially implies (b’), while

a(λ) =

(
0 0
0 |λ|

)
(8)
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is a simple example which illustrates that the converse does not hold. Indeed, a satisfies

(b’), but

(
0 0

0
√
|λ|

)
is not Lipschitz continuous around zero, which implies that a matrix

σ such that condition (b) is satisfied does not exist.
Since this matrix is singular on the set of zero Lebesgue measure, we can apply Corol-

lary 2 and still obtain the result. However, one can easily generalise (8) to the case
where the singular set of

√
a is of positive measure. For example, take a Cantor set C

on [0, 1] of a non-zero measure (so-called fat Cantor set) and on each connected com-

ponent (α, β) of [0, 1] \ C define g(λ) = β−α
2 − |λ − α+β

2 | (another possibility could be
g(λ) = (β − λ)(λ− α)). Then (

0 0
0 g(λ)

)
(9)

satisfies (b’), but does not satisfy neither (b) nor (b̃). Thus, for this matrix only Corollary
3 is applicable among our results.

Remark 5. In Example 4(a) we have seen that smoothness of eigenvectors of a(λ) (i.e. smoothness
of Q(λ)) could help in fulfilling condition (b). Let us recall some known results in this direction
([38, II.6.1-3]):

(1) If a(λ) is symmetric and analytic then both eigenvectors and eigenvalues are analytic
functions;

(2) If a(λ) is symmetric and C1, then eigenvalues are C1-functions, while eigenvectors need
not to be even continuous.

Of course, not even item (1), with addition of positive semi-definiteness, is sufficient to ensure
(b) since we require, in principle, Lipschitz continuity of

√
a.

Remark 6. Since we are particularly interested in the parabolic case, we refer to (1) as a degen-
erate parabolic equation with discontinuous flux, although it is not necessarily of the parabolic
type. More precisely, in the application to the Cauchy problem for nonlinear degenerate para-

bolic equation with discontinuous flux (see Section 5) we shall have f(t,x, λ) =

[
1

f̃(t,x, λ)

]
and

a(λ) =

[
0 0
0 ã(λ)

]
. In order to have that a and f satisfy assumptions (b) and (c) it is sufficient

to have f̃ ∈ Lp(Ωt,x × S;Rd), ã = σ̃T σ̃, where σ̃ ∈ C0,1(S;Rd×d), and for any K ⊂⊂ S

ess sup
(t,x)∈Ω

sup
(τ,ξ)∈Sd

meas
{
λ ∈ K : τ + 〈f̃(t,x, λ) | ξ〉 = 〈ã(λ)ξ | ξ〉 = 0

}
= 0 .

We shall now briefly explain principles of our approach.
Since we cannot separate the unknown function un from the coefficients in (1), here we

use variants of micro-local defect measures (or H-measures) introduced in now seminal papers
by P. Gerard [26] and L. Tartar [56]. Besides the velocity averaging results [26, 40], the H-
measures and similar tools found applications on existence of traces and solutions to nonlinear
evolution equations [3, 36, 47], generalisation of compensated compactness results to equations
with variable coefficients [26, 56], applications in the control theory [19, 43], explicit formulae
and bounds in homogenisation [6, 57], etc.

Moreover, it initiated variety of different generalisations to the original micro-local defect
measures which we call here micro-local defect functionals. We mention parabolic and ultra-
parabolic variants of the H-measures [7, 50], H-measures as duals of Bochner spaces [40], H-
distributions [5, 9, 41, 45], micro-local compactness forms [52], one-scale H-measures [4, 58]
etc.

Let us recall the first variant of H-measures [56] (introduced at the same time as the micro-
local defect measures [26]).
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Theorem 7. If (un) is a sequence in L2
loc(Ω;Rr), Ω ⊆ Rd, such that un ⇀ 0 in L2

loc(Ω;Rr), then
there exist a subsequence (un′) ⊂ (un) and a positive complex Radon measure µ = {µjk}j,k=1,...,r

on Ω× Sd−1 such that for any ϕ1, ϕ2 ∈ Cc(Ω) and ψ ∈ C(Sd−1) it holds

lim
n′→∞

∫
Ω

(ϕ1u
j
n′)(x)Aψ̄( ·|·| )

(ϕ2ukn′)(x) dx = 〈µjk, ϕ1ϕ̄2ψ〉

=

∫
Ω×Sd−1

ϕ1(x)ϕ2(x)ψ(ξ)dµjk(x, ξ) ,

where Aψ̄( ·|·| )
is the Fourier multiplier operator with the symbol ψ̄(ξ/|ξ|).

The measure µ is called the H-measures and, with respect to the dual variable ξ, it is defined
on the sphere (since ξ/|ξ| ∈ Sd−1).

It has been proved (see [6]) that applying H-measures on differential relations where the ratio
of the highest orders of derivatives in each variable is not the same might lead to unsatisfactory
results. This is due to the projection ξ 7→ ξ/|ξ|, since scalings in all variables are the same.

We can change the scaling and put, for example, ξ
|(ξ1,...,ξk)|+|(ξk+1,...,ξd)|2 instead of ξ/|ξ|, but

such H-measure will be able to see e.g. first order derivatives with respect to (x1, . . . , xk) and
second order derivatives with respect to (xk+1, . . . , xd) (for a parabolic variant, see [7]). In other
words, no change of the highest order of the equation is permitted. For instance, this means that
the matrix a(λ) in equation (1) must have the rank and the kernel (locally) independent of λ
(see also [50]) otherwise, we cannot use the existing theory of the micro-local defect functionals
(except in special situations [36]).

This represents a significant confinement since many challenging mathematical questions,
especially from a view-point of modeling, involve equations that change type. In particular, we
have in mind degenerate parabolic equations which describe wide range of phenomena containing
the combined effects of nonlinear convection and degenerate diffusion and which have the form

∂tu+ divxf(t,x, u) = D2
x ·A(u) , (10)

where the matrix A is such that the mapping R 3 λ 7→ 〈A(λ)ξ | ξ〉 is non-decreasing, i.e. that the
diffusion matrix A′(λ) is merely non-negative definite. To this end, let us mention [24], where
one of the first results on the case of degenerate parabolic equations was given (to be more
precise, an ultra-parabolic equation was considered there).

Let us remark that in the case when the coefficients in (10) are regular, the theory of exis-
tence and uniqueness for appropriate Cauchy problems is well-established (see e.g. [17, 18, 31]).
Nevertheless, concrete applications such as flow in porous media very often occur in highly het-
erogeneous environment causing rather rough coefficients in (10) (e.g. during CO2 sequestration
process [46]). Furthermore, even in a simplified situation in which the diffusion is neglected
such as a road traffic with variable number of lanes [12], the Buckley-Leverett equation in a
layered porous medium [2, 37], and sedimentation applications [14, 13, 22, 23], the flux is as a
rule discontinuous.

However, due to obvious technical obstacles, most of the previous literature was dedicated ei-
ther to homogeneous degenerate parabolic equations or to equations where the flux and diffusion
are regular functions (e.g. [10, 15, 16, 17, 60]). We mention here [36] where (10) was considered
with the flux f(t,x, λ) (merely) continuous with respect to λ and belonging to Lp, p > 2, with
respect to x ∈ Rd. Here, we are able to improve the result by relaxing the assumption of p to
p > 1. More precise explanation can be found in Section 5.

A similar situation is regarding existence of traces. The trace of a function u at t = 0 is a
function u0 ∈ L1

loc(Rd) such that

u(t, ·)→ u0(·) as t→ 0 in L1
loc(Rd) .
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One can find several results in the hyperbolic setting [47, 48, 59] while we have no results for
degenerate parabolic equations of form (44). Special situations were considered in [3, 39]. In [39],
one has the scalar diffusion matrix a(λ) = ã(λ)I where I is the unitary matrix and ã ∈ C1(R)
is a non-negative function. In [3], we considered the situation with ultra-parabolic matrices. In
both cases, assumptions were imposed so that the essential problem of λ–changing degeneracy
directions does not appear. To be more descriptive, we note that the matrix a given in Example
4 is not covered by the results from [3, 39]. In the current contribution we shall thus provide the
first result regarding existence of strong traces in the case when the diffusion matrix degenerates
in directions which depend on λ. Moreover, we allow that the flux depends explicitly on x and
it can even be discontinuous.

As we shall see, our tool is robust enough to capture cases of quite rough fluxes and degenerate
diffusion at the same time (see Theorem 28).

We overcome this situation by considering multiplier operators with symbols of the form

ψ

(
ξ

|ξ|+ 〈a(λ)ξ | ξ〉

)
, ψ ∈ C(Rd) , (11)

where the matrix a represents the diffusion matrix in the degenerate parabolic equation (1).

The paper is organised as follows.
In Section 2 we study symbols of the form (11), which shall be often used for the Fourier

multiplier operators, and show two important results concerning their continuity (see Lemma
9), while Section 3 is devoted to the construction of adaptive micro-local defect functionals.

In Section 4, we use the results of sections 2 and 3 to prove the main result of the paper,
Theorem 1.

In Section 5, as an application of the velocity averaging result, we show existence of a weak
solution to the Cauchy problem of the degenerate advection-diffusion equation with discontinuous
flux. The strategy of the proof is to reduce the degenerate parabolic equation (10) to its kinetic
counterpart of the form (below, f = ∂λf and a = A′):

∂th(t,x, λ) + divx(f(t,x, λ)h(t,x, λ))

= divx

(
divx (a(λ)h(t,x, λ))

)
+ ∂λG(t,x, λ) + divP (t,x, λ) ,

and then to use the velocity averaging results.
In Section 6, we provide another application of the velocity averaging result by proving that

any bounded quasi-solution to (44) (see Definition 25) admits the strong trace at t = 0 under
the non-degeneracy condition:

sup
ξ∈Sd−1

meas
{
λ ∈ K : 〈a(λ)ξ | ξ〉 = 0

}
= 0 . (12)

2. Results on Fourier integral operators

Let a : S → Rd×d, S ⊆ R, be a Borel measurable matrix function such that for a.e. λ ∈ S
matrix a(λ) is symmetric and positive semi-definite, i.e. a(λ)T = a(λ) and 〈a(λ)ξ | ξ〉 ≥ 0,
ξ ∈ Rd. Further on, we define

πP (ξ, λ) :=
ξ

|ξ|+ 〈a(λ)ξ | ξ〉
, (ξ, λ) ∈ Rd\{0} × S . (13)

As a(λ) is positive semi-definite, we have πP (Rd\{0}× S) ⊆ B[0, 1] \ {0}, where B[0, 1] denotes
the unit closed ball in Rd. Moreover, it is not difficult to show that (for a.e. λ ∈ S)

Cl πP (Rd\{0}, λ) =

{
Sd−1 : a(λ) = 0
B[0, 1] : a(λ) 6= 0

, (14)

where ClA denotes the closure of A ⊆ Rd.
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If a(λ) = 0, πP (·, λ) is the projection of Rd \{0} to the unit sphere along the rays through the
origin. In general πP (·, λ) is not a projection since a(λ) 6= 0 implies πP (πP (·, λ), λ) 6= πP (·, λ).
However, for simplicity, in the text we shall often address πP as a projection.

In this paper, we are interested in symbols of Fourier multipliers of the form

ξ 7→ ψ̄(πP (ξ, λ), λ) ,

where λ ∈ S is fixed, ψ ∈ L∞(S; C(B[0, 1])), and πP is as above. Here z̄ denotes the complex
conjugate of complex number z.

Of course, ψ ∈ L∞(S; C(B[0, 1])) is sufficient to have that the Fourier multiplier operator is
bounded on L2(Rd), with the norm independent on λ. However, we shall need such a result on an
arbitrary Lp, for which we need some additional regularity of ψ with respect to ξ. More precisely,
we shall first obtain that for a.e. λ and for any p ∈ (1,∞) operator Aψ̄(πP (·,λ),λ) is bounded on

Lp(Rd), with the norm independent of λ (Lemma 9). Finally, we show that commutators of the
Fourier multiplier operators and operators of multiplication map weakly converging sequences
to strongly converging in a certain sense (Corollary 15).

In order to prove the Lp boundedness, we use the following corollary of the Marcinkiewicz
multiplier theorem [34, Corollary 5.2.5]:

Theorem 8. Suppose that ψ ∈ Cd(Rd \ ∪dj=1{ξj = 0}) is a bounded function such that for some
constant C > 0 it holds

|ξα∂αψ(ξ)| ≤ C, ξ ∈ Rd\ ∪dj=1 {ξj = 0} (15)

for every multi-index α = (α1, . . . , αd) ∈ Nd0 such that |α| = α1 + α2 + · · · + αd ≤ d. Then ψ
is an Lp-multiplier for any p ∈ (1,∞), and the operator norm of Aψ equals Cd,pC, where Cd,p
depends only on p and d.

