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Abstract

We present the discretization schemes for the two simplified homogenized models of im-
miscible incompressible two-phase flow in double porosity media with thin fractures. The
two models were derived previously by the authors by different linearizations of the nonlinear
local problem called the imbibition equation which appears in the homogenized model after
passage to the limit as ε → 0. The models are fully homogenized with the matrix-fracture
source terms expressed as a convolution.

1 Introduction

A naturally fractured reservoir is a porous medium consisting of two superimposed continua, a
discontinuous system of periodically repeating medium-sized matrix blocks interlaced on a fine
scale by a connected system of thin fissures. The fractures are notably more permeable than the
porous matrix blocks. Hence, the reservoir’s effective permeability is increased with respect to the
permeability of the merely rock matrix. The transport of fluids through the reservoir primarily
takes place within the fracture system where the flow is much readier than in the porous rock.
On the other hand, the matrix stores most of the fluid. Moreover, the fractures are typically
very narrow compared to the size of the reservoir. These contrasts cause great difficulties in
numerical modelling of multiphase flow in such media because neither fractures nor matrix, or
their interactions must not be neglected in a model of the flow. This type of porous medium is
frequently encountered in hydrology and petroleum applications, for example improved oil recovery
in hydrocarbon reservoirs, subsurface remediation or the disposal of radioactive waste.

Dual-continuum or double porosity models of multiphase flow in fractured porous media do
not consider individual fractures but a network of small interconnected fractures. Two two large
differences in scale are present in such systems: fracture width is very small compared to the
scale of the domain and fracture permeability is much larger than the permeability of surrounding
material. Certain averaging or homogenization processes are applied in order to obtain simplified
description of matrix-fracture system and its interactions on a global scale of a reservoir.

The method of two small parameters ε, δ for homogenization of the two-phase flow in double
porosity media was proposed in [?, ?]. The parameter ε describes the periodicity of the fractured
porous medium and δ is the relative width of the fractures. The homogenization process here
consists of two steps: first homogenization as ε → 0 and then one needs to pass to the limit as
δ → 0. As further references on this procedure we refer to [1, 2] and the references therein. The
first result on the homogenization of the two-phase flow in double porosity media was obtained in
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[8] by the method of two small parameters. The method of two small parameters was later used
also in [11] where a homogenized model of the two-phase non-equilibrium flow in fractured porous
media was derived.

In the global double porosity δ-problem obtained in [8] after passing to the limit as ε → 0
there appear additional matrix-fracture source terms that are defined implicitly via solutions of a
nonlinear local boundary value problem known as the imbibition equation. The nonlinearity of the
imbibition equation presents difficulties in numerical simulations of the model since no analytic
expression of the matrix-fracture source term is available. In order to overcome this issue, one
can linearize the imbibition equation and then express the matrix-fracture source term explicitly
from the linearized equation. In [8] the imbibition equation is linearized by using an appropriate
constant, as suggested by [3]. Then in [9] we present a new, variable and more general linearization
of the imbibition equation which gives a new simplified double porosity model. In this paper we
provide the dicretization schemes for the two simplified double porosity models obtained by the
two linearizations.

The rest of the paper is organized as follows. In Section 2 we present the two fully homogenized
simplified double porosity models of the two-phase flow in the case of thin fractures. The main
contributions of the paper are contained in Sections 3 and 4 in which we propose the discretization
schemes of the effective system including the matrix-fracture source terms in the convolution form
obtained by constant linearization and by variable linearization, respectively.

2 Global simplified double porosity models I and II

In this section we present two global double porosity - type models of incompressible two-phase
flow in fractured porous media derived previously by the authors in [8] and [9], respectively. In
Sections 3 and 4 we will present the numerical schemes for these models.

