
YouTube QoE Estimation Based on the Analysis of
Encrypted Network Traffic Using Machine Learning

Irena Orsolic, Dario Pevec, Mirko Suznjevic and Lea Skorin-Kapov
University of Zagreb, Faculty of Electrical Engineering and Computing

10000 Zagreb, Croatia
Email: {irena.orsolic, dario.pevec, mirko.suznjevic, lea.skorin-kapov}@fer.hr

Abstract—The widespread use of encryption in the delivery
of Over-The-Top video streaming services poses challenges for
network operators looking to monitor service performance and
detect potential customer perceived Quality of Experience (QoE)
degradations. While monitoring solutions deployed on client
devices provide insight into application layer KPIs (e.g., video
quality levels, buffer underruns, stalling duration) which can be
further mapped to user QoE, network providers commonly rely
primarily on passive traffic monitoring solutions deployed within
their network to obtain insight into user perceived degradations
and their potential causes. In this paper we present a methodol-
ogy for the estimation of end users’ QoE when watching YouTube
videos which is based only on statistical properties of encrypted
network traffic. We have developed a system called YouQ which
includes tools for monitoring and analysis of application-layer
KPIs and corresponding traffic traces, and the subsequent use
of this data for the development of machine learning models for
QoE estimation based on traffic features. To test this approach,
we have collected a dataset of 1060 different YouTube video
traces using 39 different bandwidth scenarios. All video traces
are annotated with application-layer KPIs and classified into
one of three QoE classes. The dataset was used to test various
machine learning algorithms, and results showed that up to 84%
QoE classification accuracy could be achieved using only features
extracted from encrypted traffic.

I. INTRODUCTION

Studies haves shown that 67% of global Internet traffic in
2014 was video, with that share expected to grow to 80%
by 2019 [1]. One of the most prominent video streaming
services is YouTube, delivered via Google’s Content Delivery
Network (CDN). While Over The Top (OTT) providers like
YouTube offer services directly to end users, Internet Service
Providers (ISPs) are responsible for transmitting IP traffic and
generally lack control over the services. From an ISP’s point of
view, there is a lack of insight into the performance or quality
parameters of YouTube streams passing through their network,
as YouTube’s traffic is encrypted. The inability to monitor
service performance at an application level poses a threat to
providers, as they are potentially unable to detect problems and
act accordingly. Poor performance further imposes the risk of
losing customers, as customers often tend to blame ISPs for
poor QoE.

One approach for ISPs to tackle these challenges is to
estimate QoE based on network traffic characteristics at the
transport layer. The research problem can be generalized as
a network traffic classification problem in which the traffic
of one service is being classified into different behavioural

classes. There has been a lot of research on the subject of
network traffic classification using machine learning (ML)
techniques. In [2], the authors explain the main problems of
Internet traffic identification and potential solutions. They also
present the trends in this field and provide an overview of
techniques for traffic analysis. Similarly, in [3], the authors
discuss the motivation for the application of ML to Internet
traffic classification and give a comprehensive survey of rel-
evant studies. An approach called BLINC was developed to
classify network flows based on application category (web,
p2p, streaming, gaming, etc.) [4]. In [5], the authors de-
scribe a methodology for classifying network traffic into four
application classes: interactive, bulk-data transfer, streaming,
and transactional. Another example is [6] which describes
Bayesian classification of network traffic into the following
categories: bulk, database, interactive, mail, services, www,
p2p, attack, games, and multimedia. Our approach will be
based on applying ML techniques to classify YouTube video
sessions into QoE classes.

Because YouTube is compliant with the MPEG-DASH
standard, video quality is dynamically adapted based on client-
detected network conditions and buffer state. Hence, the reso-
lution of delivered videos is not necessarily constant, making
it no longer possible to accurately estimate QoE from methods
which rely on measured average download throughput and
assumed video encoding bit rate, such as discussed in [7]. The
approach in [8] proposes the Prometheus system, which relies
on ML techniques to relate passive in-network measurements
to application’s QoE. It measures QoE of video-on-demand
and VoIP applications without requiring knowledge about
specific application services. Promising results with over 80%
accuracy are reported when network traffic features were used
to classify application QoE into two classes (“good quality”
and “bad quality”) using data collected in the core network
of a large cellular operator. For algorithm training purposes,
network traffic is annotated with application layer QoE metrics
measured on mobile devices.

