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Abstract

We consider Barenblatt’s model of non-equilibrium immiscible two-phase incompressible
flow in porous media. In this model it is assumed that the relative phase permeabilities and the
capillary pressure functions depend on the effective saturation η rather than on the actual satu-
ration S. Using the concept of global pressure we derive the existence of weak solutions for the
regularized two-phase incompressible Barenblatt’s non-equilibrium flow problem.

1 Introduction
Classical mathematical models of two-phase fluid flow through porous media are based on the fun-
damental assumption of local phase equilibrium. In this model, the two phase flows are locally re-
distributed over their flow paths similarly to steady flows. Under this assumption, the relative phase
permeabilities and the capillary pressure are taken to depend solely on the local water saturation,
which leads to a closed system of equations for fluid phase velocities and pressures, and water sat-
uration. This model has been widespread used for numerical predictions of water-oil displacement.
However, in some of the crucial mechanisms of secondary oil recovery, such as forced oil-water
displacement and spontaneous countercurrent imbibition, the characteristic times of these processes
are, in general, comparable with the times of redistribution of flow paths between oil and water and
therefore the non-equilibrium effects should be taken into account. Kondaurov proposed in [13] an
approach to modelling non-equilibrium effects which is based on the non-equilibrium thermodynam-
ics principles. This model has been further investigated in [14], [15], [16], [17]. Another model has
been introduced by Barenblatt in [3] and further investigated in a number of papers, see for instance
[3], [6], [5]. Here it is assumed that the relative permeability and the capillary pressure functions de-
pend not on the actual instantaneous saturation S, but on an effective saturation η that corresponds to
the equilibrium value that might be reached by the system after a phase redistribution in space. This
makes the mathematical analysis of the problem more involved. Up to our knowledge, there is no
rigorous mathematical studies of the Barenblatt’s model. In this work, we derive the result on the ex-
istence of weak solutions for the regularized two-phase incompressible Barenblatt’s non-equilibrium
flow problem.
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2 Mathematical model

2.1 The description of the model
We consider a reservoir Ω ⊂ Rd (d = 1, 2, 3) which is assumed to be a bounded, connected domain
with sufficiently smooth boundary. Before describing the equations of the model, we give the notation.

– Φ = Φ(x) is the porosity of the reservoir Ω;

– K = K(x) is the absolute permeability tensor of the reservoir Ω;

– S = Sw = Sw(x, t), Sn = Sn(x, t) are the saturations of wetting and nonwetting fluids in the
reservoir Ω, respectively;

– pw = pw(x, t), pn = pn(x, t) are the pressures of wetting and nonwetting fluids in the reservoir
Ω, respectively.

Following the concept of Barenblatt’s non-equilibrium model (see [6]), we suppose that for a
non-equilibrium process there exists a relaxation (redistribution) time τ , 0 < τ � 1, and an effective
saturation η, generally different from the actual saturation S, such that fn(S) = f e(η), where fn

and f e denote non-equilibrium and equilibrium functions, respectively. The effective saturation η
corresponds to the equilibrium value that might be reached by the system after a phase redistribution
in space. In this model the relative permeabilities and the capillary pressure functions depend on η
rather than on S. The notation is as follows:

– η = S + τ ∂S
∂t

is the Barenblatt effective saturation;

– kr,w = kr,w(η), kr,n = kr,n(η) are the relative permeabilities of wetting and nonwetting fluids
in the reservoir Ω, respectively;

– Pc = Pc(η) is the capillary pressure function;

– Ww = K(x)λw(η)∇pw, Wn = K(x)λn(η)∇pn are the phase fluxes; W def
=Ww + Wn.

For the sake of simplicity, we assume no source/sink term and neglect the gravity effects. Then the
system describing the immiscible flow of two incompressible fluids in a porous medium is obtained
from the conservation of mass with the Darcy-Muskat law in each phase and it can be written as:

Φ
∂S

∂t
− div

(
K(x)λw(η)∇pw

)
= 0 in ΩT ,

−Φ
∂S

∂t
− div

(
K(x)λn(η)∇pn

)
= 0 in ΩT ,

Pc(η) = pn − pw in ΩT ,

η = S + τ
∂S

∂t
in ΩT ,

(2.1)

where ΩT
def
= Ω× (0, T ) with a given T > 0 and where the phase mobilities are given by

λw(η)
def
=
kr,w
µw

(η); λn(η)
def
=
kr,n
µn

(η).
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We denote
λ(η)

def
=λw(η) + λn(η).

Here and below
S

def
=Sw.

We complete the system (2.1) by the corresponding boundary and initial conditions.