Let the reservoir Ω ⊂ Rd, d = 1, 2, 3, and we denote ΩT = Ω× (0, T ), where T > 0 is fixed. In
the derivation of our models it is assumed that the reservoir Ω is composed of the matrix blocks
and the highly permeable connected network of fractures. The characteristic matrix block size
ε is small compared to the size of the flow domain, i.e., ε ≪ 1 is a small parameter describing
the periodicity of the fractured porous medium. The thickness of the fractures is supposed to be
of order εδ, where 0 < ε ≪ δ < 1 is a second small parameter, describing the relative thickness
or opening of the fractures. The reference cell is Y = (0, 1)d and the domain Ω is taken to be
covered by a pavement of cells εY (see Figure 1). The porosities of the blocks and the fractures
are supposed to be constant and are denoted by Φm and Φf , respectively. The permeabilities of
the blocks and the fractures are highly contrasted. In the double porosity model it is assumed
that the fracture porosity is kf , while the matrix porosity is (εδ)2km, where kf and km are of the
same order.
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(a) Reference cell: Y = ]0, 1[d

Ωε,δm

Ωε,δf
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ε

εδ

εδ

(b) Domain: Ω ⊂ Rd, d = 2, 3

Figure 1: The geometry of the reservoir Ω

The starting point in derivation of our global simplified models is the system describing the
two-phase incompressible flow in ΩT , which depends on two small parameters ε and δ. In order
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to obtain the effective model, the first step is to pass to the limit as ε → 0, which has been proved
rigorously in [4, 5, 12]. The resulting global δ - double porosity model is not fully homogenized
(in the sense of [10]) since the effective permeability and the matrix-fracture source term are given
through some unknown functions which are defined as the solutions of the coupled local problems.
However, by letting the small parameter δ to zero one can obtain full decoupling of the local and
the global problem. In the case of the two-phase flow that problem was first studied in [8] by
performing the linearization of the imbibition equation by a constant, as suggested by [3] (see
the details in [8]). It is shown in [8] that in the limit as δ → 0 the effective fracture equations
coupled with the linearized imbibition equation obtained by this constant linearization reduce to
the system: 

Φf
∂S

∂t
− div

(
k∗λw,f (S)∇Pw

)
= Qw

−Φf
∂S

∂t
− div

(
k∗λn,f (S)∇Pn

)
= Qn,

Pc,f (S) = Pn − Pw.

(1)

Here S, Pw and Pn are the wetting phase saturation and pressure and non wetting phase pressure
in the system of fractures, respectively; Pc,f , λw,f and λn,f are the capillary pressure function and
the phase mobility functions in the fractures; k∗ = kf (d−1)/d is the reduced fracture permeability.
The terms Qw and Qn are the wetting phase and the non wetting phase source terms modeling the
phase mass transfer from the matrix to the fracture system governed by the capillary imbibition
and are given by

Qw(x, t) = −Cm
∂

∂t

∫ t

0

P(S(x, u))− P(S(x, 0))√
t− u

du = −Qn(x, t), (2)

where P(S)
def
= P−1

c,m(Pc,f (S)), Cm = 2d
√
Φmkmαm/π, αm =

∫ 1

0
αm(s) ds, and

αm(s)
def
=

λw,m(s)λn,m(s)

λm(s)
|P ′

c,m(s)|. (3)

Here Pc,m, λw,m and λn,m are the capillary pressure function and the phase mobility functions in
the matrix and the total mobility in the matrix λm(s) = λw,m(s) + λn,m(s).

Let us note that in this final effective model the effective porosity is the fracture porosity,
the effective permeability is reduced fracture permeability, and the matrix-fracture source term
Qw(t) is expressed as the convolution (2) with the kernel K(t) = Cm/

√
t. The model (1), (2)

(double porosity model I) is fully homogenized, in other words the local and the global problems
are completely decoupled, since the effective permeability and the matrix-fracture source term are
given explicitly and there is no need to solve local problems.