The aim of this paper is to propose a methodology and
instrumentation for estimating YouTube QoE based solely on
the analysis of encrypted network traffic. We have developed a
system called YouQ, which includes a solution for developing
a training dataset based on monitored client-side application-
layer KPIs (including quality level of video playback, number
and duration of stalling events, etc.) and network video traces



annotated with QoE classes. As opposed to [8], we have
used a classification based on three QoE classes, described
further in Section II. Relevant traffic features are extracted
and machine learning techniques are used to estimate QoE
per video session. The system has been tested by collecting a
large dataset involving 1060 different videos streamed over a
laboratory WiFi network under various bandwidth conditions.

The paper is organized as follows. The laboratory setup
and test methodology are described in Section II. Section
III reports on the characteristics of the collected dataset and
the QoE classification accuracy for different ML algorithms.
Conclusions and future work are discussed in Section IV.

II. METHODOLOGY

This section describes components of the developed YouQ
system and the employed test methodology. Furthermore, a de-
scription is given of the QoE classes used to classify YouTube
video streaming instances based on calculated application-
layer KPIs.

A. Laboratory testbed

The laboratory testbed is depicted in Figure 1. YouTube
traffic between an Android smartphone (Samsung S6 with
Android version 5.1.1) and YouTube servers is transmitted
over an IEEE 802.11n wireless network and then routed
through a PC running IMUNES (www.imunes.net), a gen-
eral purpose IP network emulation/simulation tool enabling
a test administrator to set up different bandwidth limitations
and schedule bandwidth changes [9]. Traffic is further sent
through Albedo’s Net.Shark device (a portable network tap
used for aggregating and mirroring network traffic) where it
is replicated and sent to a PC designated for network traffic
capturing. The PC running IMUNES also has an OS layer,
accessed by the YouQ client application to run a bandwidth
scheduling script according to defined experiments.

Fig. 1. Laboratory testbed.

B. YouQ system - developed tools

The system consists of a YouQ Android application and
a YouQ server. The YouQ server is comprised of: 1) a
YouTubeDatabase application for creating a large pool of
video IDs and storing their metadata (this data is collected
via the YouTube Data API); 2) an FTP server for storing
measurement results; 3) a YouQ web application for displaying
experiment results; 4) a database server for storing application
level KPIs and video metadata; 5) scripts for data processing,
and 6) an application for extracting network features. The most
important components are described in further detail below.

YouQ Android application is run on the client and monitors
application-level data that is used to calculate various QoE-
related KPIs (number of stalling events, average stalling dura-
tion, percentage of playback time spent on certain quality level,
etc.). The application enables a test administrator to select a
target number of videos to be played during an experiment
(e.g., run experiment with 100 different videos). Filtering
options enable the administrator to request that the duration
of each played video falls within a set interval (e.g., play only
videos that last between 60 and 120 s), that the videos have
been viewed a certain minimum number of times, and that the
videos are offered in a certain playback quality (high definition
or standard definition). Video IDs to be played during the
experiment are retrieved from the aforementioned database,
which we populated with over 2 million YouTube video ID
entries. Throughout the entire experiment during which the
chosen number of videos are played (note that all played
videos are different), the application collects data using the
YouTube IFrame API, into three log files, as described in Table
I. Existing solutions for client-side monitoring of YouTube
QoE include YoMoApp [10], a similar Android application
which uses the YouTube mobile website and HTML5 API
to passively monitor KPIs. Our goal was to enable automatic
data collection from a large number of filtered YouTube videos
without user interaction.

TABLE I
DATA COLLECTED WITH YOUQ ANDROID APPLICATION

Log Description
Event log YouTube events: “Buffering”, “Playing”, “Paused”,

“Ended”, “hd1080” (quality level playback has
switched to), “hd720”, “large” (480p), “medium”
(320p), “small” (240p), “tiny” (144p)

Buffer log Amount of video buffered in every second of watch
time.

URL log URLs from all HTTP requests towards YouTube
servers.

Data processing scripts are a part of the YouQ server. They
are used to process captured network traffic and logs from
the YouQ Android application. The output of these scripts are
files with selected fields from captured network traffic for each
video from the experiment and files with application KPIs
for every video in each experiment. Scripts are also used to
populate a database with information from the application level
for the purpose of data visualization.