Before proceeding with the verification of the assumptions of the previous theorem, let us
recall some well known results from matrix analysis and at the same time fix our notations.

As a(λ) is a non-negative definite symmetric matrix of order d, there exist orthogonal ma-
trix Q(λ) and diagonal matrix Λ(λ) = diag(κ1(λ), κ2(λ), . . . , κd(λ)), containing (non-negative)
eigenvalues of a(λ), such that the following eigendecomposition holds:

a(λ) = Q(λ)TΛ(λ)Q(λ) . (16)

Furthermore, for σ(λ) :=
√

Λ(λ)Q(λ), where
√

Λ(λ) = diag(
√
κ1(λ),

√
κ2(λ), . . . ,

√
κd(λ)), we

thus have

a(λ) = σ(λ)Tσ(λ) . (17)

On the other hand, if (17) holds for a given by (16), then σ is necessarily of the form

σ(λ) = Q̃(λ)
√

Λ(λ)Q(λ) , (18)

where Q̃(λ) is an ortogonal matrix.
It is important to notice that

πP
(
Q(λ)T ξ, λ

)
=

Q(λ)T ξ

|Q(λ)T ξ|+ 〈Q(λ)a(λ)Q(λ)T ξ | ξ〉
=

Q(λ)T ξ

|ξ|+
∑d
j=1 κj(λ)ξ2

j

,

where we have used that Q(λ)T preserves the length of vectors. Hence, with the orthogonal
change of variables we will manage to reduce the problem to the case of diagonal matrix a.

Lemma 9. Let a : S → Rd×d, S ⊆ R open, be a Borel measurable matrix function such that for
a.e. λ ∈ S matrix a(λ) is symmetric and positive semi-definite, and let ψ ∈ L∞(S; Cd(B[0, 1])).

Then for a.e. λ ∈ S and any p ∈ (1,∞), function ψ̄(πP (·, λ), λ), where πP is given by (13),
is an Lp-Fourier multiplier and the Lp-norm of the corresponding Fourier multiplier operator is
independent of λ.
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Proof: Since the space of Lp-Fourier multipliers is invariant under orthogonal change of vari-
ables [34, Proposition 2.5.14] (see also Lemma 12 below) and the corresponding norms co-
incide, applying ξ 7→ Q(λ)T ξ, where Q(λ) is given in (16), it is sufficient to study ξ 7→
ψ
(
πP (Q(λ)T ·, λ), λ

)
. We shall apply the Marcinkiewicz multiplier theorem (Theorem 8) on

this function.
Since πP (Rd\{0} × S) ⊆ B[0, 1], for all α ∈ Nd0, |α| ≤ d, functions

(ξ, λ) 7→ (∂αξ ψ̄)
(
πP (Q(λ)T ξ, λ), λ

)
are bounded on Rd\{0}×S. Therefore, by the generalised chain rule formula (known as the Faá
di Bruno formula; see e.g. [35]) it is enough to infer that (15) is satisfied for each component of
πP (Q(λ)T · , λ), with constant C independent of λ.

Furthermore, since the Riesz transform of order 1 satisfies (15), Q(λ) is orthogonal and(
πP (Q(λ)T ξ, λ)

)
j

=
(Q(λ)T ξ)j

|ξ|+ 〈Λ(λ)ξ | ξ〉
=

(Q(λ)T ξ)j
|ξ|

|ξ|
|ξ|+ 〈Λ(λ)ξ | ξ〉

,

by the Leibniz rule it is sufficient to check (15) for

ξ 7→ |ξ|
|ξ|+ 〈Λ(λ)ξ | ξ〉

.

The claim follows by Lemma 10 below. 2

The proof of the following lemma we leave for the Appendix.

Lemma 10. For any κ = (κ1, κ2, . . . , κd) ∈ [0,∞)d, m ∈ {1, 2, . . . , d}, s ∈ [0,∞), and p ∈
(1,∞), functions fs and gs, where f, g : Rd → R are given by

f(ξ) =
|ξ|

|ξ|+
d∑
j=1

κjξ2
j

and g(ξ) =
κmξ

2
m

|ξ|+
d∑
j=1

κjξ2
j

,

and s is the exponent, are Lp-Fourier multipliers and the norm of the corresponding Fourier
multiplier operators depends only on d, s and p, i.e. it is independent of κ. Moreover, fs and
gs satisfy the Marcinkiewicz condition (15) with constant C independent of κ.

Our next goal is to study the Fourier multiplier operator associated to the symbol ξ 7→
∂λ

1
|ξ|+〈a(λ)ξ | ξ〉 . For a smooth a we have

∂λ
1

|ξ|+ 〈a(λ)ξ | ξ〉
=

−〈a′(λ)ξ | ξ〉(
|ξ|+ 〈a(λ)ξ | ξ〉

)2 = ψ(πP (ξ, λ), λ) , (19)

where ψ(ξ, λ) = −〈a′(λ)ξ | ξ〉. Thus, by Lemma 9, the Fourier multiplier operator is Lp-bounded,
p ∈ (1,∞), uniformly in λ, if a′ exists (almost everywhere) and it is bounded. However, we need
that this operator has a smoothing property.

Let us additionally assume that σ given by (17) is Lipschitz continuous. Since

〈a(λ)ξ | ξ〉 = |σ(λ)ξ|2 =

d∑
j=1

(
σ(λ)ξ

)2
j
,

we have (for almost every λ ∈ S)

〈a′(λ)ξ | ξ〉 =
d

dλ
〈a(λ)ξ | ξ〉 = 2

d∑
j=1

(
σ(λ)ξ

)
j

(
σ′(λ)ξ

)
j
.
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Thus, symbol (19) can be rewritten as

−2

d∑
j=1

1√
|ξ|+ 〈a(λ)ξ | ξ〉

(
σ(λ)ξ

)
j√

|ξ|+ 〈a(λ)ξ | ξ〉

(
σ′(λ)ξ

)
j

|ξ|+ 〈a(λ)ξ | ξ〉
, (20)

and the term 1√
|ξ|+〈a(λ)ξ | ξ〉

will provide a smoothing property of the half derivative.

Lemma 11. In addition to the assumptions in Lemma 9, assume that there exists a Lipschitz
continuous matrix function σ : S → Rd×d such that (17) holds. Then, for a.e. λ ∈ S and any

p ∈ (1,∞) the operator A∂λ 1
|ξ|+〈a(λ)ξ | ξ〉

: Lp(Rd)→W
1
2 ,p(Rd) is bounded uniformly with respect

to λ ∈ S.

Proof: Since a is a Lipschitz map, a′ exists almost everywhere and it is bounded. Thus,
ξ 7→ −〈a′(λ)ξ | ξ〉 satisfies assumptions of Lemma 9, and by (19), for any p ∈ (1,∞), operator

A∂λ 1
|ξ|+〈a(λ)ξ | ξ〉

: Lp(Rd)→ Lp(Rd)

is uniformly bounded in λ.
To prove that A∂λ 1

|ξ|+〈a(λ)ξ | ξ〉
possesses a smoothing property, we need to prove that deriva-

tives (with respect to x) of the operator are Lp → Lp bounded uniformly in λ:

∂
1
2
xkA∂λ 1

|ξ|+〈a(λ)ξ | ξ〉
: Lp(Rd)→ Lp(Rd), k = 1, . . . , d . (21)

The symbol of the latter operator is

−(2πiξk)
1
2 〈a′(λ)ξ | ξ〉

(|ξ|+ 〈a(λ)ξ | ξ〉)2 ,

which by (20) can be rewritten as

2

d∑
j=1

−(2πiξk)
1
2√

|ξ|+ 〈a(λ)ξ | ξ〉

(
σ(λ)ξ

)
j√

|ξ|+ 〈a(λ)ξ | ξ〉

(
σ′(λ)ξ

)
j

|ξ|+ 〈a(λ)ξ | ξ〉
.

The space of Lp-Fourier multipliers is an algebra [34, Proposition 2.5.13], hence we can study
each factor separately.

Since σ′ is bounded, by Lemma 9 for a.e. λ ∈ S and any p ∈ (1,∞)

ξ 7→

(
σ′(λ)ξ

)
j

|ξ|+ 〈a(λ)ξ | ξ〉
is an Lp-multipliers with the norm independent of λ. The same holds for

ξ 7→ −(2πiξk)
1
2√

|ξ|+ 〈a(λ)ξ | ξ〉

by Lema 10 (applied on
√
f).

Furthermore, we have σ(λ) = Q̃(λ)
√

Λ(λ)Q(λ) (see (18)). Thus, as the space of Lp-Fourier
multipliers is invariant under orthogonal change of variables [34, Proposition 2.5.14] (see also
Lemma 12 below) and the corresponding norms coincide, applying ξ 7→ Q(λ)T ξ and using

|Q̃(λ)| = 1, it is left to study

ξ 7→
√
κj(λ)ξj√

|ξ|+
∑d
l=1 κl(λ)ξ2

l

.

Finally, by Lemma 10 above (applied on
√
g) we have that this mapping is an Lp multiplier with

the Lp-norm of the corresponding Fourier multiplier operator independent of functions κl, and

thus of λ. 2
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It is by now a classical result that if we have a symbol of an Lp-multiplier, then the composition
of the symbol with an orthogonal matrix is also a symbol of an Lp-multiplier with the same
operator norm (see Proposition 2.5.14 in [34]). Now we will show something very similar when
we have a regular change of variables. The result is well known but we include it here for
completeness.

Lemma 12. Let ψ ∈ L∞(Rd). If there exists a regular real constant matrix M and p ∈ (1,∞)
such that ψ(M−1·) is an Lp-multiplier, then ψ is also an Lp-multiplier and ‖Aψ‖L(Lp(Rd)) =
‖Aψ(M−1·)‖L(Lp(Rd)).

Proof: Let us denote by A := ‖Aψ(M−1·)‖L(Lp) the operator norm, and by J := |detM | > 0
the Jacobian.

Take ϕ ∈ C∞c (Rd) and for an arbitrary u ∈ C∞c (Rd), consider the following:

∫
Rd
ϕ(x)Aψ(u)(x) dx =

∫
Rd
ϕ̂(ξ)ψ(ξ)û(ξ) dξ

= J−1

∫
Rd
ϕ̂(M−1η)ψ(M−1η)û(M−1η) dη ,

where we have used Plancherel’s theorem in the first equality and the regular change of variables
η = Mξ in the second one. Furthermore, we have

ϕ̂(M−1η) =

∫
Rd
e−2πix·M−1ηϕ(x) dx =

∫
Rd
e−2πiM−Tx·ηϕ(x) dx

= J

∫
Rd
e−2πiy·ηϕ(MTy) dy = ϕ̂(MT ·)(η) J ,

where we have used the change of variables y = M−Tx in the third equality. After applying
Plancherel’s theorem once more, we get

∣∣∣∣∫
Rd
ϕ(x)Aψ(u)(x) dx

∣∣∣∣ = J−1

∣∣∣∣∫
Rd
ϕ̂(M−1η)ψ(M−1η)û(M−1η) dη

∣∣∣∣
= J

∣∣∣∣∫
Rd
ϕ̂(MT ·)(η)ψ(M−1η) ̂u(MT ·)(η) dη

∣∣∣∣
= J

∣∣∣∣∫
Rd
ϕ(MTy)Aψ(M−1·)(u(MT ·))(y) dy

∣∣∣∣
≤ JA‖ϕ(MT ·)‖Lp′ (Rd)‖u(MT ·)‖Lp(Rd)

≤ A‖ϕ‖Lp′ (Rd)‖u‖Lp(Rd) ,

where we have used the Hölder inequality (1/p+ 1/p′ = 1) and the boundedness of Aψ(M−1·) in

Lp(Rd), while the last inequality follows by the fact that the composition with MT scales the

Lp norm of the function by factor 1/ p
√
|detM |.

From here we conclude that Aψ(u) is a continuous linear functional defined on a dense subset

of Lp
′
(Rd), thus we can uniquely extend it, by the density argument, to a linear functional on

the whole Lp
′
(Rd), implying that Aψ(u) ∈ Lp(Rd) with the following bound:

‖Aψ(u)‖Lp(Rd) ≤ A‖u‖Lp(Rd) .

The lemma follows for an arbitrary u ∈ Lp(Rd) once we again use the same density argument as

above. 2
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In the remaining part of the section we study commutators of Fourier multipliers and operator
of multiplications.

In this section we will need a variant of the First commutation lemma which is given in [8,
Lemma 1] (see also Remark 2 in the mentioned reference).