The new, more general approach to the linearization of the imbibition equation presented in [9]
leads to our second effective model (double porosity model II). In this case a variable linearization
of the imbibition equation was proposed. The effective model consists of the system (1) with the

effective matrix-fracture source term Q̃w = −Q̃n given by

Q̃w(x, t) = −C̃m
∂

∂t

∫ t

0

βm(P(S(x, s)))− βm(P(S(x, 0))√
τx(t)− τx(s)

ds. (4)

Here C̃m = 2d
√
Φmkm/π and

τx(t)
def
=

t∫
0

βm(P(S(x, s)))− βm(P(S(x, 0)))

P(S(x, s))− P(S(x, 0))
ds, (5)

with

βm(s)
def
=

s∫
0

αm(ξ) dξ. (6)
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We note that linearization of the imbibition equation by a constant is a special case of this
new linearization by using a variable coefficient.

Remark 1 Numerical simulations (for the details see [9]) have shown that the effective matrix-
fracture exchange source term (4) obtained by the new variable linearization in [9] gives a much
better approximation of the exact one than the corresponding effective matrix-fracture exchange
source term (2) obtained previously by a constant linearization in [8].

3 Discretization of double porosity model I

The model (1)–(2) will be discretized by the cell centered finite volume method on a structured
grid with the two-point flux approximation. First we present the time discretization.

Assume that we have a sequence of time steps: 0 = t0 < t1 < · · · < tn < · · · and denote
δtn = tn+1 − tn and also In = (tn−1, tn]. All unknowns are supposed to be piecewise constant
in time, such that S(x, t) =

∑
k S

k(x)χIk(t), where Sk(x) = S(x, tk), and similarly for other
variables. Implicit Euler discretization gives for t ∈ In+1,

Φf
Sn+1 − Sn

δtn
− div

(
λw,f (S

n+1)k∗∇Pn+1
w

)
= Qn+1/2,

−Φf
Sn+1 − Sn

δtn
− div

(
λn,f (S

n+1)k∗∇Pn+1
n

)
= −Qn+1/2.

The source term is discretized in the following way:

Qn+1/2 = −Cm

δtn

(∫ tn+1

0

n+1∑
k=1

P(Sk)− P(S0)√
tn+1 − s

χIk(s) ds

−
∫ tn

0

n∑
k=1

P(Sk)− P(S0)√
tn − s

χIk(s) ds
)

= − 1

δtn

( n+1∑
k=1

(P(Sk)− P(S0))

∫ tk

tk−1

Cmds√
tn+1 − s

−
n∑

k=1

(P(Sk)− P(S0))

∫ tk

tk−1

Cmds√
tn − s

)
= −Cm

δtn

( n+1∑
k=1

(P(Sk)− P(S0))In+1
k −

n∑
k=1

(P(Sk)− P(S0))Ink

)
= −Cm

δtn

(
(P(Sn+1)− P(S0))In+1

n+1 +

n∑
k=1

(P(Sk)− P(S0))(In+1
k − Ink )

)
where we denoted for 1 ≤ k ≤ n,

Ink =

∫ tk

tk−1

Cmds√
tn − s

= 2Cm(
√

tn − tk−1 −
√
tn − tk) =

δtk−1

√
tn − tk−1 +

√
tn − tk

.

Obviously, In+1
n+1 = 2Cm

√
δtn. If the time grid is equidistant, then we have In+1

k+1 = Ink = Jn−k,
since ∫ tk+1

tk

ds√
tn+1 − s

=

∫ tk

tk−1

ds√
tn − s

=
2
√
δt√

n− k + 1 +
√
n− k

, Jl =
2Cm

√
δt

√
l + 1 +

√
l
,

leading to a convolution-like representation:

Qn+1/2 = − 1

δt

n∑
k=0

[P(Sk+1)− P(Sk)]Jn−k.
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Generally we have:

Φf
Sn+1

δtn
+

2Cm√
δtn

P(Sn+1)− div

(
λw,f (S

n+1)k∗∇Pn+1
w

)
= Φf

Sn

δtn
+

1

δtn
Fn

(7)