Application for extracting network traffic features is devel-
oped for extraction of relevant traffic features from captured
network traffic traces. Following an analysis of related work
on feature extraction [11]–[13] and also our numerous obser-
vations of YouTube adaptation behavior, we have comprised
a set of 54 features, which can be divided into six categories:
packet length statistics, size of transferred data in 5s intervals,
packet count statistics, interarrival time statistics, throughput
statistics, and TCP flags count. Features were extracted for
all captured network traffic that belongs to a single video,
for each contacted YouTube server, and established TCP flow,
by inspecting headers of each packet. The set of features
was further reduced to 33 primarily based on redundancy. In
addition to calculation and extraction of traffic features, the
application calculates the QoE class that each video belongs
to, based on application level KPIs and the approach described
in Section II-C. This application prepares a training dataset for
use by ML algorithms.

C. QoE classification

Previous studies have shown that QoE in HTTP-based
adaptive video streaming services depends on: percentage of
playback time spent on each quality level, number of stalling
events, average stalling duration, overhead time, and initial
buffering [14]–[16]. In this work, initial buffering has been
taken into account only through overhead time, since none of
the videos had a significant initial buffering duration. Although
models have been derived based on subjective studies which
estimate QoE from the aforementioned KPIs, there is currently
a lack of models which simultaneously map the impact of
multiple influence factors onto QoE. For the purpose of
relating multiple KPIs with QoE, a simplified model has
been created using as a basis existing models and findings
with respect to the impact of various QoE influence factors
[14]–[18]. Considering the difference in model dimensionality,
the classes in this work cannot be expressed as a range of
MOS values provided by related works. We note that this
classification is proposed only for proof-of-concept purposes,
and that the aim of this paper is not to propose new QoE
models for adaptive video streaming.

We define the following three QoE classes to be used
for classification purposes: “high”, “medium”, and “low”. An
instance of a video streaming session is evaluated by two
functions which quantify measured degradations, and based
on this classify the session to the “high” or “low” QoE class.
If it belongs to neither, it is classified as the “medium” QoE
class. The first function, which checks if the QoE class of an
instance i is “high”, is defined as:

checkHigh(i) =

{
nPHQ(i) + nSD(i), SC = 1

1, otherwise
where nPHQ is the normalized value of the percentage of
playback time spent on high quality (hd1080, hd720, large),
nSD is the normalized value of stalling duration, and SC is
stalling count. Normalization functions are defined as follows
(PHQ is percentage of playback spent on high quality and SD
is stalling duration):

nPHQ(i) =


0, PHQ(i) > 90%

9− 0.1 ∗ PHQ(i), PHQ(i) ∈ [80%, 90%]

1, PHQ < 80%

nSD(i) =


0, SD(i) < 3s

0.5 ∗ SD(i)− 1.5, SD(i) ∈ [3s, 5s]

1, SD(i) > 5s
If the output value of the function checkHigh(i) is less then
1, degradation is considered not significant, and instance i
is classified as “high” QoE. Otherwise, it is checked by the
function checkLow(i) and if it does not belong there either,
the instance is classified as “medium”.

The function used to check whether or not a video session
should be categorized as “low” is as follows:
checkLow(i) = nPLQ(i) + nSC(i) + nOR(i) + nASD(i)
PLQ refers to percentage of playback time spent on low quality
(small and lower), OR refers to overhead ratio (overhead
time and video duration ratio), SC is stalling count, and
ASD is average stalling duration. These influence factors are
normalized as follows:

nPLQ(i) =


0, PLQ(i) < 50%

0.1 ∗ PLQ(i)− 5, PLQ(i) ∈ [50%, 60%]

1, PLQ(i) > 60%

nSC(i) =


0, SC(i) < 4

0.5 ∗ SC(i)− 2, SC(i) ∈ [4, 6]

1, SC(i) > 6

nOR(i) =


0, OR(i) < 0.08

0.25 ∗OR(i)− 2, OR(i) ∈ [0.08, 0.12]

1, OR(i) > 0.12

nASD(i) =


0, ASD(i) < 3s

0.5 ∗ASD(i)− 1.5, ASD(i) ∈ [3s, 5s]

1, ASD(i) > 5s
If the function checkLow(i) returns a value greater than or
equal to 1, degradation is considered significant and the session
is classified as “low” QoE. If any of the four normalization
functions returns 1, session i is labelled with “low” QoE. If
the sum of output values of these four functions is less than
1, the session is classified as “medium”.