Theorem 13. Let (vn) be a bounded, uniformly compactly supported sequence in L∞(Rd), con-
verging to 0 in the sense of distributions, and let ψ ∈ Cd(Rd\{0})∩L∞(Rd) be an Lp-multiplier
for any p ∈ (1,∞) and satisfies

lim
|ξ|→∞

sup
|h|≤1

|ψ(ξ + h)− ψ(ξ)| = 0 . (22)

Then for any b ∈ L∞(Rd) and r ∈ (1,∞) the following holds:

bAψ(vn)−Aψ(bvn) −→ 0 strongly in Lrloc(Rd) .

In the following lemma we show that symbols of the form (11) satisfy condition (22).

Lemma 14. Under assumptions of Lemma 9, for a.e. λ ∈ S function ψ̄(πP (·, λ), λ) satisfies
(22).

Proof: Since ψ̄(·, λ) is uniformly continuous on B[0, 1], it is sufficient to prove that vector
valued function πP (·, λ) satisfies (22). Moreover, since (22) is invariant under orthogonal change
of coordinates, it is sufficient to study πP (Q(λ)T ·, λ), where orthogonal matrix Q(λ) is given by
(16).

For an arbitrary |h| ≤ 1 let us estimate |πP
(
Q(λ)T ξ, λ

)
−πP

(
Q(λ)T (ξ+h), λ

)
|. To make the

calculations easier to read, we omit the fixed parameter λ. Thus, we have

∣∣∣ QT ξ

|ξ|+ 〈Λξ | ξ〉
− QT (ξ + h)

|ξ + h|+ 〈Λ(ξ + h) | ξ + h〉

∣∣∣
≤ |Q

T ξ −QT (ξ + h)|
|ξ|+ 〈Λξ | ξ〉

+ |QT (ξ + h)|
∣∣∣ 1

|ξ|+ 〈Λξ | ξ〉
− 1

|ξ + h|+ 〈Λ(ξ + h) | ξ + h〉

∣∣∣
≤ 1

|ξ|
+ |ξ + h|

∣∣|ξ + h| − |ξ|
∣∣+
∣∣〈Λ(ξ + h) | ξ + h〉 − 〈Λξ | ξ〉

∣∣(
|ξ|+ 〈Λξ | ξ〉

)(
|ξ + h|+ 〈Λ(ξ + h) | ξ + h〉

)
≤ 2

|ξ|
+
〈Λh |h〉+ 2|〈Λξ |h〉|
|ξ|+ 〈Λξ | ξ〉

≤ 2 + |Λ|
|ξ|

+
2
√
|Λ|
√
〈Λξ | ξ〉

|ξ|+ 〈Λξ | ξ〉
,

where in the last line we have used the Cauchy–Bunjakovskij–Schwartz inequality for semi-
definite scalar product (ξ,η) 7→ 〈Λξ |η〉.

If 〈Λ(λ)ξ | ξ〉 = 0, by the computations above∣∣πP (Q(λ)T ξ, λ
)
− πP

(
Q(λ)T (ξ + h), λ

)∣∣ ≤ 2 + |Λ|
|ξ|

,

while for 〈Λ(λ)ξ | ξ〉 6= 0 we have∣∣πP (Q(λ)T ξ, λ
)
− πP

(
Q(λ)T (ξ + h), λ

)∣∣ ≤ 2 + |Λ|
|ξ|

+
2
√
|Λ|√

〈Λξ | ξ〉
.

In both cases the limit as |ξ| goes to infinity of the difference is zero, implying the claim. 2

By the previous lemma and Lemma 9, all assumptions of Theorem 13 are satisfied, hence the
following corollary holds.
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Corollary 15. Let (vn) be a bounded, uniformly compactly supported sequence in L∞(Rd),
converging to 0 in the sense of distributions, and let ψ and a be as in Lemma 9.

Then for any b ∈ L∞(Rd), r ∈ (1,∞) and a.e. λ ∈ S the following holds:

bAψ̄(πP (·,λ),λ)(vn)−Aψ̄(πP (·,λ),λ)(bvn) −→ 0 strongly in Lrloc(Rd) .

3. Adaptive micro-local defect functionals

In what follows we will have an uniformly compactly supported sequence (un(x, λ)). It means
that there exists a bounded open subset Ω × S ⊆ Rd+1 of finite Lebesgue measure such that
supports of all functions un are contained in it. Let us take one such Ω× S and fix it.

Now, we need to introduce the space on which we shall define the appropriate micro-local
defect functional. The space will be adapted to the considered equation (1). For p ∈ (1,∞) we
define

W̃ p
Π(Ω, S) =

{
k∑
j=1

ϕj(x)ψj(ξ, λ) : k ∈ N , ϕj ∈ Lp(Ω) , ψj ∈ Cc(B[0, 1]× S) , j = 1, . . . , k

}
,

where B[0, 1] is the unit closed ball in Rd. We denote for Ψ = Ψ(x, ξ, λ) ∈ W̃ p
Π(Ω, S)

‖Ψ‖Wp
Π

=

(∫
Ω

[
sup

ξ∈Rd\{0}

(∫
S

|Ψ
(
x, πP (ξ, λ), λ

)
|2 dλ

)1/2
]p
dx

)1/p

, (23)

where πP is given by (13). Due to (14), for a 6≡ 0, this map represents a norm on W̃ p
Π(Ω, S). On

the other hand, for a ≡ 0 it is only a seminorm, so one needs to consider the quotient space by

its kernel, or, equivalently, just replace B[0, 1] by Sd−1 in the definition of W̃ p
Π(Ω, S).

Finally, we introduce the space W p
Π(Ω, S) as the completion of W̃ p

Π(Ω, S) with respect to the
norm ‖ · ‖Wp

Π
. It is easy to see that W p

Π(Ω, S) coincides with the Bochner space Lp(Ω;X), where

X is the completion of C(B[0, 1]; L2(S)) equipped with the norm

C(B[0, 1]; L2(S)) 3 ψ 7→ sup
ξ∈Rd\{0}

(∫
S

|ψ
(
πP (ξ, λ), λ

)
|2 dλ

)1/2

.

Moreover, the space C0(Ω × B[0, 1] × S), equipped by the standard (supremum) topology, is
for any p ∈ (1,∞) dense in W p

Π(Ω, S), so continuous linear functionals on W p
Π(Ω, S) are in fact

bounded Radon measures on Ω×B[0, 1]× S.
In the following theorem we construct one such functional which will play an important role

in the proof of the velocity averaging result. The construction is based on the Banach-Alaoglu-
Bourbaki theorem, which applies on W p

Π(Ω, S) as it is clearly a (separable) Banach space.

Theorem 16. Let (un(x, λ)) be an uniformly compactly supported sequence on Ω×S ⊂⊂ Rd×R
weakly converging to zero in Lq(Rd×R), for some q > 2. Let (vn(x)) be an uniformly compactly
supported sequence on Ω weakly-? converging to zero in L∞(Rd), and let a : S → Rd×d be a
Borel measurable matrix function such that for a.e. λ ∈ S matrix a(λ) is symmetric and positive
semi-definite.

Then for p = 2q
q−2 there exists a subsequence (not relabeled) and a continuous functional µ on

W p
Π(Ω, S) such that for every ϕ ∈ Lp(Ω) and ψ ∈ Cc(B[0, 1]× S) it holds

µ(ϕψ) = lim
n→∞

∫
Ω×S

ϕ(x)un(x, λ)Aψ̄(πP (·,λ),λ)(vn)(x) dx dλ . (24)

Furthermore, the bound of functional µ is Cu,q,2Cv,2, where Cu,q,2 is the Lqx(L2
λ)-bound of (un)

and Cv,2 is the L2-bound of (vn).
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Proof: First, notice that the mappings

ϕ(x)ψ(ξ, λ) 7→
∫

Ω×S
ϕ(x)un(x, λ)Aψ̄(πP (·,λ),λ)(vn)(x) dx dλ

define a sequence of linear mappings (µn) defined on W̃ p
Π(Ω, S). We shall prove that the se-

quence (µn) is bounded on W̃ p
Π(Ω, S) with respect to the norm ‖ · ‖Wp

Π
. Since W̃ p

Π(Ω, S) is dense

in W p
Π(Ω, S) this will imply that (µn) is a bounded sequence of linear functionals on W p

Π(Ω). Ac-
cording to the Banach-Alaoglu-Bourbaki theorem, we conclude that (µn) is weakly-? precompact
and a subsequential limit µ will satisfy conditions of the theorem.

Now, notice that any function belonging to W̃ p
Π(Ω, S) can be approximated by sums of the

form
N∑
j=1

χj(x)ψj(ξ, λ) ,

whereN ∈ N, χj(x), j = 1, . . . , N , are characteristic measurable functions with disjoint supports,
and ψj ∈ Cdc(B[0, 1]× S). Thus, it is enough to derive bounds for µn on functions of the above
form.

By the properties of the commutator given in Corollary 15 we have for a.e. λ ∈ S and any j

lim
n→∞

∫
Ω

χj(x)un(x, λ)Aψ̄j(πP (·,λ),λ)

(
(1− χj)vn

)
(x) dx = 0 ,

where we have used χ2
j = χj . Thus, as the norm of Aψ̄j(πP (·,λ),λ) is independent of λ (Lemma

9), by the Lebesgue dominated convergence theorem we get

lim sup
n→∞

∣∣∣ ∫
Ω×S

N∑
j=1

χj(x)un(x, λ)Aψ̄j(πP (·,λ),λ)(vn)(x) dx dλ
∣∣∣

= lim sup
n→∞

∣∣∣ ∫
Ω×S

N∑
j=1

χj(x)un(x, λ)Aψ̄j(πP (·,λ),λ)(χj vn)(x) dx dλ
∣∣∣ .

Applying the Plancherel formula, the Fubini theorem, and the Cauchy–Bunjakovskij–Schwartz
(C–B–S) inequality in λ, the above term is estimated by

lim sup
n→∞

∫
Rd

N∑
j=1

∫
S

∣∣∣( ̂χjun(·, λ)
)
(ξ)ψj(πP (ξ, λ), λ)

∣∣∣ dλ ∣∣χ̂jvn(ξ)
∣∣ dξ (25)

≤ lim sup
n→∞

∫
Rd

N∑
j=1

∫
S

∣∣∣( ̂χjun(·, λ)
)
(ξ)
∣∣∣2 dλ

1/2∫
S

|ψj(πP (ξ, λ), λ)|2dλ

1/2 ∣∣χ̂jvn(ξ)
∣∣ dξ

≤ lim sup
n→∞

∫
Rd

N∑
j=1

A
1/2
j

∫
S

∣∣∣( ̂χjun(·, λ)
)
(ξ)
∣∣∣2 dλ

1/2 ∣∣χ̂jvn(ξ)
∣∣ dξ ,

where

Aj := sup
ξ∈Rd\{0}

∫
S

|ψj(πP (ξ, λ), λ)|2dλ . (26)
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We continue the estimate by applying first the discrete version of C–B–S inequality, and then
its integral version with respect to ξ, obtaining that the above term is majorised by

lim sup
n→∞

∫
Rd

(
N∑
j=1

Aj

∫
S

∣∣∣( ̂χjun(·, λ)
)
(ξ)
∣∣∣2 dλ)1/2( N∑

j=1

∣∣χ̂jvn(ξ)
∣∣2)1/2

dξ

≤ lim sup
n→∞

∫
Rd

N∑
j=1

Aj

∫
S

∣∣∣( ̂χjun(·, λ)
)
(ξ)
∣∣∣2 dλdξ

1/2∫
Rd

N∑
j=1

∣∣χ̂jvn(ξ)
∣∣2 dξ

1/2

= lim sup
n→∞

∫
Ω

N∑
j=1

Aj

∫
S

|(χjun)(x, λ)|2 dλdx

1/2∫
Ω

N∑
j=1

|(χjvn)(x)|2 dx

1/2

,

where the Plancherel formula is used in the last equality.
As supports of χj are disjoint, we have∫

Ω

N∑
j=1

|(χjvn)(x)|2 dx ≤
∫
Ω

|vn(x)|2dx = ‖vn‖2L2(Ω) ,

while on the first factor we apply the Hölder inequality (1/q + 1/p = 1/2) in x:∫
Ω

N∑
j=1

Aj

∫
S

|(χjun)(x, λ)|2 dλdx

1/2

=

∫
Ω

‖un(x, ·)‖2L2(S)

( N∑
j=1

Ajχj(x)

)
dx

1/2

≤ ‖un‖Lq(Ω;L2(S))

∫
Ω

 N∑
j=1

χj(x)

(
sup

ξ∈Rd\{0}

∫
S

|ψj(πP (ξ, λ), λ)|2dλ
)

p
2

dx


1
p

≤ ‖un‖Lq(Ω;L2(S))

∫
Ω

 sup
ξ∈Rd\{0}

(∫
S

∣∣∣∣ N∑
j=1

χj(x)ψj(πP (ξ, λ), λ)

∣∣∣∣2dλ
)1/2

p

dx

1/p

,

where in the last inequality we have used once more that χj have disjoint supports.
Therefore, the final estimate obtained in the above calculations reads

lim sup
n→∞

∣∣∣ ∫
Ω×S

N∑
j=1

χj(x)un(x, λ)Aψ̄j(πP (·,λ),λ)(vn)(x) dx dλ
∣∣∣ ≤ Cu,q,2 Cv,2 ∥∥∥∥ N∑

j=1

χjψj

∥∥∥∥
Wp

Π(Ω,S)

,

where Cu,q,2 = lim supn ‖un‖Lq(Ω;L2(S)) and Cv,2 = lim supn ‖vn‖L2(Ω), implying the bounded-

ness of the sequence (µn) in (W̃ p
Π(Ω, S), ‖ · ‖Wp

Π
). Thus, the sequence is bounded in W p

Π(Ω, S)

as well and, since W p
Π(Ω, S) is a separable Banach space, the Banach-Alaoglu-Bourbaki theorem

provides the statement of the theorem. 2

Remark 17. In the previous proof, it was only needed that the sequence (un) is bounded in
L2(Rd+1) ∩ Lq(Rd; L2(R)) for some q > 2, so the assumption of the previous theorem could be
weakened accordingly.