−Φf
Sn+1

δtn
− 2Cm√

δtn
P(Sn+1)− div

(
λn,f (S

n+1)k∗∇Pn+1
n

)
= −Φf

Sn

δtn
− 1

δtn
Fn

(8)

where, for n > 0,

Fn = P(S0)In+1
n+1 −

n∑
k=1

(P(Sk)− P(S0))(In+1
k − Ink ) (9)

= P(S0)(In+1
n+1 +

n∑
k=1

(In+1
k − Ink ))−

n∑
k=1

P(Sk)(In+1
k − Ink ). (10)

Also, note that in the case n = 0 we have,

Q1/2
w = −Cm

δt0

(∫ t1

0

P(S1)− P(S0)√
t1 − s

ds− 0
)

= −Cm

δt0
(P(S1)− P(S0))

∫ t1

0

ds√
t1 − s

.

Therefore, for n = 0 we have

F0 = P(S0)I11 = 2
√
δt0P(S0),

and (9) holds also for n = 0.
Let us denote Dn

k = Ink − In+1
k for k = 1, . . . , n. We have

Dn
k = Ink − In+1

k =
Cmδtk−1

√
tn − tk−1 +

√
tn − tk

− Cmδtk−1

√
tn+1 − tk−1 +

√
tn+1 − tk

> 0

since the function

ω(t) =
Cm√
t

is monotone decreasing. We also introduce

Dn
0 = In+1

n+1 +

n∑
k=1

(In+1
k − Ink ) = In+1

1 +

n∑
k=1

(In+1
k+1 − Ink ).

Let us note that in the equidistant time stepping we have In+1
k+1 − Ink = 0 and then Dn

0 = In+1
1 > 0.

In the non equidistant case the terms In+1
k+1 − Ink can have any sign, so we will introduce the

assumption that the time discretization is such that

Dn
0 > 0. (11)

This will always be the case if the time stepping is close to the equidistant one.
With introduced notation we can write

Fn =

n∑
k=0

Dn
kP(Sk) (12)
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with Dn
k > 0 for k = 0, 1, . . . , n.

Let us also note that

n∑
k=0

Dn
k =

n∑
k=1

(Ink − In+1
k ) + In+1

n+1 +

n∑
k=1

(In+1
k − Ink ) = In+1

n+1 = 2Cm

√
δtn. (13)

We use standard finite volume discretization of the two phase system written in the phase
formulation [7] (see [6] for notations):

Φf,K
Sn+1
K

δtn
+

2Cm√
δtn

P(Sn+1
K )−

∑
L∈NK

τK|Lk
∗
K|Lλ

n+1
w,f,K|Lδ

n+1
K,L (Pw)

= Φf
Sn
K

δtn
+

1

δtn
Fn

K

(14)

−Φf,K
Sn+1
K

δtn
− 2Cm√

δtn
P(Sn+1

K )−
∑

L∈NK

τK|Lk
∗
K|Lλ

n+1
n,f,K|Lδ

n+1
K,L (Pn)

= −Φf,K
Sn
K

δtn
− 1

δtn
Fn

K

(15)

In this discretization we use phase by phase upstream choice: the value of the mobility of each
phase on the edge K|L is determined by the sign of the difference of the discrete phase pressure.

λn+1
w,f,K|L = λw,f (S

n+1
w,K|L), λn+1

n,f,K|L = λn,f (S
n+1
n,K|L), (16)

with

Sn+1
w,K|L =

{
Sn+1
K if (K,L) ∈ En+1

w

Sn+1
L otherwise,

Sn+1
n,K|L =

{
Sn+1
K if (K,L) ∈ En+1

n

Sn+1
L otherwise,

where En+1
w and En+1

n are two subsets of E such that

{(K,L) ∈ E : δn+1
K,L (Pw) < 0} ⊂ En+1

w ⊂ {(K,L) ∈ E : δn+1
K,L (Pw) ≤ 0}

{(K,L) ∈ E : δn+1
K,L (Pn) < 0} ⊂ En+1

n ⊂ {(K,L) ∈ E : δn+1
K,L (Pn) ≤ 0}

(17)

4 Discretization of double porosity model II

Second model differs from the first one only in the matrix-fracture exchange term which takes the
form:

Q̃w(x, t) = −Cm
∂

∂t

∫ τx(t)

0

P(S(x, (τx)
−1(u)))− P(S(x, 0))√
τx(t)− u

du, (18)

where Cm = 2
√
Φmkm/π and τx is given by

τx(t) =

t∫
0

α̂m(x, s) ds.