Boundary conditions. We suppose that the boundary ∂Ω consists of two disjoint parts Γ1 and Γ2

such that ∂Ω = Γ1 ∪ Γ2. The boundary conditions are given by: pw(x, t) = pn(x, t) = 0 on Γ1 × (0, T );

Ww · ~ν = Wn · ~ν = 0 on Γ2 × (0, T ).
(2.2)

Here ~ν is the unit outer normal on Γ2.
Initial conditions. The initial conditions read:{

S(x, 0) = S0(x) and η(x, 0) = η0(x) = S0(x) in Ω;
pw(x, 0) = p0

w(x), pn(x, 0) = p0
n(x) in Ω.

(2.3)

Remark 1 In this work we consider the case of the initial equilibrium state, which corresponds to the
initial condition for η in (2.3).

Remark 2 Let us notice that in the case of the equilibrium flow we have that

η = S for τ ≡ 0.

Then the dependence of the mobilities on the saturation function S is given by λw(S) and λn(S)
def
=λn(1−

S). This corresponds to the well known mathematical model of the immiscible incompressible two-
phase flow in porous medium considered by many authors (see, e.g., [2, 7, 8, 9, 11] and the references
therein).

Remark 3 In some cases of the immiscible two-phase flow in a porous medium, like water-oil dis-
placement, the local water saturation is increasing, or at least nondecreasing (see [6]), so that

∂S

∂t
≥ 0.

We consider here only such flows and hence we exclude from the consideration the changes of the
relative permeabilities and capillary pressure caused by hysteresis effects. Then it holds η = S +

τ ∂S
∂t
≥ S and for any non-decreasing function f it is f(η) ≥ f(S).

By using the definition of the effective saturation η we immediately rewrite the system (2.1) as an
equivalent system of elliptic partial differential equations with respect to η, with t being a parameter:
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for a. e. t ∈ [0, T ], 

Φ(η − S)− τ div
(
K(x)λw(η)∇pw

)
= 0 in Ω;

−Φ(η − S)− τ div
(
K(x)λn(η)∇pn

)
= 0 in Ω;

Pc(η) = pn − pw in Ω;

η = S + τ
∂S

∂t
in Ω.

(2.4)

The boundary conditions for the system (2.4) are given by (2.2).
In what follows we are going to use the following functions:

α(s)
def
=
λw(s)λn(s)

λ(s)
|P ′c(s)|; β(s)

def
=

∫ s

0

α(ξ) dξ;

a(s)
def
=

√
λw(s)λn(s)

λ(s)
|P ′c(s)|; b(s)

def
=

∫ s

0

a(ξ) dξ. (2.5)

In order to define the phase mobility functions as functions of variable η, we first note the follow-
ing.

i) There is a value of the saturation function S, S0, such that

η = 0 for S = S0(x, t) = S0(x) e−
t
τ , t > 0. (2.6)

ii) There is a value of the saturation function S, S1, such that

η = 1 for S = S1(x, t) = 1 + (S0(x)− 1) e−
t
τ , t > 0. (2.7)

Remark 4 Provided 0 ≤ S0(x) ≤ 1 a. e. in Ω, from (2.6), (2.7) we have 0 ≤ S0, S1 ≤ 1. In this
case a maximum principle for the actual saturation S, 0 ≤ S ≤ 1, is a consequence of a maximum
principle for the effective saturation η, 0 ≤ η ≤ 1.

Taking into account the standard assumptions on the equilibrium mobility functions (see the as-
sumption (A.3) below), we define:

λw(η)
def
=


0, when S < S0 i.e.when η < 0;

λew(η),when S0 ≤ S ≤ S1 i.e.when 0 ≤ η ≤ 1;

1, when S > S1 i.e.when η > 1

(2.8)

and

λn(η)
def
=


1, when S < S0 i.e.when η < 0;

λen(η),when S0 ≤ S ≤ S1 i.e.when 0 ≤ η ≤ 1;

0, when S > S1 i.e.when η > 1.

(2.9)

Here λew and λen denote the equilibrium mobility functions with standard properties. Our functions
η 7→ λw(η), λn(η) share these properties.
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2.2 Global pressure
In order to deal with the degeneracy in the system, we are going to use the concept of the global
pressure, introduced in [2], [8] and standardly used since then. Namely, the idea is to induct a new
pressure-like variable P , called the global pressure, which can be seen as a mixture pressure, where
the two phases are considered as mixture constituents, of a flow which obeys Darcy law with a non-
degenerate coefficient.