Remark 18. Let us note that in (25) one could consider integration with respect to ξ only over
|ξ| > M for any fixed M > 0. Indeed, χ̂jvn(ξ) → 0 as n → ∞ for every fixed ξ ∈ Rd and
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j ∈ {1, 2, . . . , N} since (vn) is uniformly compactly supported and converges weakly-? to 0 in
L∞(Rd). On the other hand,∫

S

∣∣∣( ̂χjun(·, λ)
)
(ξ)ψj(πP (ξ, λ), λ)

∣∣∣ dλ ≤ ‖ψj‖L∞(B[0,1]×S)‖un‖L1(Ω×S) <∞ .

Thus, we can apply the Lebesgue dominated convergence theorem to conclude that the part of
(25) in which the integration is over |ξ| ≤M converges to zero as n→∞.

As a consequence this has that in (26) the supremum could be taken only for |ξ| > M ,
implying that µ from Theorem 16 satisfies a sharper estimate:

|〈µ,Ψ〉| ≤

(∫
Ω

[
sup
|ξ|>M

(∫
S

|Ψ
(
x, πP (ξ, λ), λ

)
|2 dλ

)1/2
]p
dx

)1/p

, ψ ∈W p
Π(Ω, S) , (27)

for any fixed M > 0.

We are actually able to show the following representation for the functional from the previous
theorem for less regular functions with respect to x and λ.

Corollary 19. Under the conditions of the previous theorem, let us consider a subsequence (not

relabeled) that defines µ ∈
(
W

2q
q−2

Π (Ω, S)
)′

by (24). Then for any ϕ ∈ Lr(Ω× S), r > q
q−1 , and

ψ ∈ Cdc(B[0, 1]× S) it holds

µ(ϕψ) = lim
n→∞

∫
Ω×S

ϕ(x, λ)un(x, λ)Aψ̄(πP (·,λ),λ)(vn)(x) dxdλ . (28)

Proof: In order to prove (28), we shall use a fairly direct approximation argument (see also
[42, Theorem 2.2]). To this end, we take a function ϕ ∈ Lr(Ω×S) and choose its approximation

in L
2q
q−2 (Ω)× Cd(S) of the form

ϕs(x, λ) =

s∑
k=1

φk(x)χk(λ) , φk ∈ L
2q
q−2 (Ω), χk ∈ Cdc(S) ,

i.e. lim
s→∞

‖ϕ− ϕs‖Lr(Ω×S) = 0. Then, we define an extension of µ by

µ(ϕψ) := lim
s→∞

µ(ϕsψ) .

By the commutation identity (Corollary 15) it follows

µ(ϕsψ) = lim
n→∞

s∑
k=1

∫
Ω×S

φk(x)un(x, λ)Aψ̄(πP (·,λ),λ)χk(λ)(vn)(x) dxdλ

= lim
n→∞

s∑
k=1

∫
Ω×S

φk(x)χk(λ)un(x, λ)Aψ̄(πP (·,λ),λ)(vn)(x) dxdλ

= lim
n→∞

∫
Ω×S

ϕs(x, λ)un(x, λ)Aψ̄(πP (·,λ),λ)(vn)(x) dxdλ ,

thus, the above definition is equivalent to

µ(ϕψ) = lim
s→∞

lim
n→∞

∫
Ω×S

ϕs(x, λ)un(x, λ)Aψ̄(πP (·,λ),λ)(vn)(x) dxdλ . (29)

This limit is well-defined as one can see from the Cauchy criterion. Indeed, for s1, s2 ∈ N by
means of the Hölder inequality and the multiplier lemma (Lemma 9) we have∣∣µ(ϕs2ψ)− µ(ϕs1ψ)

∣∣ ≤ C‖ϕs2 − ϕs1‖Lr(Ω×S) ,
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and the constant C is equal to Cr̄,ψ meas(S)
1
r̄ lim supn→∞ ‖un‖Lq(Ω×S)‖vn‖Lr̄(Ω), where 1

r + 1
q +

1
r̄ = 1, and Cr̄,ψ is the Lr̄-bound of the Fourier multiplier operator Aψ̄(πP (·,λ),λ). Since (ϕs) is
a Cauchy sequence, the above difference can be made arbitrarily small for s1, s2 large enough,
hence (29) is well defined. The same analysis leads to

lim
s→∞

∫
Ω×S

(
ϕ(x, λ)− ϕs(x, λ)

)
un(x, λ)Aψ̄(πP (·,λ),λ)(vn)(x) dxdλ = 0 ,

and the convergence is uniform with respect to n. Therefore, we can exchange the limits in (29),

which proves (28). 2

Remark 20. The representation (28) holds even for ψ̃(ξ) := 2π(1− |ξ|), which is merely contin-

uous (at the origin ψ̃ is not smooth).
Indeed, in the construction of the previous corollary we only needed that for a.e. λ and any

p ∈ (1,∞) mapping ξ 7→ ψ̄
(
πP (ξ, λ), λ

)
is an Lp(Rd)-multiplier, with the norm independent of

λ (since this ensures that the statement of Corollary 15 holds as well). By Lemma 10 function

ψ̃ satisfies this requirement.

Let us now introduce a localisation principle for functionals µ given by Theorem 16 (see also
Corollary 19), which can serve as a way of proving that µ ≡ 0. A similar result holds for arbitrary
continuous functionals on W p

Π(Ω, S) as well.

Lemma 21. Let us assume that the conditions of Theorem 16 are fulfilled. If function F ∈
C0(Rd+1 ×B[0, 1]) is such that for any compact K ⊆ S it holds

lim
ε→0+

g(ε) = 0 , (30)

where

g(ε) := ess sup
x∈Ω

sup
|ξ|>1

meas

{
λ ∈ K :

∣∣∣F(x, λ,
ξ

πP (ξ, λ)

)∣∣∣ < ε

}
,

and

Fµ ≡ 0 , (31)

then

µ ≡ 0 .

Proof: Let us take arbitrary ε > 0 and φ ∈ Cc(Ω×B[0, 1]× S). Denote by K the projection

of the support of φ to the last variable λ. Applying (31) to φ F
|F |2+ε (which is admissible test

function since it is a bounded compactly supported function on Ω×B[0, 1]× S), we get

0 =

〈
µ, φ

|F |2

|F |2 + ε

〉
= 〈µ, φ〉 −

〈
µ, φ

( |F |2

|F |2 + ε
− 1
)〉

.

Thus, it is sufficient to show that the second term on the right hand side goes to 0 as ε → 0.
From (27) (applied for M = 1) we have∣∣∣∣〈µ, φ( |F |2

|F |2 + ε
− 1
)〉∣∣∣∣

≤ ‖φ‖L∞
(∫

Ω

[
sup
|ξ|>1

(∫
K

∣∣∣ ε

|F |2 + ε

∣∣∣2 dλ)1/2
]p
dx

)1/p

.

Thus, it is left to prove

lim
ε→0+

(∫
Ω

[
sup
|ξ|>1

(∫
K

∣∣∣ ε

|F |2 + ε

∣∣∣2 dλ)1/2
]p
dx

)1/p

= 0 . (32)
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To this end, denote

Kθ(ξ,x) :=

{
λ ∈ K :

∣∣∣F(x, λ,
ξ

πP (ξ, λ)

)∣∣∣ < θ

}
.

Let us separately analyse (32) on K
√
ε = K

√
ε(ξ,x) and its complement.

By the assumption (30) we have∫
Ω

[
sup
|ξ|>1

(∫
K
√
ε

∣∣∣ ε

|F |2 + ε

∣∣∣2 dλ)1/2 ]p
dx

≤ meas(Ω) ess sup
x∈Ω

sup
|ξ|>1

√
meas

(
K
√
ε(ξ,x)

)
= meas(Ω)

√
g(
√
ε) −→ 0

as ε→ 0.
On the other hand, on the complement we get∫

Ω

[
sup
|ξ|>1

(∫
(K\K

√
ε)

∣∣∣ ε

|F |2 + ε

∣∣∣2 dλ)1/2 ]p
dx

≤ meas(Ω)

∥∥∥∥∥ ε√
ε+ ε

∥∥∥∥∥
L2(K\K

√
ε)

≤ meas(Ω)
√
εmeas(K) .

Therefore, (32) holds, which, by previous observations, provides 〈µ, φ〉 = 0, finishing the

proof. 2

In the application of the previous lemma we shall have a specific form of the function F for
which the non-degeneracy assumption (30) simplifies.

Lemma 22. Let us assume that the conditions of Theorem 16 are fulfilled, and let us define

F (x, λ, ξ) := i〈f(x, λ) | ξ〉+ 2π(1− |ξ|) ,

where f ∈ Lr(Ω× S;Rd), r > q
q−1 .

For the function F condition (30) is equivalent to

(∀K ⊂⊂ S) ess sup
x∈Ω

sup
ξ∈Sd−1

meas
{
λ ∈ K : 〈f(x, λ) | ξ〉 = 〈a(λ)ξ | ξ〉 = 0

}
= 0 . (33)

Proof: Suppose that (33) does not hold, i.e. there exists a compact set K ⊆ S such that

ess sup
x∈Ω

sup
ξ∈Sd−1

meas
{
λ ∈ K : 〈f(x, λ) | ξ〉 = 〈a(λ)ξ | ξ〉 = 0

}
> 0 .

Since for any ε > 0 it holds{
λ ∈ K :

∣∣∣F(x, λ,
ξ

πP (ξ, λ)

)∣∣∣ < ε

}
⊇
{
λ ∈ K : 〈f(x, λ) | ξ〉 = 〈a(λ)ξ | ξ〉 = 0

}
,

we get

g(ε) ≥ ess sup
x∈Ω

sup
|ξ|>1

meas
{
λ ∈ K : 〈f(x, λ) | ξ〉 = 〈a(λ)ξ | ξ〉 = 0

}
= ess sup

x∈Ω
sup

ξ∈Sd−1

meas
{
λ ∈ K : 〈f(x, λ) | ξ〉 = 〈a(λ)ξ | ξ〉 = 0

}
> 0 ,

implying that (30) does not hold as well.
To prove the opposite, assume that (33) holds but lim

ε→0+
g(ε) = 0 fails to hold. This means

that there exists c > 0 such that for some non zero measure set Ω ⊂ Rd for every x ∈ Ω there
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exists ξn = ξn(x) ∈ Rd\{|ξ| < 1}, such that meas(Kn) > c, where

Kn :=

{
λ ∈ K : |〈f(x, λ) | ξn〉|+ 2π〈a(λ)ξn | ξn〉 <

1

n

(
|ξn|+ 〈a(λ)ξn | ξn〉

)}
.

The condition defining the set Kn is equivalent to

|〈f(x, λ) | ξn〉|+
(

2π − 1

n

)
〈a(λ)ξn | ξn〉 <

1

n
|ξn| , (34)

i.e. λ ∈ K is contained in Kn if and only if (34) holds. Since 2π − 1
n > 1, n ∈ N, from above we

get that for any λ ∈ Kn we have

|〈f(x, λ) | ξn〉|+ 〈a(λ)ξn | ξn〉 <
1

n
|ξn| .