We have chosen expression for the matrix-fracture exchange term given by (18) but it is also
possible to use other forms, for example (4).

We will discretize this model using the same approach as in the constant linearization model.
Assume that we have a sequence of time instances 0 = t0 < t1 < · · · < tn < · · · and denote by τnx =
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τx(t
n). If the saturation S is constant in time on each interval (tk, tk+1) then P(S(x, (τx)

−1(u)))−
P(S(x, 0)) is constant on each interval (τkx , τ

k+1
x ) and we can write

Q̃n+1/2
w ≈ −Cm

δtn

(∫ τn+1
x

0

P(S(x, (τx)
−1(u)))− P(S(x, 0))√
τn+1
x − u

du

−
∫ τn

x

0

P(S(x, (τx)
−1(u)))− P(S(x, 0))
√
τnx − u

du
)

= − 1

δtn

( n+1∑
k=1

∫ τk
x

τk−1
x

Cmdu√
τn+1
x − u

(P(Sk(x))− P(S0(x)))

−
n∑

k=1

∫ τk
x

τk−1
x

Cmdu
√
τnx − u

(P(Sk(x))− P(S0(x)))
)
.

As before we have

Ink =

∫ τk
x

τk−1
x

Cmdu
√
τnx − u

= 2Cm(

√
τnx − τk−1

x −
√
τnx − τkx ) =

2Cm(τkx − τk−1
x )√

τnx − τk−1
x +

√
τnx − τkx

.

Note that for s ∈ (tk−1, tk) we have

τ(s) =

∫ s

0

α̂m(u) du =

k−1∑
l=1

α̂l
mδtl−1 + α̂k

m(s− tk−1),

where α̂l
m = α̂m(tl), so that

τ(tn)− τ(tk−1) =

n∑
l=k

α̂l
mδtl−1, τ(tn)− τ(tk) =

n∑
l=k+1

α̂l
mδtl−1, τ(tk+1)− τ(tk) = α̂k

mδtk−1.

Therefore, we have for k ≤ n,

Ink =
2Cmα̂k

mδtk−1√∑n
l=k α̂

l
mδtl−1 +

√∑n
l=k+1 α̂

l
mδtl−1

.

For notational simplicity we will introduce for k ≤ n

Un
k =

n∑
l=k

α̂l
mδtl−1, (19)

and Un
k = 0 for k > n. Then we can write:

Q̃n+1/2
w = −2Cm

δtn

( n+1∑
k=1

α̂k
m(P(Sk)− P(S0))√
Un+1
k +

√
Un+1
k+1

δtk−1 −
n∑

k=1

α̂k
m(P(Sk)− P(S0))√

Un
k +

√
Un
k+1

δtk−1
)
.

We finally obtain the following scheme:

Φf
Sn+1

δtn
+

2Cm

δtn

n+1∑
k=1

α̂k
m(P(Sk)− P(S0))√
Un+1
k +

√
Un+1
k+1

δtk−1 − div

(
λw,f (S

n+1)k∗∇Pn+1
w

)

= Φf
Sn

δtn
+

2Cm

δtn

n∑
k=1

α̂k
m(P(Sk)− P(S0))√

Un
k +

√
Un
k+1

δtk−1

(20)
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−Φf
Sn+1

δtn
− 2Cm

δtn

n+1∑
k=1

α̂k
m(P(Sk)− P(S0))√
Un+1
k +

√
Un+1
k+1

δtk−1 − div

(
λn,f (S

n+1)k∗∇Pn+1
n

)

= −Φf
Sn

δtn
− 2Cm

δtn

n∑
k=1

α̂k
m(P(Sk)− P(S0))√

Un
k +

√
Un
k+1

δtk−1

(21)

Note that

α̂k
m =

βm(P(Sk
max))− βm(P(Sk

min))

P(Sk
max)− P(Sk

min)
.

where

Sk
max(x) = max

0≤j≤k
Sj(x), Sk

min(x) = min
0≤j≤k

Sj(x).