Following [2], [8], the global pressure P is defined by

pw = P +Gw(η), pn = P +Gn(η),

where

Gw(η) = Gn(0)−
∫ η

0

λn(ξ)

λ(ξ)
P ′c(ξ)dξ, Gn(η) = Gn(0) +

∫ η

0

λw(ξ)

λ(ξ)
P ′c(ξ)dξ.

Then the following equalities hold:

λw(η)∇pw + λn(η)∇pn = λ(η)∇P,

λw(η)∇Gw(η) = α(η)∇η, λn(η)∇Gn(η) = −α(η)∇η

and

λw(η) |∇pw|2 + λn(η) |∇pn|2 = λ(η) |∇P |2 + |∇b(η)|2. (2.10)

2.3 Main assumptions
The main assumptions on the data are:

(A.1) The porosity Φ belongs to L∞(Ω), and there exist constants, 0 < φm ≤ φM < +∞, such that
0 < φm ≤ Φ(x) ≤ φM a.e. in Ω.

(A.2) The permeability tensor K belongs to (L∞(Ω))d×d, and there exist constants 0 < km ≤ kM <
+∞, such that for almost all x ∈ Ω and all ξ ∈ Rd it holds:

km|ξ|2 ≤ K(x)ξ · ξ ≤ kM |ξ|2.

(A.3) The relative mobilities satisfy λw, λn ∈ C([0, 1];R+), λw(Sw = 0) = 0 and λn(Sn = 0) = 0;
λj is an increasing function of Sj . Moreover, there exist constants λM ≥ λm > 0 such that for
all S ∈ [0, 1]

0 < λm ≤ λw(S) + λn(S) ≤ λM .

(A.4) The capillary pressure function Pc ∈ C1([0, 1];R+), P ′c < 0 in [0, 1] and Pc(1) = 0.

(A.5) The initial data satisfy p0
w, p0

n ∈ L2(Ω); S0 ∈ L∞(Ω), 0 ≤ S0 ≤ 1 a.e. in Ω.

5



In order to formulate the results, let us introduce the following Sobolev space:

H1
Γ1

(Ω)
def
={u ∈ H1(Ω) : u = 0 on Γ1}.

The space H1
Γ1

(Ω) is a Hilbert space when it is equipped with the norm ||u||H1
Γ1

(Ω) = ||∇u||(L2(Ω))d .
Our interest concerns the existence of the weak solution of the system (2.1), (2.2), (2.3), or equiv-

alently, the existence for the elliptic system (2.4), (2.2).

2.4 Energy equality and formal a priori estimates
By formally multiplying the first equation in (2.1) by pw, the second equation in (2.1) by pn, integrat-
ing over ΩT and summing the two equations we obtain the ”energy equality”

−
∫

ΩT

Φ∂tS Pc(η)dxdt+

∫
ΩT

K(x) (λw(η)∇pw · ∇pw + λn(η)∇pn · ∇pn) dxdt = 0. (2.11)

Denote the second integral in (2.11) by I , then

I =

∫
ΩT

Φ∂tS · Pc(η)dxdt =
1

τ

∫
ΩT

Φ(η − S)Pc(η)dxdt. (2.12)

From η = S + τ ∂S
∂t

we can express

S(x, t) = S0(x) exp(− t
τ

) +
1

τ
(exp(− t

τ
) ? η)(x, t). (2.13)

Here ? denotes convolution with respect to time. Then

∂S

∂t
(x, t) = −1

τ
S0(x) exp(− t

τ
)− 1

τ 2
(exp(− t

τ
) ? η)(x, t) +

1

τ
η(x, t)

and

I =
1

τ

∫
ΩT

Φ

(
−S0(x) exp(− t

τ
)− 1

τ
(exp(− t

τ
) ? η)(x, t) + η(x, t))

)
· Pc(η)dxdt.

We write

I = −1

τ

∫
ΩT

ΦS0(x) exp(− t
τ

) · Pc(η)dxdt− 1

τ 2

∫
ΩT

Φ (exp(− t
τ

) ? η)(x, t) · Pc(η)dxdt+

+
1

τ

∫
ΩT

Φη(x, t) · Pc(η)dxdt = I1 + I2 + I3.

Then by using (A.1), (A.4) and (A.5) we obtain for the first term:

I1 ≤
1

τ
φM Pc,max |ΩT |.
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Further, by using (A.1), (A.4), boundedness of the exponential function and 0 ≤ η ≤ 1, we get
for the second term:

I2 ≤
1

τ 2
φM Pc,max

∫
ΩT

| exp(− t
τ

) ? η(x, t)|dx

≤ 1

τ 2
φM Pc,max

∫
Ω

‖ exp(− t
τ

)‖L1([0,T ]) · ‖η(x, t)‖L1([0,T ])dx ≤

≤ 1

τ 2
φM Pc,max τ (1− exp(−T

τ
)) |ΩT | ≤

1

τ
φM Pc,max |ΩT |.