Dividing by |ξn|, we obtain∣∣∣∣〈f(x, λ)
∣∣∣ ξn
|ξn|

〉∣∣∣∣+ |ξn|
〈
a(λ)

ξn
|ξn|

∣∣∣ ξn
|ξn|

〉
<

1

n
. (35)

Fix now a non zero measure compact subset Ω̃ ⊂ Ω. Since the sequence ηn(x) = ηn :=
ξn
|ξn|

: Ω̃ → Sd−1 is uniformly continuous, there exits a subsequence (not relabelled) such that

ηn → η ∈ Sd−1 uniformly on Ω̃.
Let us define

εn := ess sup
x∈Ω̃

(
1 + max

λ∈K
|f(x, λ)|+ 2 max

λ∈K
|a(λ)|

)
|η − ηn| ,

being a sequence of non-negative real numbers converging to zero.
Keeping in mind |ξn| > 1, from (35) now we get

|〈f(x, λ) |η〉|+ 〈a(λ)η |η〉 < 1

n
+ εn ,

thus

Kn ⊆ K̃n :=
{
λ ∈ K : |〈f(x, λ) |η〉|+ 〈a(λ)η |η〉 < 1

n
+ εn

}
,

implying

∞ > meas(K) ≥ meas(K̃n) > c > 0 , n ∈ N .
Furthermore, (K̃n) is a decreasing sequence of sets, hence

meas
{
λ ∈K : 〈f(x, λ) |η〉 = 〈a(λ)η |η〉 = 0

}
= meas

{
λ ∈ K : |〈f(x, λ) |η〉|+ 〈a(λ)η |η〉 = 0

}
= lim
n→∞

meas(K2,n) > c > 0 ,

contradicting (33). 2

4. Proof of the main theorem

In this section, we shall apply previously developed tools to prove a velocity averaging result
for the sequence of equations given in the Introduction:

divx

(
f(x, λ)un(x, λ)

)
= divx

(
divx (a(λ)un(x, λ))

)
+ ∂λGn(x, λ) + divxPn(x, λ) in D′(Rd+1) ,

(1)

where we assume that conditions (a)–(e) are fulfilled.

Proof of Theorem 1: Let Ω× S ⊆ Rd+1 be a bounded open subset such that supports of all
functions un are contained in it, and let us take a bounded sequence of functions (vn) uniformly
compactly supported on Ω and weakly-? converging to zero in L∞(Ω), which we take at this
moment to be arbitrary, while at the end of the proof the precise choice will be made. Let us pass
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to a subsequence of both (un) and (vn) (not relabeled) which defines a bounded linear functional

µ ∈
(
W

2q
q−2

Π (Ω, S)
)′

according to Theorem 16, and consider its extension given in Corollary 19.

For arbitrary ϕ ∈ Cc(Ω) and ψ ∈ Cd+1
c (B[0, 1]× S) we set

θn(x, λ) := A ψ̄(πP (·,λ),λ)
|·|+〈a(λ)· | ·〉

(ϕvn)(x) . (36)

Testing (1) by θn, i.e. multiplying by θn, integrating over Ω × S, and applying the integration
by parts we get the following:

0 = 2π

d∑
j=1

∫
Ω×S

fj(x, λ)un(x, λ)A iξjψ̄(πP (ξ,λ),λ)

|ξ|+〈a(λ)ξ | ξ〉
(ϕvn)(x) dxdλ (37)

− 2π

∫
Ω×S

un(x, λ)A 2π〈a(λ)ξ | ξ〉ψ̄(πP (ξ,λ),λ)
|ξ|+〈a(λ)ξ | ξ〉

(ϕvn)(x) dxdλ (38)

−
∫

Ω×S

Gn(x, λ)A
∂λ

ψ̄(πP (ξ,λ),λ)
|ξ|+〈a(λ)ξ | ξ〉

(ϕvn)(x) dxdλ (39)

−
d∑
j=1

∫
Ω×S

Pnj (x, λ)A 2πiξjψ̄(πP (ξ,λ),λ)
|ξ|+〈a(λ)ξ | ξ〉

(ϕvn)(x) dxdλ , (40)

where we have used ∂xjAψ = A2πiξjψ, according to our definition of the Fourier transform. Line
(39) is to be understood as ∫

S

〈
Gn(·, λ), A

∂λ
ψ̄(πP (·,λ),λ)
|·|+〈a(λ)· | ·〉

(ϕvn)

〉
dλ ,

where 〈·, ·〉 represents the dual product between W
− 1

2 ,r

loc (Rd) and W
1
2 ,r
c (Rd).

Let us consider term by term in the above expression as n goes to infinity along the chosen
subsequence.

Symbols of the Fourier multipliers in (37) and (38) can be rewritten as

iξjψ̄
(
πP (ξ, λ), λ

)
|ξ|+ 〈a(λ)ξ | ξ〉

= (ψjψ)
(
πP (ξ, λ), λ

)
2π〈a(λ)ξ | ξ〉ψ̄

(
πP (ξ, λ), λ

)
|ξ|+ 〈a(λ)ξ | ξ〉

= (ψ̃ψ)
(
πP (ξ, λ), λ

)
,

where ψj(ξ) := −iξj and ψ̃(ξ) := 2π(1 − |ξ|). Thus, by applying first Corollary 15 in order to
move ϕ outside of the Fourier multiplier operators, and then Corollary 19 (see also Remark 20),
the limit of the sum of (37) and (38) is equal to

−2π
〈
µ, F (x, ξ, λ)ϕ(x)ψ(ξ, λ)

〉
, (41)

where F (x, ξ, λ) = i〈f(x, λ) | ξ〉+ 2π
(
1− |ξ|

)
.

Unlike the situation with (37) and (38), term (40) is zero at the limit n → ∞. Indeed,
Pnj strongly converges in Lp0

loc(Rd × R), while A(ψjψ)(πP (·,·),·)(ϕvn) weakly converges to zero in

Lp
′
0(Ω× S) by Lemma 9, and the integration is over relatively compact set Ω× S.
The symbol appearing in (39) we divide into two parts, namely

(∂λψ̄) (πP (ξ, λ), λ)

|ξ|+ 〈a(λ)ξ | ξ〉
(42)
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and

∂λ

(
1

|ξ|+ 〈a(λ)ξ | ξ〉

)(
ψ̄
(
πP (ξ, λ), λ

)
+

d∑
j=1

(
ξj∂ξjψ(ξ, λ)

)
◦
(
πp(ξ, λ

)))
. (43)

Let us study first the part of (39) associated to (42).
By Lemma 35 (given in the Appendix), Lemma 9 and the Lebesgue dominated convergence

theorem (applied for the integration in λ) we have for any r ∈ [1,∞)

A (∂λψ̄)(πP (ξ,λ),λ)
|ξ|+〈a(λ)ξ,ξ〉

(ϕvn) = A 1
|ξ|+〈a(λ)ξ,ξ〉

(
A(∂λψ̄)(πP (ξ,λ),λ)(ϕvn)

)
⇀ 0 weakly in Lr(S; W1,r(Ω)) ,

where we have used that Ω×S is relatively compact. This together with the assumption of (Gn)
implies the convergence to zero of the part of (39) associated to (42).

The Fourier multiplier operator associated to the second factor of (43) is bounded on Lr(Rd)
for any r ∈ (1,∞) uniformly in λ (Lemma 9), while by Lemma 11 the first factor defines a

bounded operator (uniformly in λ) from Lr(Rd) to W
1
2 ,r(Rd), for any r ∈ (1,∞). Thus, the

overall conclusion is that for any r ∈ (1,∞)

A
∂λ( 1

|ξ|+〈a(λ)ξ | ξ〉 )
(
ψ̄(πP (ξ,λ),λ)+

∑d
j=1

(
ξj∂ξjψ(ξ,λ)

)
◦(πp(ξ,λ))

)(ϕvn) ⇀ 0 ,

weakly in Lr(S; W
1
2 ,r(Ω)), implying the convergence to zero of the part of (39) associated to

(43).
Collecting the previous considerations, we get from (37)–(40) after letting n → ∞ that (41)

is the only non-trivial term, thus we have:〈
µ, F (x, ξ, λ)ϕ(x)ψ(ξ, λ)

〉
= 0 .

Since F satisfies the non-degeneracy assumption (33) (see Lemma 22), by Lemma 21 we conclude
from above that

µ ≡ 0 .

Let us assume that un is real valued (if not, we just apply this procedure to the real and
imaginary parts of un separately). Let us take arbitrary real valued functions ϕ ∈ Cc(Ω) and
ρ ∈ Cc(S). As

(
sgn(

∫
S
ρ(λ)un(x, λ) dλ)

)
is bounded in L∞(Ω), it has a weakly-? converging

subsequence, whose limit we denote by V ∈ L∞(Ω). We pass to that subsequence (not relabeled),
and choose for vn in (36):

vn(x) = ϕ(x)

(
sgn

(∫
S

ρ(λ)un(x, λ) dλ

)
− V (x)

)
.

As the subsequence defines the same functional µ, by Theorem 16 we conclude

lim
n→∞

∫
Ω

ϕ(x)2

∣∣∣∣∫
S

ρ(λ)un(x, λ)dλ

∣∣∣∣ dx
= lim
n→∞

∫
Ω

ϕ(x)2

(∫
S

ρ(λ)un(x, λ)dλ

)
sgn

(∫
S

ρ(λ)un(x, λ)dλ

)
dx

= lim
n→∞

∫
Ω×S

ϕ(x)ρ(λ)un(x, λ)vn(x) dx dλ

= 〈µ, ρϕ⊗ 1〉 = 0 ,

where in the second equality we have used that (un) converges weakly to zero. Thus, the proof

is over. 2

We note that matrix function (8) that we have provided in Example 4(b) is irregular only in
one point. These situations we can handle by cutting off isolated singularities using appropriate
λ-compactly supported functions. Let us briefly explain how to prove Corollary 2.
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Proof of Corollary 2: Take a dense countable set of λ0 ∈ S which satisfy (b̃) denoted by S̃.

Fix λ0 ∈ S̃. Then, in the proof of Theorem 1 given above, we simply take ρ ∈ C1
c(λ0− ε, λ0 + ε),

where ε = ε(λ0), to obtain (6). Since (un) is bounded in L1(Ω × S) (we have boundedness
even in Lq(Ω × S), q > 2), then for any ρ ∈ C1

c(S) we can take ρ = ρ(λ)χ[λ0−ε,λ0+ε](λ), where
χ(λ0−ε,λ0+ε) is the characteristic function of the interval (λ0 − ε, λ0 + ε).

Since S̃ is countable, we can take a sequence in (6) independent of λ0 ∈ S̃. Furthermore, since

S̃ is dense in S, then ∪λ0∈S̃ [λ0 − ε(λ0), λ0 + ε(λ0)] ⊇ S\E, where E is the set of measure zero

out of which (b̃) holds. From here, the statement of the corollary immediately follows (since

for every ρ ∈ C1
c(S) and every λ0 ∈ S̃, the sequence (

∫
R ρ(λ)χ[λ0−ε,λ0+ε](λ)un(·, λ)dλ) converges

along the fixed subsequence and segments [λ0 − ε, λ0 + ε] cover entire S except for the zero

measure set). 2

Remark 23. With the exception of Lemma 11, all other (multiplier) results used in the above
proof of Theorem 1 holds under a weaker assumption on a:

b’) a ∈ C0,1(S;Rd×d) is such that, for every λ ∈ S, a(λ) is a symmetric and positive semi-
definite matrix.

Thus, a sufficient assumption on the diffusion matrix a under which the statement of Theorem
1 holds is that a satisfies (b’) and that (39) tends to 0, as n → ∞. Moreover, it is enough to
have local estimates of the multipliers with respect to λ.

To be more specific, a possible weakening of assumption (b) which preserves the statement of
Theorem 1 is:

b”) a satisfies (b’) and for a.e. λ0 ∈ S there exists its neighborhood U(λ0) such that for any
λ ∈ U(λ0) and any p ∈ (1,∞)

ξ 7→ |ξ|1/2〈a′(λ)ξ | ξ〉(
|ξ|+ 〈a(λ)ξ | ξ〉

)2
is an Lp-multiplier, with the norm uniformly bounded with respect to λ ∈ U(λ0).

By lemmata 9 and 11 it is clear, which was also used in the previous proof, that (b”) is implied by

(b̃) (see Corollary 2). However, (b’) does not imply (b”) in general. For instance, just consider
(9) from the Introduction.

Although at this moment we cannot obtain the result by imposing only (b’) on the diffusion
matrix a, while keeping all the other assumptions intact (see the previous remark), under stronger
assumptions on (Gn), given in Corollary 3, that can be done. A proof of Corollary 3 we briefly
explain below.