Using standard finite volume discretization of the two phase system written in the phase
formulation (see [7]) we get

Φf,K
Sn+1
K

δtn
+

2Cm

δtn

n+1∑
k=1

α̂k
m,K(P(Sk

K)− P(S0
K))√

Un+1
k,K +

√
Un+1
k+1,K

δtk−1 −
∑

L∈NK

τK|Lk
∗
K|Lλ

n+1
w,f,K|Lδ

n+1
K,L (Pw)

= Φf
Sn
K

δtn
+

2Cm

δtn

n∑
k=1

α̂k
m,K(P(Sk

K)− P(S0
K))√

Un
k,K +

√
Un
k+1,K

δtk−1,

(22)

−Φf,K
Sn+1
K

δtn
− 2Cm

δtn

n+1∑
k=1

α̂k
m,K(P(Sk

K)− P(S0
K))√

Un+1
k,K +

√
Un+1
k+1,K

δtk−1 −
∑

L∈NK

τK|Lk
∗
K|Lλ

n+1
n,f,K|Lδ

n+1
K,L (Pn)

= −Φf,K
Sn
K

δtn
− 2Cm

δtn

n∑
k=1

α̂k
m,K(P(Sk

K)− P(S0
K))√

Un
k,K +

√
Un
k+1

δtk−1,K ,

(23)

where

Un
k,K =

n∑
l=k

α̂l
m,Kδtl−1, (24)

and

α̂k
m,K =

βm(P(Sk
max,K))− βm(P(Sk

min,K))

P(Sk
max,K)− P(Sk

min,K)
. (25)

where

Sk
max,K = max

0≤j≤k
Sj
K , Sk

min,K = min
0≤j≤k

Sj
K .

5 Conclusion

We study the double porosity models (1), (2) and (1), (4) of the incompressible two-phase flow
in fractured porous media which are obtained after a standard periodic homogenization as ε → 0
and then linearizing the nonlinear imbibition equation in a two different ways: by replacing the
nonlinear function (3) by a constant (as in [8], based on the idea of [3]), and by replacing (3)
by a variable function, as in [9]. The need for the linearization of the imbibition equation comes
from the fact that its nonlinearity causes difficulties for numerical simulations since the source
terms at each point of the domain Ω are given through solutions of the imbibition equation so
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the associated boundary value problem needs to be solved many times. In models (1), (2) and
(1), (4) the coefficients of the system are given explicitly and for their calculation solving local
problems is no more required. In this work we present discretization schemes by the cell centered
finite volume method for the effective system in both cases of linearization. Special care is taken
of the matrix-fracture source terms which are given in a form of a convolution. The numerical
simulations of the simplified double porosity model are a part of our future research.
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[9] M. Jurak, L. Pankratov, A. Vrbaški, Some remarks on simplified double porosity model of
immiscible incompressible two-phase flow, unpublished results

[10] M. Panfilov, 2000, Macroscale Models of Flow Through Highly Heterogeneous Porous Media,
(Dordrecht-Boston-London: Kluwer Academic Publishers).

[11] A. Voloshin, L. Pankratov, A. Konyukhov, Homogenization of Kondaurov’s non-equilibrium
two-phase flow in double porosity media, Applicable Analysis 98:8 (2019) 1429-1450.

[12] L.-M. Yeh, Homogenization of two-phase flow in fractured media, Math. Models Methods
Appl. Sci., 16 (10) (2006), 1627-1651.

9