Finally, the third term can be bounded by using (A.1), (A.4) and 0 ≤ η ≤ 1 as follows:

I3 ≤
1

τ
φM Pc,max |ΩT |.

Therefore
I ≤ C

and from (2.11) and the equality (2.10) we obtain a priori estimates

‖
√
λw(η)∇pw‖L2(ΩT ) + ‖

√
λn(η)∇pn‖L2(ΩT ) + ‖P‖L2([0,T ];H1(Ω)) + ‖b(η)‖L2([0,T ];H1(Ω)) ≤ C.

(2.14)
From (2.14) and the system under consideration then it easily follows∥∥∥∥Φ

∂S

∂t

∥∥∥∥
L2([0,T ];H−1(Ω))

≤ C. (2.15)

Remark 5 The expression (2.13) reveals that the function S(x, t), t ∈ [0, T ], x ∈ Ω, contains the full
history of η, namely the values η(x, ξ), 0 ≤ ξ ≤ t.

3 Regularized system

3.1 Main result
In order to prove the desired existence result, we introduce a small positive parameter θ and form
an auxiliary regularized problem. This is performed by adding to the system a saturation term
±θ div∇Pc(η), preserving a maximum principle (see [12], [1]). This gives us the following sys-
tem, parametrized by θ:

Φ
∂Sθ

∂t
− div

(
K(x)λw(ηθ)∇pθw

)
+ θ div∇Pc(ηθ) = 0 in ΩT ,

−Φ
∂Sθ

∂t
− div

(
K(x)λn(ηθ)∇pθn

)
− θ div∇Pc(ηθ) = 0 in ΩT ,

Pc(η
θ) = pθn − pθw,

ηθ = Sθ + τ
∂Sθ

∂t
.

(3.1)
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The corresponding initial conditions are given by (2.3) (with index θ). The corresponding boundary
conditions are pθw(x, t) = pθn(x, t) = 0 on Γ1 × (0, T );(

Ww − θ∇Pc(ηθ)
)
· ~ν =

(
Wn + θ∇Pc(ηθ)

)
· ~ν = 0 on Γ2 × (0, T ).

(3.2)

The equivalent regularized elliptic system is given for a. e. t ∈ [0, T ] by

Φ(ηθ − Sθ)− τ div
(
K(x)λw(ηθ)∇pθw

)
+ τ θ div∇Pc(ηθ) = 0 in Ω,

−Φ(ηθ − Sθ)− τ div
(
K(x)λn(ηθ)∇pθn

)
− τ θ div∇Pc(ηθ) = 0 in Ω,

Pc(η
θ) = pθn − pθw in Ω,

ηθ = Sθ + τ
∂Sθ

∂t
.

(3.3)

Boundary conditions for the system (3.3) are given by (3.2).
Our main result concerns the existence of the weak solutions of the system (3.3) and is given in

the following Theorem.

Theorem 3.1 Let assumptions (A.1)-(A.5) be fulfilled and let 0 < θ � 1. Then there exist pθw, p
θ
n, S

θ,ηθ

such that for a. e. t ∈ [0, T ]

• pθw(t), pθn(t) ∈ H1
Γ1

(Ω), Sθ(t) ∈ H1(Ω);

• 0 ≤ ηθ(t) ≤ 1 a. e. in Ω, 0 ≤ Sθ(t) ≤ 1 a. e. in Ω;

• For all ϕw, ϕn ∈ H1
Γ1

(Ω),∫
Ω

Φ(ηθ − Sθ)ϕwdx+ τ

∫
Ω

K(x)λw(ηθ)∇pθw · ∇ϕwdx− τθ
∫

ΩT

∇Pc(ηθ) · ∇ϕwdxdt = 0,

(3.4)

−
∫

Ω

Φ(ηθ − Sθ)ϕndx+ τ

∫
Ω

K(x)λn(ηθ)∇pθn · ∇ϕndx+ τθ

∫
ΩT

∇Pc(ηθ) · ∇ϕndxdt = 0.