Proof of Corollary 3: If we replace (d) by

d’) Gn → 0 strongly in Lr0loc(Rdx × Rλ) for some r0 ∈ (1,∞);

then it is sufficient that (43) is an Lp-multiplier, p ∈ (1,∞), which is ensured by Lemma 9.

Thus, the statement of Corollary 3 holds. 2

If (un) has a compact support only with respect to λ, the statement of the previous theorem
still holds. Indeed, one just need to test (1) by ϕ̃θn instead of θn (given by (36)) for an arbitrary
ϕ̃ ∈ Cc(Rd). By repeating the rest of the analysis of the proof of Theorem 1 we obtain that the
functional µ from Theorem 16 corresponding to (ϕ̃un) equals zero, implying the strong conver-
gence to zero in L1

loc(Rd) of (
∫
R ρ(λ)ϕ̃(x)un(x, λ)dλ) for any ρ ∈ Cc(R). Due to arbitrariness of

ϕ̃ we get the claim which we formulate in the following corollary.

Corollary 24. Let d ≥ 2 and let un ⇀ 0 in Lqloc(Rd×R), for some q > 2, is uniformly compactly
supported with respect to λ on S ⊂⊂ R. Let (un) satisfies the sequence of equations (1) whose
coefficients satisfy conditions (b), (d), (e), and
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c’) There exists p > q
q−1 (p > 1 if q =∞) such that for any compacts K1 ⊆ Rd and K2 ⊆ S

it holds f ∈ Lp(K1 × S;Rd) and

ess sup
x∈K1

sup
ξ∈Sd−1

meas
{
λ ∈ K2 : 〈f(x, λ) | ξ〉 = 〈a(λ)ξ | ξ〉 = 0

}
= 0 .

Then there exists a subsequence (un′) such that for any ρ ∈ Cc(R),∫
R
ρ(λ)un′(x, λ) dλ −→ 0 strongly in L1

loc(Rd) .

5. Degenerate parabolic equation with rough coefficients – existence proof

In this section, we prove existence of a weak solution to the Cauchy problem for the advection-
diffusion equation:

∂tu+ divxf(t,x, u) = D2 ·A(u) , (t,x) ∈ R+ × Rd =: Rd+1
+ , (44)

u|t=0 = u0 ∈ L1(Rd) ∩ L∞(Rd) . (45)

where D2 ·A(u) =
∑
i,j ∂

2
xixj [A(u)]ij . The equation describes a flow governed by

• the convection effects (bulk motion of particles) which are represented by the first order
terms;

• diffusion effects which are represented by the second order term and the matrix A(λ) =
[Aij(λ)]i,j=1,...,d (more precisely its derivative with respect to λ; see (46) below) describes
direction and intensity of the diffusion;

The equation is degenerate in the sense that the derivative of the diffusion matrix A′ can be
equal to zero in some direction. Roughly speaking, if this is the case, i.e. if for some vector
ξ ∈ Rd we have 〈A′(λ)ξ | ξ〉 = 0, then diffusion effects do not exist at the point x for the state
λ in the direction ξ.

Recently, several existence results for (44) in the case when the coefficients are irregular
were obtained. In [40, 49, 53] the authors considered ultra-parabolic equations, while in [36] a
degenerate parabolic equation was considered and a similar result as in Theorem 28 below is
obtained.

Roughly speaking, in [36], the authors had the assumptions that the flux f(t,x, λ) is merely
continuous with respect to λ and max

|u|<M
|f(x, u)| ∈ L2

loc(Rd) for every M > 0. However, we still

generalise this result by assuming the following for the coefficients of (44) (keep in mind that we
need only Lp, p > 1 assumptions on the flux unlike the L2 assumptions from [36]):

i) There exist α, β ∈ R such that the initial data u0 ∈ L1(Rd)∩L∞(Rd) is bounded between
α and β and the flux equals zero at λ = α and λ = β:

α ≤ u0(x) ≤ β and f(t,x, α) = f(t,x, β) = 0 a.e. (t,x) ∈ Rd+1
+ .

ii) The convective term f(t,x, λ) belongs to C1([α, β]; Lploc(R
d+1
+ )) for some p > 1, and

divxf(t,x, λ) ∈M(Rd+1
+ × [α, β]) ,

where M(X) denotes the space of Radon measures on X ⊆ Rd.
iii) The matrix A(λ) ∈ C1,1([α, β];Rd×d) is symmetric and non-decreasing with respect to

λ ∈ [α, β], i.e. the (diffusion) matrix a(λ) := A′(λ) satisfies

〈a(λ)ξ | ξ〉 ≥ 0 ,

and a satisfies (b) from the Introduction.



24 M. ERCEG, M. MIŠUR, AND D. MITROVIĆ

iv) f := ∂λf and a = A′ satisfy non-degeneracy assumption: for any compact K ⊆ Rd+1
+ it

holds

ess sup
(t,x)∈K

sup
(τ,ξ)∈Sd

meas
{
λ ∈ [α, β] : τ + 〈f(t,x, λ) | ξ〉 = 〈a(λ)ξ | ξ〉 = 0

}
= 0 .

Remark that equation (44) can be rewritten in the standard (more usual) form as follows
(cf. [18]):

∂tu+ divxf(t,x, u) = divx(a(u)∇xu). (46)

Thus, by proving existence of solutions to equation (44), we shall prove existence of solutions
to Cauchy problems for a degenerate parabolic equation in the standard form (46).

Let us first recall the notion of entropy-solutions for (44) (see [47] for the hyperbolic conser-
vation law).

Definition 25. A measurable function u defined on R+×Rd is called a quasi-solution to (44) if

f(t,x, u(t,x)) ∈ L1
loc(R

d+1
+ ;Rd), A(u(t,x)) ∈ L1

loc(R
d+1
+ ;Rd×d), and for a.e. λ ∈ R the Kružkov-

type entropy equality holds

∂t|u− λ|+divx [sgn(u− λ)(f(t,x, u)− f(t,x, λ))] (47)

−D2 · [sgn(u− λ)(A(u)−A(λ))] = −ζ(t,x, λ),

where ζ ∈ C(Rλ;w ? −M(Rd+1
+ )) is a non-negative functional which we call the quasi-entropy

defect measure.

Remark 26. Remark that for a regular flux f, the measure ζ(t,x, λ) can be rewritten in the form
ζ(t,x, λ) = ζ̄(t,x, λ) + sgn(u − λ)divxf(t,x, λ), for a measure ζ̄. If ζ̄ is non-negative, then the
quasi-solution u is an entropy solution to (44). For the uniqueness of such entropy solution, we
additionally need the chain rule [18, 17].

From the notion of quasi-solution, the following kinetic formulation can be proved (see also
[55, (4.4)]).

Theorem 27. If function u is a quasi-solution to (44), then the function

h(t,x, λ) = sgn(u(t,x)− λ) = −∂λ|u(t,x)− λ| (48)

is a weak solution to the following linear equation:

∂th+ divx (f(t,x, λ)h)−D2 · [a(λ)h] = ∂λζ(t,x, λ) , (49)

where f = ∂λf and a = A′.

Proof: It is enough to find derivative of (47) with respect to λ ∈ R to obtain (49). 2

The main theorem of the section is the following.

Theorem 28. Let d ≥ 1, and let u0, f and A satisfy conditions (i)–(iv) above.
Then there exists a quasi-solution to (44) augmented with the initial condition (45).

Proof: Consider the sequence of admissible solutions to the following regularised Cauchy prob-
lems

∂tun + divxfn(t,x, un) =D2 ·A(un).

un|t=0 =u0 ∈ L1(Rd) ∩ L∞(Rd),

where fn is a smooth regularisation with respect to (t,x) of f such that

fn(t,x, α) = fn(t,x, β) = 0 , (50)

and for any compact K ⊆ Rd+1
+

lim
n→∞

‖fn − f‖Lp(K×[α,β]) = lim
n→∞

‖∂λfn − ∂λf‖Lp(K×[α,β]) = 0 . (51)
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Notice that we can simply take for fn the convolution of f with a standard mollifier. It is well
known that there exists a solution un to such equation satisfying conditions (47) with f replaced
by fn (see [18] where existence was shown under much more restrictive conditions), i.e. the
following kinetic formulation holds (see Theorem 27):

∂thn + div (fn(t,x, λ)hn)−D2 · [a(λ)hn] = ∂λζn(t,x, λ) (52)

where fn(t,x, λ) = ∂λfn(t,x, λ), (ζn) is a sequence of non-negative entropy defect measures (see
Remark 26), and hn(t,x, λ) = sgn(un(t,x) − λ). According to (i) and (50), we know that (un)
remains bounded between α and β and therefore, the sequence (ζn) is bounded in C(Rλ;w −
?M(Rd+1

+ )). This implies that (ζn) is actually strongly precompact in Lrloc(Rλ; W
− 1

2 ,q

loc (Rd+1
+ ))

for any r ≥ 1 and q ∈
[
1, d+1

d+1− 1
2

)
(one can prove this in the same manner as [25, Theorem 1.6]

using that W
1
2 ,s(Rd+1) is compactly embedded into C(ClK), K ⊂⊂ Rd+1, for s

2 > d+ 1), and
let us denote by ζ the limit.

Let us pass to a subsequence (not relabelled) such that (hn) converges weakly-? to h in

L∞(Rd+1
+ × R). Due to linearity of (52), we then have

∂twn + div (f(t,x, λ)wn)−D2 · [a(λ)wn]

= div ((f(t,x, λ)− fn(t,x, λ))hn) + ∂λγn(t,x, λ) ,
(53)

where wn = hn−h and γn = ζn−ζ, and both sequences converge to zero (the first convergence is

weak-? in L∞(Rd+1
+ ×R), and the latter strong in Lr0loc(Rλ; W

− 1
2 ,r0

loc (Rd+1
+ ) for any r0 ∈ (1, 2d+2

2d+1 )).

Due to the boundedness of (un), (wn) is clearly uniformly compactly supported with respect to
λ on [α, β]. As we also have (51), (53) clearly satisfies conditions of Corollary 24 with q =∞ (see
also Remark 6). Therefore, on a subsequence (not relabeled), (

∫
R ρ(λ)wn(t,x, λ)dλ) converges

to zero in L1
loc(R

d+1
+ ) for any ρ ∈ Cc(R). Due to density arguments, we can insert ρ(λ) = χ[α,β],

obtaining

2un(t,x)− α− β =

∫ un(t,x)

α

dλ−
∫ β

un(t,x)

dλ

=

∫ β

α

sgn(un(t,x)− λ) dλ
n→∞−→

∫ β

α

h(t,x, λ) dλ ,

where the latter convergence is in L1
loc(R

d+1
+ ). Therefore, (un) strongly converges in L1

loc(R
d+1
+ )

toward

u(t,x) :=

∫ β
α
h(t,x, λ)dλ + α+ β

2
.

The function u is a quasi-solution to (44)–(45). 2

6. Existence of traces for quasi-solutions to (44)

In this section, we shall prove existence of strong traces for quasi-solutions of (44). Let us
first formally introduce the notion of traces.

Definition 29. Let u ∈ L1
loc(R

d+1
+ ). A locally integrable function u0 defined on Rd is called the

strong trace of u at t = 0 if ess limt→0+ u(t, ·) = u0 in L1
loc(Rd), i.e. for some set E ⊆ (0,∞) of

full Lebesgue measure and any relatively compact set K ⊂⊂ Rd it holds

lim
E3t→0

‖u(t, ·)− u0‖L1(K) = 0 . (54)

The following theorem holds.
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Theorem 30. Let f ∈ C1(R;Rd) and let A ∈ C1,1(R;Rd×d) be such that there exists σ ∈
C0,1(R;Rd×d) such that for any λ ∈ R we have a(λ) := A′(λ) = σ(λ)Tσ(λ). Moreover, assume
that the non-degeneracy condition is satisfied: for any compact K ⊆ R,

sup
ξ∈Sd−1

meas
{
λ ∈ K : 〈a(λ)ξ | ξ〉 = 0

}
= 0 , (55)

where Sd−1 denotes the unit sphere in Rd centered at the origin.
Then any bounded quasi-solution u ∈ L∞(Rd+1

+ ) to (44) admits the strong trace at t = 0,

i.e. there exists u0 ∈ L∞(Rd) such that

ess limt→0+ u(t, ·) = u0

strongly in L1
loc(Rd).

The structure of proof can be presented as follows.

• We prove existence of weak traces.