(3.5)

The proof of Theorem 3.1 is achieved in several steps. First we introduce two regularizations,
with respect to parameters ε (Subsection 3.2) and N (Subsection 3.3). In Subsection 3.4 we obtain
the existence for the ε,N - problem. In the following Subsection 3.5 we derive uniform estimates
for the solutions with respect to N , conclude about the consequent convergence results and pass to
the limit as N → ∞ in the ε,N - problem. Finally, in Subsection 3.6 we establish the uniform
estimates in ε, and pass to the limit in the ε - problem by using the obtained convergence results for
the solutions.
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3.2 Introduction of a small parameter ε > 0

In order to achieve uniform ellipticity of the system, a small constant is added to the mobility functions
(as in [12], [1]). Accordingly, let us introduce the non-degenerate mobility functions λεw, λεn defined
by

λεw
def
=λw + ε, λεn

def
=λn + ε, 0 < ε� 1. (3.6)

We will hence consider the system (3.3) with λεw, λεn instead of λw, λn. Using such non-degenerate
mobilities will result in the loss of the maximum principle for the effective saturation η and therefore
we introduce the following continuous extensions of our functions outside of [0, 1]:

Z(η) =


0 for η ≤ 0;

η for 0 ≤ η ≤ 1;

1 for η ≥ 0.

λw(η) =


0 for η ≤ 0;

λw(η) for 0 ≤ η ≤ 1;

λw(1) for η ≥ 1.

λn(η) =


λn(1) for η ≤ 0;

λn(η) for 0 ≤ η ≤ 1;

0 for η ≥ 1.

P c(η) =


Pc(0)− η for η ≤ 0;

Pc(η) for 0 ≤ η ≤ 1;

1− η for η ≥ 1.

Such extending is possible due to the assumptions (A.3) and (A.4). All extensions are bounded
functions on R except Pc(η) (but Pc(η)′ is bounded).
We note that now we can express the saturations as functions of the principle unknowns pθw, pθn:

ηθ = P
−1

c (pθn − pθw)

and
Sθ(x, t) = S0(x) exp(− t

τ
) +

1

τ
(exp(− t

τ
) ? ηθ)(x, t).

For notational convenience, we will skip the solution subscript θ in what follows. Now we con-
sider the system (3.3) with the extended saturations and the extended non-degenerate mobilities, i. e.
for a. e. t ∈ [0, T ] we have the system

Φ(Z(ηε)− Z(Sε))− τ div
(
K(x)λ

ε

w(ηε)∇pεw
)

+ τ θ div∇Pc(ηε) = 0 in Ω;

−Φ(Z(ηε)− Z(Sε))− τ div
(
K(x)λ

ε

n(ηε)∇pεn
)
− τ θ div∇Pc(ηε) = 0 in Ω;

Pc(η
ε) = pεn − pεw in Ω;

ηε = Sε + τ
∂Sε

∂t
,

(3.7)

i. e. for all ϕw, ϕn ∈ H1
Γ1

(Ω),∫
Ω

Φ(Z(ηε)−Z(Sε))ϕwdx+τ

∫
Ω

K(x)λ
ε

w(ηε)∇pεw ·∇ϕwdx−τθ
∫

Ω

∇P c(η
ε)·∇ϕwdx = 0, (3.8)

−
∫

Ω

Φ(Z(ηε)−Z(Sε))ϕndx+τ

∫
Ω

K(x)λ
ε

n(ηε)∇pεn·∇ϕndx+τθ

∫
Ω

∇P c(η
ε)·∇ϕndx = 0. (3.9)
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3.3 Introduction of parameter N ∈ N
Following [12], [1], we introduce also another regularization. Namely, for N ∈ N we denote by PN
the orthogonal projector of L2(Ω) on the first N eigenvectors of the Laplace operator with homoge-
neous Dirichlet boundary conditions. We replace pεw, pεn in the additional terms in (3.7) by PN [pεw],
PN [pεn] (in other words, by their orthogonal projections on finite-dimensional subspaces defined in
terms of the eigenbasis of the Laplace operator in Ω with Dirichlet boundary conditions) and for a. e.
t ∈ [0, T ] consider the following elliptic system in Ω:

Φ(Z(ηε,N)− Z(Sε,N))− τ div
(
K(x)λ

ε

w(ηε,N)∇pε,Nw
)

+ τ θ div∇
(
PN [pε,Nn ]− PN [pε,Nw ]

)
= 0;

−Φ(Z(ηε,N)− Z(Sε,N))− τ div
(
K(x)λ

ε

n(ηε,N)∇pε,Nn
)
− τ θ div∇

(
PN [pε,Nn ]− PN [pε,Nw ]

)
= 0;

Pc(η
ε,N) = pε,Nn − pε,Nw ;