• We introduce the scaling t = t̂
m , x1 = y1 + x̂1√

m
, x2 = y2 + x̂2√

m
, . . . , xd = yd + x̂d√

m
where

y ∈ Rd is a fixed vector.
• We obtain a degenerate parabolic transport equation and we apply the velocity averaging

result.
• From the previous item, we conclude the existence of the strong traces.

in accordance with the described strategy, let us first show existence of the weak traces.

Proposition 31. Let h ∈ L∞(Rd+1
+ × R) be a distributional solution to (49) and let us define

E =
{
t ∈ R+ : (t,x, λ) is a Lebesgue point of

h(t,x, λ) for a.e. (x, λ) ∈ Rd × R
}
.

(56)

Then there exists h0 ∈ L∞(Rd+1), such that

h(t, ·, ·) ⇀ h0 , weakly-? in L∞(Rd+1) , as t→ 0 , t ∈ E .

Proof: Note first that E is of full measure. Since h ∈ L∞(Rd+1
+ ×R), the family {h(t, ·, ·)}t∈E is

bounded in L∞(Rd+1). Due to the weak-? precompactness of L∞(Rd+1), there exists a sequence
{tm}m∈N in E such that tm → 0 as m→∞, and h0 ∈ L∞(Rd+1), such that

h(tm, ·, ·) ⇀ h0 , weakly-? in L∞(Rd+1), as m→∞ . (57)

For φ ∈ C∞c (Rd), ρ ∈ C1
c(R), denote

I(t) :=

∫
Rd+1

h(t,x, λ)ρ(λ)φ(x) dxdλ , t ∈ E .

With this notation, (57) means that

lim
m→∞

I(tm) =

∫
Rd+1

h0(x, λ)ρ(λ)φ(x) dxdλ =: I(0) . (58)

Now, fix τ ∈ E and notice that for the regularization Iε = I ? ωε, where ωε is the standard
convolution kernel, it holds

lim
ε→0

Iε(τ) = I(τ).
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Then, fix m0 ∈ N, such that E 3 tm ≤ τ , for m ≥ m0, and remark that

I(τ)− I(tm) = lim
ε→0

∫ τ

tm

I ′ε(t) dt

=

d∑
j=1

∫
(tm,τ ]×Rd+1

h(t,x, λ)fj(t,x, λ)ρ(λ)∂xjφ(x) dt dx dλ

−
d∑

j,k=1

∫
(tm,τ ]×Rd+1

h(t,x, λ)ajk(λ)ρ(λ)∂xjxkφ(x) dt dx dλ

−
∫

(tm,τ ]×Rd+1

φ(x)ρ′(λ) dγ(t,x, λ) ,

where we have used that h is a distributional solution to (49). Hence, passing to the limit as
m→∞, and having in mind (58) and the fact that γ is locally finite up to the boundary t = 0,
we obtain

I(τ)− I(0) =

d∑
j=1

∫
(0,τ ]×Rd+1

h(t,x, λ)fj(t,x, λ)ρ(λ)∂xjφ(x) dt dx dλ

−
d∑

j,k=1

∫
(0,τ ]×Rd+1

h(t,x, λ)ajk(λ)ρ(λ)∂xjxkφ(x) dt dx dλ

−
∫

(0,τ ]×Rd+1

φ(x)ρ′(λ) dγ(t,x, λ) .

The right hand side clearly tends to zero as τ → 0. Thus, for all φ ∈ C∞c (Rd+1) and ρ ∈ C1
c(R)

we have limE3τ→0 I(τ) = I(0), i.e.

lim
E3τ→0

∫
Rd+1

h(τ,x, λ)ρ(λ)φ(x) dxdλ =

∫
Rd+1

h0(x, λ)ρ(λ)φ(x) dxdλ .

Having in mind that h(τ, ·, ·), τ ∈ E, is bounded, and that C∞c (Rd+1) is dense in L1(Rd+1), we

complete the proof. 2

Remark 32. If u is a bounded quasi-solution to (44), then in [47, Corollary 2.2] was proved that
it admits the weak trace. The same conclusion can be derived from the previous proposition.

Indeed, let M > 0 be such that

|u(t,x)| ≤M , a.e (t,x) ∈ Rd+1
+ .

Then, by the definition of h (it is the sign function; see (48))∫ M

−M
h(t,x, λ) dλ =

∫ M

−M
sgn
(
u(t,x)− λ

)
dλ =

∫ u(t,x)

−M
dλ−

∫ M

u(t,x)

dλ = 2u(t,x) .

Thus, the claim follows by Proposition 31 by noting that the characteristic function χ[−M,M ] of

the interval [−M,M ] is in L1(R). More precisely, we have

u(t, ·) ?
⇀ u0 :=

1

2

∫ M

−M
h0(·, λ) dλ (59)

weakly-? in L∞(Rd) as t→ 0, t ∈ E.
Moreover, for λ 7→ λχ[−M,M ](λ) ∈ L1(R) we have∫ M

−M
λh(t,x, λ) dλ =

∫ u(t,x)

−M
λ dλ−

∫ M

u(t,x)

λ dλ = u(t,x)2 −M2 .
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Therefore, one can similarly conclude that

u2(t, ·) ?
⇀ u1 :=

∫ M

−M
λh0(·, λ) dλ+M2 (60)

weakly-? in L∞(Rd) as t→ 0, t ∈ E.
If one can get that u1 = u2

0, by the standard procedure a strong convergence (i.e. a strong
trace) can be obtained from the above weak convergences. Namely, for an arbitrary ϕ ∈ Cc(Rd)
by (59)–(60) we have

lim
E3t→0

∫
Rd

(
u(t,x)−u0(x)

)2

ϕ(x) dx

= lim
E3t→0

∫
Rd

(
u(t,x)2 − 2u(t,x)u0(x) + u0(x)2

)
ϕ(x) dx

=

∫
Rd

(
u1(x)− u0(x)2

)
ϕ(x) dx .

(61)

A sufficient condition for u1 = u2
0 in terms of a certain strong convergence of rescaled

(sub)sequences is given in Proposition 33.

Now we use the rescaling procedure (or the so-called blow-up method) in order to obtain
a sufficient condition for the existence of the strong trace. More precisely, let us change the

variables in (49) in the following way: t = t̂
m , x1 = y1 + x̂1√

m
, x2 = y2 + x̂2√

m
, . . . , xd = yd + x̂d√

m
,

i.e.

(t,x, λ) =
( t̂
m
,

x̂√
m

+ y, λ
)
, (62)

where y ∈ Rd is a fixed vector. We get that a rescaled solution to (49), denoted by

hm(t̂, x̂,y, λ) := h
( t̂
m
,

x̂

m
+ y, λ

)
satisfies

Lhm :=

(
∂t̂hm +

1√
m

d∑
k=1

∂x̂k (fkhm)

)
−

d∑
k,j=1

∂2
x̂j x̂k

(ajkhm) =
1

m
∂λγ

y
m , (63)

hm
∣∣
t=0

=h0

( x̂

m
+ y, λ

)
, (64)

where the initial conditions are understood in the weak sense, and h0 is the weak trace from
Proposition 31.

Let us remark that the equality between γ and γym is understood in the sense of distributions:

〈γym, ϕ〉 = md/2+1

∫
Rd+1

+ ×R
ϕ
(
mt,m

√
m(x− y), λ

)
dγ(t,x, λ) . (65)

If we prove that the sequence∫
R
h
( t̂
m
,

x̂√
m

+ y, λ
)
ρ(λ)dλ , m ∈ N , (66)

converges strongly in L1
loc(R

d+1
+ ×Rd) along a subsequence, we will obtain that function u admits

the trace in the sense of Definition 29. More precisely, the following proposition holds.

Proposition 33. Let u be a bounded quasi-solution to (44) and let h be given by (48). Assume
that for every ρ ∈ C1

c(R) the sequence given by (66) converges toward
∫
R h0(y, λ)ρ(λ)dλ in

L1
loc(R

d+1
+ × Rdy) along a subsequence, where h0 is the weak trace of h (see Proposition 31).
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Then, the function u admits the strong trace at t = 0 and it is equal to

u0(x) :=
1

2

∫ M

−M
h0(x, λ) dλ ,

where M = ‖u‖L∞(Rd+1
+ ).

Proof: Since both h and h0 are bounded, using the density arguments we conclude that if
the (sub)sequence from (66) converges in L1

loc(R
d+1
+ × Rd) for any ρ ∈ C1

c(R), then it will also
converge for any ρ ∈ L1(R). Let us take ρ = χ[−M,M ], where χ[−M,M ] is the characteristic
function of the interval [−M,M ], and M > 0 is such that

|u(t,x)| ≤M , a.e. (t,x) ∈ Rd+1
+ .

Thus, for any non-negative ϕ ∈ Cc(Rd+1
+ × Rd), it holds (along the subsequence from the

formulation of the proposition)

lim
m→∞

∫
Rd×Rd+1

+

ϕ(t̂, x̂,y)

∣∣∣∣∫ M

−M

(
h
( t̂
m
,

x̂√
m

+ y, λ
)
− h0(y, λ)

)
dλ

∣∣∣∣dydx̂dt̂ = 0 .

Using the definition of the function h (it is the sign function; see (48)) we have∫ M

−M
h
( t̂
m
,

x̂√
m

+ y, λ
)
dλ =

∫ M

−M
sgn

(
u
( t̂
m
,

x̂√
m

+ y
)
− λ

)
dλ

=

∫ u( t̂m ,
x̂√
m

+y)

−M
dλ−

∫ M

u( t̂

mβ
, x̂
mα+y)

dλ

= 2u
( t̂
m
,

x̂√
m

+ y
)
.

Taking this into account and the change of variables z = x̂
mα +y (with respect to y), the previous

limit reads

lim
m→∞

∫
Rd×Rd+1

+

ϕ
( t̂
m
, x̂, z− x̂√

m

)∣∣∣∣2u( t̂m, z
)
−
∫ M

−M
h0

(
z− x̂√

m
,λ
)
dλ

∣∣∣∣ dzdx̂dt̂ = 0 .

Furthermore, the limit still holds if we replace ϕ(t̂, x̂, z − x̂√
m

) by ϕ(t̂, x̂, z) and h0(z − x̂√
m
, λ)

by h0(z, λ), i.e.

lim
m→∞

∫
Rd×Rd+1

+

ϕ(t̂, x̂, z)

∣∣∣∣2u( t̂m, z
)
−
∫ M

−M
h0(z, λ) dλ

∣∣∣∣ dzdx̂dt̂ = 0 . (67)

Indeed, the first replacement is justified since

(t̂, x̂, z) 7→
∣∣∣∣2u( t̂m, z

)
−
∫ M

−M
h0

(
z− x̂√

m
,λ
)
dλ

∣∣∣∣
is bounded and ϕ is a continuous function with compact support, hence the convergence

lim
m→∞

ϕ
(
t̂, x̂, z− x̂√

m

)
= ϕ(t̂, x̂, z)

is uniform in (t̂, x̂, z). The second one follows by the convergence (implied by the continuity of
the average and the Lebesgue dominated convergence theorem)

lim
m→∞

∫ M

−M

∣∣∣∣h0

(
z− x̂√

m
,λ
)
− h0(z, λ)

∣∣∣∣ dλ = 0

in L1
loc(Rd × Rd+1

+ ).
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Therefore, due to arbitrariness of ϕ in (67), we conclude

u
( t̂

mβ
, z
)
→ 1

2

∫ M

−M
h0(z, λ) dλ, m→∞

in L1
loc(R

d+1
+ ) along the subsequence from the formulation of the proposition. This means that

(for another subsequence not relabelled) there exists Ê ⊆ R+ of full measure such that for any

t̂ ∈ Ê we have

u
( t̂
m
, z
)
→ 1

2

∫ M

−M
h0(z, λ) dλ = u0(z), m→∞ (68)

in L1
loc(Rd). It is easy to see that for E given by (56) set E∞ :=

⋂
m∈N

mE is of full measure

(since E is of full measure). Thus, the intersection Ê ∩ E∞ is non-empty (in fact it is a set of

full measure as well), so we can choose t̂ ∈ R+ such that (68) holds and t̂
m ∈ E, m ∈ N.

Now, choose ρ(λ) = λχ[−M,M ](λ) where χ[−M,M ](λ) is the characteristic function of the
interval [−M,M ]. It holds according to Proposition 31 (see also Remark 32)

u2(t,x) =

∫ M

−M
λh(t,x, λ) dλ+M2 ?

⇀

∫ M

−M
λh0(x, λ) dλ+M2 =: u1(x)

in L∞(Rd) as E 3 t→ 0. Since the weak-? convergence in L∞(Rd) implies the weak convergence
in L1

loc(Rd), and since weak and strong limits coincide, from here and (68) we see that it must
be u1 = u2

0. Finally, by (61) (see Remark 32) we have

u(t, ·)→ u0

in L2
loc(Rd) as t→ 0, t ∈ E, which implies the convergence in L1

loc. Hence, u0 is the strong trace.