ηε,N = Sε,N + τ
∂Sε,N

∂t
(3.10)

i. e. for all ϕw, ϕn ∈ H1
Γ1

(Ω),∫
Ω

Φ(Z(ηε,N)− Z(Sε,N))ϕwdx+τ

∫
Ω

K(x)λ
ε

w(ηε,N)∇pε,Nw · ∇ϕwdx− (3.11)

−τθ
∫

Ω

∇
(
PN [pε,Nn ]− PN [pε,Nw ]

)
· ∇ϕwdx = 0,

−
∫

Ω

Φ(Z(ηε,N)− Z(Sε,N))ϕndx+τ

∫
Ω

K(x)λ
ε

n(ηε,N)∇pε,Nn · ∇ϕndx+ (3.12)

+τθ

∫
Ω

∇
(
PN [pε,Nn ]− PN [pε,Nw ]

)
· ∇ϕndx = 0.

3.4 Existence for the θ, ε,N - problem
For fixed N > 0 and ε > 0 now we show the existence of solutions to the system (3.11)-(3.12) by
applying the Leray-Schauder fixed point theorem. We quote the result here.

Theorem 3.2 Let T be a continuous and compact map of a Banach space B into itself. Suppose that
the set {x ∈ B : x = σT x for some σ ∈ [0, 1]} is bounded. Then the map T has a fixed point.

The proof follows arguments of [12] (see also [1], [10]). Let us rewrite the system (3.11)-(3.12)
for fixed θ > 0, ε > 0 and N ∈ N but, for notational convenience, without the dependence of the
solutions on the parameters θ, ε and N : for a. e. t ∈ [0, T ]; for all ϕw, ϕn ∈ H1

Γ1
(Ω),∫

Ω

Φ(Z(η)−Z(S)ϕwdx+τ

∫
Ω

K(x)λ
ε

w(η)∇pw·∇ϕwdx−τθ
∫

Ω

∇ (PN [pn]− PN [pw])·∇ϕwdx = 0,

(3.13)

−
∫

Ω

Φ(Z(η)−Z(S))ϕndx+τ

∫
Ω

K(x)λ
ε

n(η)∇pn·∇ϕndx+τθ

∫
Ω

∇ (PN [pn]− PN [pw])·∇ϕndx = 0.

(3.14)
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Now consider a map T : (L2(Ω))2 → (L2(Ω))2 defined by

T (pw, pn) = (pw, pn), (3.15)

where the pair (pw, pn) is the unique solution of the following system: for all ϕw, ϕn ∈ H1
Γ1

(Ω),∫
Ω

Φ(Z(η)−Z(S)ϕwdx+τ

∫
Ω

K(x)λ
ε

w(η)∇pw·∇ϕwdx−τθ
∫

Ω

∇ (PN [pn]− PN [pw])·∇ϕwdx = 0,

(3.16)

−
∫

Ω

Φ(Z(η)−Z(S))ϕndx+τ

∫
Ω

K(x)λ
ε

n(η)∇pn·∇ϕndx+τθ

∫
Ω

∇ (PN [pn]− PN [pw])·∇ϕndx = 0.

(3.17)
Here

η = Pc
−1

(pn − pw)

and
S(x, t) = S0(x) exp(− t

τ
) +

1

τ
(exp(− t

τ
) ? η)(x, t).

Denote
Bw(pw, ϕw)

def
= τ

∫
Ω

K(x)λεw(η)∇pw · ∇ϕwdx;

Bn(pn, ϕn)
def
= τ

∫
Ω

K(x)λεn(η)∇pn · ∇ϕndx;

fw(ϕw)
def
=−

∫
Ω

Φ(Z(η)− Z(S)ϕwdx+ τθ

∫
Ω

∇ (PN [pn]− PN [pw]) · ∇ϕwdx;

fn(ϕn)
def
=

∫
Ω

Φ(Z(η)− Z(S)ϕndx− τθ
∫

Ω

∇ (PN [pn]− PN [pw]) · ∇ϕndx.

The system (3.13)-(3.14) can be seen as

Bw(pw, ϕw) = fw(ϕw); Bn(pn, ϕn) = fn(ϕn) for all ϕw, ϕn ∈ H1
Γ1

(Ω).

The maps Bw and Bn are clearly bilinear, continuous and coercive on (H1
Γ1

(Ω))2 (the coercivity is
in particular a consequence of the regularization (3.6)). The maps fw(ϕw), fn(ϕn) are clearly linear
and continuous on H1

Γ1
(Ω). Therefore, we can apply Lax-Milgram theorem to obtain the existence

of the unique pair (pw, pn) ∈ (H1
Γ1

(Ω))2, for all (pw, pn) ∈ (L2(Ω))2, i. e. the map T is well
defined. Further, it is shown that T is relatively compact and continuous, as well as that {x ∈ B :
x = σT x for some σ ∈ [0, 1]} is bounded, by using the arguments of [1], [10]. Hence, the following
Proposition is proved.

Proposition 3.3 For fixed θ, ε and N there is a weak solution of the system (3.10) for a. e. t ∈ [0, T ].
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3.5 Uniform estimates in N and passing to the limit as N →∞
In this part for simplicity we skip the dependence of the solutions on ε. For all N in Subsection 3.4
we have obtained for a. e. t ∈ [0, T ] a solution (pw, pn) ∈ H1

Γ1
(Ω)×H1

Γ1
(Ω) of the following system:

for all ϕw, ϕn ∈ H1
Γ1

(Ω),

∫
Ω

Φ(Z(ηN)− Z(SN))ϕwdx+τ

∫
Ω

K(x)λ
ε

w(ηN)∇pNw · ∇ϕwdx− (3.18)

−τθ
∫

Ω

∇
(
PN [pNn ]− PN [pNw ]

)
· ∇ϕwdxdt = 0,

−
∫

Ω

Φ(Z(ηN)− Z(SN))ϕndx+τ

∫
Ω

K(x)λ
ε

n(ηN)∇pNn · ∇ϕndx+ (3.19)

+τθ

∫
Ω

∇
(
PN [pNn ]− PN [pNw ]

)
· ∇ϕndxdt = 0.

By choosing test functions ϕw = pNw ∈ H1
Γ1

(Ω) in (3.18) and ϕn = pNn ∈ H1
Γ1

(Ω) in (3.19) and
summing the two equations we obtain the following equality:

−
∫

Ω

Φ(Z(ηN)− Z(SN)) · (pNn − pNw ) dx+τ

∫
Ω

K(x)
(
λ
ε

w(ηN)∇pNw · ∇pNw + λ
ε

n(ηN)∇pNn · ∇pNn
)
dx

(3.20)

+τθ

∫
Ω

∇
(
PN [pNn ]− PN [pNw ]

)
· ∇
(
pNn − pNw

)
dxdt = 0,

which leads to the following estimate, uniform in N :

ε τ

∫
Ω

(
|∇pNw |2 + |∇pNn |2

)
dx+ θ τ

∫
Ω

|∇(PN [pNn ]− PN [pNw ])|2 dx ≤ C. (3.21)

Therefore, from the inequality (3.21) and by taking into account that ηN = P
−1

c (pNn − pNw ) and

SN(x, t) = S0(x) exp(− t
τ

) +
1

τ
(exp(− t

τ
) ? ηN)(x, t),

up to subsequences, we have the following convergence results as N →∞ :

pNw → pεw weakly in H1
Γ1

(Ω), strongly in L2(Ω), a. e. in Ω;

pNn → pεn weakly in H1
Γ1

(Ω), strongly in L2(Ω), a. e. in Ω;

ηN → ηε strongly in L2(Ω), a. e. in Ω;

SN → Sε
def
=S0(x) exp(− t

τ
) +

1

τ
(exp(− t

τ
) ? ηε)(x, t) a. e. in Ω.

Now we can pass to the limit asN →∞ in the system (3.18), (3.19) to obtain for all ϕw, ϕn ∈ H1
Γ1

(Ω)
(again we denote the dependence on ε):∫

Ω

Φ(Z(ηε)− Z(Sε))ϕwdx+ τ

∫
Ω

K(x)λ
ε

w(ηε)∇pεw · ∇ϕwdx− τθ
∫

ΩT

∇ (pεn − pεw) · ∇ϕwdxdt = 0,

(3.22)
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−
∫

Ω

Φ(Z(ηε)− Z(Sε))ϕndx+ τ

∫
Ω

K(x)λ
ε

n(ηε)∇pεn · ∇ϕndx+ τθ

∫
ΩT

∇ (pεn − pεw) · ∇ϕndxdt = 0.

(3.23)

The passage to the limit in the term
∫

Ω
Φ(Z(ηε)− Z(Sε))ϕw dx is achieved by Lebesgue dominated

convergence theorem.

3.6 Uniform estimates in ε and passing to the limit as ε→ 0

From the results of the previous Subsection it follows that for any ε > 0 there is (pεw, p
ε
n) ∈ H1

Γ1
(Ω)×

H1
Γ1

(Ω), a solution of the system (3.22)-(3.23). We choose ϕw = pεw in (3.22) and ϕn = pεn in (3.23),
sum the two equations and estimate analogously to the technique used in the previous Subsection, to
prove the following Lemma.