2

Having the last proposition in mind, we clearly need the following theorem.

Theorem 34. Under assumption of Theorem 30, let h be given by (48), and let h0 be the weak
trace of h (see Proposition 31).

Then, for any ρ ∈ C1
c(R), the sequence of functions

(t,x,y) 7→
∫
R
h
( t
m
,

x√
m

+ y, λ
)
ρ(λ) dλ

converges to
∫
R h0(y, λ)ρ(λ)dλ in L1

loc(R
d+1
+ × Rd).

Proof: First, notice that for every y ∈ Rd, the sequence of function (hm) satisfies diffusive
transport equation (63) which can be rewritten in the form

∂t̂hm −
d∑

k,j=1

∂2
x̂j x̂k

(ajkhm) = − 1√
m

d∑
k=1

∂x̂k (fkhm) +
1

m
∂λγ

y
m

Clearly, 1√
m

∑d
k=1 ∂x̂k (fkhm) converges strongly in L2

loc(R;H−1
loc (Rd+1

+ )). Moreover, 1
mγ

y
m con-

verges to zero inMloc(Rd+1
+ ×R) (this is proved in the same way as [59, Lemma 2] or [48, Lemma

3.2]). Therefore, keeping in mind conditions (55), we can apply Theorem 1 to conclude that for
every ρ ∈ C1

c(R) there exists a subsequence of (
∫
hm(·, λ)ρ(λ)dλ) (not relabelled) strongly con-

verging in L1
loc(R

d+1
+ ) toward say

∫
h̃(t,x,y, λ)ρ(λ)dλ. We note that h̃(t,x,y, λ) does not depend

on ρ since it is a weak limit of (hm) in L2
loc(R

d+1
+ × R) along appropriate subsequence.
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On the other hand, the sequence (hm) satisfies (63), (64) and thus h̃ satisfies the Cauchy
problem

∂t̂h̃−
d∑

k,j=1

∂2
x̂j x̂k

(ajkh̃) = 0 (69)

h̃
∣∣∣
t=0

= h0(y, λ), (70)

which implies h̃ ≡ h0(y, λ) since the solution of the latter Cauchy problem is unique. More-
over, from here it follows that the entire sequence (

∫
hm(·, λ)ρ(λ)dλ) must converge toward

(
∫
h0(·, λ)ρ(λ)dλ) (since every converging subsequence must converge toward the solution to

(69), (70)).
We have thus proved that (hm) satisfies conditions of Proposition 33 and this in turn implies

that the quasi-solution to (44) indeed admits existence of strong traces. 2

7. Appendix

In this section, we provide some auxiliary statements that we use in the proof of the velocity
averaging result as well as the proof of Lemma 10.

Lemma 35. Assume d ≥ 2 and that a matrix function a satisfies conditions of Lemma 9. Then

(i) For a.e. λ ∈ S and r ∈ (1, d) the Fourier multiplier operator A 1
|·|+〈a(λ)· | ·〉

is bounded

operator from Lr(Rd) to Lr
∗
(Rd) uniformly with respect to λ ∈ S, where r∗ = dr

d−r .

(ii) For a.e. λ ∈ S and any k ∈ {1, 2, . . . , d}, r ∈ (1,∞), the operator ∂xkA 1
|·|+〈a(λ)· | ·〉

is

continuous operator from Lr(Rd) to Lr(Rd) uniformly with respect to λ ∈ S.

Proof: (i) It is well known that the Riesz potential A 1
|ξ|

is continuous mapping from

Lr(Rd) to Lr
∗
(Rd) for r∗ = dr

d−r [54, Section 5]. Moreover, the operator A |ξ|
|ξ|+〈a(λ)ξ | ξ〉

is continuous operator from Lr(Rd) to Lr(Rd) by Lemma 10 (taking into account the
invariance of multipliers under orthogonal transformations; see the proof of Lemma 9).
Now, the statement follows by:

A 1
|ξ|+〈a(λ)ξ | ξ〉

= A 1
|ξ|
◦ A |ξ|

|ξ|+〈a(λ)ξ | ξ〉
.

(ii) The second part follows by applying Lemma 9 on ψ(ξ) = 2πiξk since

∂xkA 1
|ξ|+〈a(λ)ξ | ξ〉

= A 2πiξk
|ξ|+〈a(λ)ξ | ξ〉

.
2

Now, we are going to prove Lemma 10, but first we develop two auxiliary results that are
given in the following two lemmata.

Lemma 36. Let κ = (κ1, κ2, . . . , κd) ∈ [0,∞)d and define f : Rd → R by

f(ξ) =
|ξ|

|ξ|+
d∑
j=1

κjξ2
j

.

For every multi-index α ∈ Nd0 and ξ ∈ Rd \ {0}, it holds

(∂αf)(ξ) =

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|−1

Pα

(
κ, ξ,

1

|ξ|

)
,
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where Pα(κ, ξ, η) is a polynomial consisting of the terms Cκβξγηl for a constant C = C(α, d),
multi-indices β,γ ∈ Nd0 and l ∈ N0, such that

αj + γj ≥ 2βj , j = 1, . . . , d ; |α| ≥ |β| ; |γ| = 1 + l + |β| . (71)

Proof: We prove the claim by the induction argument with respect to the order of derivative
n = |α|.

For n = 0 (|α| = 0), we have P0 = |ξ| = |ξ|2
|ξ| =

d∑
j=1

ξ2
j

1
|ξ|2 . It is easy to check that conditions

(71) are satisfied.
Assume now that the statement holds for some n ∈ N0 and let us prove that it holds for n+1.

Let α̃ ∈ Nd0, |α̃| = n+ 1, and let s ∈ {1, 2, . . . , d} and α ∈ Nd0, |α| = n, be such that α̃ = es+α,
where es is the s-th vector of the canonical basis of Rd. By the Schwarz rule and the assumption
of the induction argument we have

∂α̃f(ξ) = ∂ξs

((
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|−1

Pα

(
κ, ξ,

1

|ξ|

))

= (−|α| − 1)

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|−2(
ξs
|ξ|

+ 2κsξs

)
Pα

(
κ, ξ,

1

|ξ|

)

+

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|+1

(∂ξsPα)
(
κ, ξ,

1

|ξ|

)
−
(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|+1

(∂ηPα)
(
κ, ξ,

1

|ξ|

) ξs
|ξ|3

=

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α̃|−1
[
−|α̃|

(
ξs
|ξ|

+ 2κsξs

)
Pα

(
κ, ξ,

1

|ξ|

)

+

(
|ξ|2

|ξ|
+

d∑
j=1

κjξ
2
j

)
(∂ξsPα)

(
κ, ξ,

1

|ξ|

)
−
(
ξs
|ξ|2

+

d∑
j=1

κj
ξsξ

2
j

|ξ|3

)
(∂ηPα)

(
κ, ξ,

1

|ξ|

)]

=:

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α̃|−1

Pα̃

(
κ, ξ,

1

|ξ|

)
.

From here, a direct analysis of the six terms forming Pα̃(κ, ξ, η) provides (71). 2

Analogously one can prove the following result.

Lemma 37. Let κ = (κ1, κ2, . . . , κd) ∈ [0,∞)d and m ∈ {1, 2, . . . , d}, and define g : Rd → R by

g(ξ) =
κmξ

2
m

|ξ|+
d∑
j=1

κjξ2
j

.

For every multi-index α ∈ Nd0 and ξ ∈ Rd \ {0}, it holds

(∂αg)(ξ) =

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|−1

Pα

(
κ, ξ,

1

|ξ|

)
,

where Pα(κ, ξ, η) is a polynomial consisting of the terms Cκβξγηl for a constant C = C(α, d,m),
multi-indices β,γ ∈ Nd0 and l ∈ N0, such that

αj + γj ≥ 2βj , j = 1, . . . , d ; |α|+ 1 ≥ |β| ; |γ| = 1 + l + |β| ; βm ≥ 1 . (72)

Now, we can prove Lemma 10.



DEGENERATE PARABOLIC EQUATIONS 33

Proof of Lemma 10: Since the space of Lp-Fourier multipliers is an algebra, it is sufficient to
prove the statement for s ∈ [0, 1]. For s = 0 the claim trivially holds, so let us first consider
s = 1.

We use the Marcinkiewicz theorem (Theorem 8). Let α ∈ Nd0 and ξ ∈ Rd \ {0}. By the
previous lemmata, for both functions f and g it is sufficient to estimate

ξακβξγ
1

|ξ|l

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|−1

,

where β,γ and l satisfy (71) and (72), respectively. Thus, we have∣∣∣∣∣ξακβξγ
1

|ξ|l

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|−1
∣∣∣∣∣ =

d∏
j=1

(κjξ
2
j )βj

d∏
j=1

|ξj |αj+γj−2βj
1

|ξ|l
1(

|ξ|+
d∑
j=1

κjξ2
j

)|α|+1

≤ |ξ||α|+|γ|−2|β|−l(
|ξ|+

d∑
j=1

κjξ2
j

)|α|+1−|β|
=

|ξ||α|+1−|β|(
|ξ|+

d∑
j=1

κjξ2
j

)|α|+1−|β|
≤ 1 ,

where in the first inequality we have used |ξj |αj+γj−2βj ≤ |ξ|αj+γj−2βj as αj + γj − 2βj ≥ 0 by
(71) and (72), while the last inequality is trivial since |α|+ 1− |β| ≥ 0 again by (71) and (72).
Therefore, by Theorem 8, f and g are Lp-multipliers for any p ∈ (1,∞), and the norm of the
corresponding Fourier multiplier operators is independent of κ.

For s ∈ (0, 1) the symbols are given by h◦#, where h(x) = xs and we us # to denote either f
or g, i.e. # ∈ {f, g}. By the the Marcinkiewicz theorem and the generalised chain rule formula
(known as the Faá di Bruno formula; see e.g. [35]) it is sufficient to estimate

ξαh(k)(#(ξ))

k∏
i=1

∂δ
i

#(ξ) ,

where h(k) represents the derivative of the k-th order, k ∈ {1, 2, . . . , |α|} and δi ∈ Nd0 \ {0} are

such that
∑k
i=1 δ

i = α. By lemmata 36 and 37, an arbitrary summand of ∂δ
i

#(ξ) is given by
(up to a constant factor)

κβiξγ
i 1

|ξ|li

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|δi|−1

,

where βi,γi, li satisfy either (71) or (72), with δi in place of α. Let us define

β :=

k∑
i=1

βi , γ :=

k∑
i=1

γi , l :=

k∑
i=1

li .

Since the derivative of h of the k-th order is equal to (up to a constant factor) xs−k, we are
finally left to estimate

ξα(#(ξ))s−kκβξγ
1

|ξ|l

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|−k
, (73)

where we have used
∑k
i=1 δ

i = α.
Let us consider first # = f . In this case, using (71), we have

αj + γj ≥ 2βj , j = 1, . . . , d ; |α| ≥ |β| ; |γ| = k + l + |β| ,
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and (73) reads

ξα+γκβ 1

|ξ|l+k−s

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|−s
.

With the analogous approach as in the case s = 1, one can get that the term above is estimated
by

|ξ||α|+|γ|−2|β|−l−k+s(
|ξ|+

∑d
j=1 κjξ

2
j

)|α|−|β|+s =
|ξ||α|−|β|+s(

|ξ|+
∑d
j=1 κjξ

2
j

)|α|−|β|+s ≤ 1 ,

where we have used that |γ| = k + l + |β|.
In the case # = g by (72) we have

αj + γj ≥ 2βj , j = 1, . . . , d ; |α|+ k ≥ |β| ; |γ| = k + l + |β| ; βm ≥ k ,

which we use in estimating (73) to get∣∣∣∣∣ξα+γκβ 1

(κmξm)k−s
1

|ξ|l

(
|ξ|+

d∑
j=1

κjξ
2
j

)−|α|−s∣∣∣∣∣
≤ (κmξ

2
m)βm−k+s

d∏
j=1
j 6=m

(κjξ
2
j )βj

|ξ||α|+|γ|−2|β|−l(
|ξ|+

∑d
j=1 κjξ

2
j

)|α|+s
≤ |ξ||α|−|β|+k(
|ξ|+

∑d
j=1 κjξ

2
j

)|α|−|β|+k ≤ 1 .

Thus, the statement is proven.

2
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[41] M. Lazar, D. Mitrović: On an extension of a bilinear functional on Lp(Rn) ×E to Bôchner spaces with an
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