Lemma 3.1 Let (pεw, p
ε
n) be a solution to (3.22)-(3.23) and let P ε be the corresponding global pres-

sure. Then the following estimates hold, uniform in ε:

{pεw}ε is uniformly bounded in H1
Γ1

(Ω), {pεn}ε is uniformly bounded in H1
Γ1

(Ω);

{P ε}ε is uniformly bounded in H1(Ω), {b(ηε)}ε is uniformly bounded in H1(Ω);

{P ε

c}ε is uniformly bounded in L2(Ω).

From Lemma 3.1 we conclude that the following convergence results hold as ε→ 0:

pεw → pw weakly in H1(Ω), a. e. in Ω;

pεn → pn weakly in H1(Ω), a. e. in Ω;

P ε → P weakly in H1(Ω), a. e. in Ω;

b(ηε)→ b(η) weakly in H1(Ω), a. e. in Ω;

Z(ηε)→ Z(η) strongly in L2(Ω), a. e. in Ω;

Z(Sε)→ Z(S)
def
=Z(S0 exp(− t

τ
) +

1

τ
(exp(− t

τ
) ? η)) a. e. in Ω.

Now we pass to the limit as ε → 0 in the system (3.22), (3.23) based on the obtained convergence
results with respect to ε. This leads to the following system:∫

Ω

Φ(Z(η)− Z(S))ϕwdx+τ

∫
Ω

K(x)λ
ε

w(η)∇pw · ∇ϕwdx− τ
∫

ΩT

∇ (pn − pw) · ∇ϕwdxdt = 0,

(3.24)

−
∫

Ω

Φ(Z(η)− Z(S))ϕndx+τ

∫
Ω

K(x)λ
ε

n(η)∇pn · ∇ϕndx+ τ

∫
ΩT

∇ (pn − pw) · ∇ϕndxdt = 0.

(3.25)

In order to finish the proof of Theorem 3.1, let us prove the maximum principle for the system
(3.24) - (3.25).
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Lemma 3.2 Under the assumptions (A.1)-(A.5) it holds

0 ≤ η ≤ 1 a. e. in Ω.

Proof of Lemma 3.2
First we will show that η ≥ 0. Let us introduce the following test function in (3.24):

η− = min{0,η} =

{
η for η ≤ 0;

0 for η ≥ 0.

Note that by the definition of these functions it is η− ≤ 0 and Z(η) · η− = 0, λw(η) · η− = 0,
λn(η) · η− = 0.

After multiplying the first equation in (3.24) by ϕw = η− and integrating over x, by using the
definition of the extended functions and the boundary conditions, we obtain:

τ θ

∫
Ω

(∇η−)2dx ≤ 0

which implies that η− = 0, that is, η ≥ 0 a. e. in Ω. In an analogous way it is proved that η ≤ 1 a. e.
in Ω. Lemma 3.2 is proven. This completes the proof of Theorem 3.1.

Acknowledgments.
This work has been supported by the Croatian Science Foundation under Grant agreement No. 7249
(MANDphy).

References
[1] B. Amaziane, L. Pankratov, A. Piatnitski. The existence of weak solutions to immiscible compressible

two-phase flow in porous media: The case of fields with different rock-types, DCDS B, 18:5 (2013),
1217-1251.

[2] S.N. Antontsev, A.V. Kazhikhov, V.N. Monakhov. Boundary value problems in mechanics of nonhomo-
geneous fluids, North-Holland Publishing Co., Amsterdam, 1990.

[3] G. I. Barenblatt. Flow of two immiscible liquids through the homogeneous porous medium, Izvestiya
Academii Nauk SSSR, SeriyaMekhanika Zhidkosti i Gaza, 5 (1971), 144-151.

[4] G. I. Barenblatt, A. A. Gilman. Nonequilibrium counterflow capillary impregnation, J. Eng. Phys., 52:3
(1987), 335-339.

[5] G. I. Barenblatt, J. Garcia-Azorero, A. De Pablo, J. L. Vazquez. Mathematical model of the non-
equilibrium water-oil displacement in porous strata, Appl. Anal., 65 (1997), 19-45.

[6] G. I. Barenblatt, T. W. Patzek, D. B. Silin. The mathematical model of non-equilibrium effects in water-oil
displacement, SPE Journal, 8:4 (2003), 409-416.

[7] J. Bear, Y. Bachmat. Introduction to Modeling of Transport Phenomena in Porous Media, Kluwer Aca-
demic Publishers, London, 1991.
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