D. Measurement procedure

Figure 2 shows the steps a test administrator has to take
when conducting an experiment. It also shows the resulting
output of every phase. Following setup of a desired band-
width envelope, network traffic capturing is started and the
experiment is initiated via the YouQ Android application.
An administrator can choose the number of videos to be
played during the experiment, and optionally can specify the
previously mentioned filters to be applied when retrieving
YouTube video IDs. After all the videos are played, both
application and network level data can be uploaded to the
YouQ server for processing.

To collect data, 39 experiments with different bandwidth
limitations were conducted (each experiment involved mul-
tiple videos being played). The bandwidth envelopes were



Fig. 2. Experiment actions.

derived based on extensive prior analysis of YouTube buffering
behaviour and adaptation logic (further details are out of
scope for this paper). The goal was to cover a large number
of different adaptation and playback scenarios differing in
played quality levels, stalling number and durations, etc. Each
experiment is defined by its bandwidth envelope and video
duration range requested in the YouQ Android application.
The number of videos per experiment and their durations
were chosen so as to balance the overall number of videos
per QoE class. Table II gives an overview of experiments
with their bandwidth envelopes, number of videos played in
the experiment, and selected video duration. If bandwidth
limitation was not constant during the experiment, the moment
of change is given on the arrow. The number on the arrow
corresponds to the number of seconds passed from the initial
buffering event of the currently playing video until a new
bandwidth limitation was set using IMUNES. For example, the
experiment with ID 16 was run as follows: at the time when
video playback was initiated, available bandwidth was limited
to 3 Mbps. After 60 seconds, this limitation was dropped to 1
Mbps, and after another 60 seconds it was again dropped to
0.5 Mbps.

III. RESULTS

The collected dataset contains information corresponding to
the streaming of 1060 videos obtained across 39 experiments.
The dataset, besides application KPIs and network traffic
features, contains video metadata, such as video duration,
view, like, and dislike count. This data was collected for future
analysis of how content popularity affects QoE, considering
delivery efficiency is improved by replicating popular content.

The percentage of instances labelled with each of the
defined QoE classes per experiment is presented with Figure
3. A total of 333 instances were labelled as “low”, 310 as
“medium”, and 417 as “high”.

Figure 4 shows overall stalling statistics: number of videos
with certain stalling count, average stalling duration, and
number of stalling events per experiment. It can be observed
that in most of the videos no stalling event occurred. In most of
the videos with stalling occurrence, average stalling duration
was short. It is also interesting to note that most of the stalling

TABLE II
EXPERIMENT SCENARIOS

No. of ex-
periment

Bandwidth envelope
[Mbps]

Number
of
videos

Video dura-
tion [s]

1 5 9 600-650
2 3 9 600-650
3 1 9 600-650
4 5 16 180-600
5 3 9 180-600
6 1 18 180-600

7 1 60−−→ 5 14 180-600

8 1 120−−→ 5 18 180-600

9 1 240−−→ 5 5 480-600

10 0.5 60−−→ 3 17 180-600

11 0.5 120−−→ 3 16 180-600

12 0.5 240−−→ 3 4 480-600

13 3 60−−→ 0.5 14 180-600
14 0.5 16 150-180

15 1 60−−→ 0.5 18 180-600

16 3 60−−→ 1 120−−→ 0.5 16 180-360

17 0.5 60−−→ 1 120−−→ 3 13 180-360

18 0.5 60−−→ 10 120−−→ 0.5 20 360-600

19 0.5 90−−→ 2 26 180-200

20 0.5 60−−→ 1 120−−→ 0.5
180−−→ 1 240−−→ 0.5

5 300-360

21 0.3 27 180-200

22 10 120−−→ 1 26 300-600

23 0.3 30−−→ 1 90−−→ 0.5
150−−→ 8 165−−→ 1 225−−→

0.4

18 240-600

24 7 42 240-600
25 0.7 18 120-420
26 1.5 17 120-420
27 0.8 19 120-420
28 2 17 120-130
29 4 44 120-420
30 3.5 47 120-420
31 2.7 48 60-180
32 7 25 120-300
33 1.3 43 120-300
34 0.6 43 120-300
35 0.5 45 120-300
36 0.4 56 60-120
37 0.55 89 60-120

38 0.85 45−−→0.75 89 60-120
39 0.35 75 60-120

events happened in experiments with low overall bandwidth,
with drastic bandwidth changes, and in experiments with an
increase in available bandwidth. The last observation can be
attributed to the fact that YouTube, when switching to higher
quality level, presumably discards all of the video content
buffered in lower quality level and starts downloading and
playing higher quality video immediately.

In Figure 5a it can be observed that overhead time was
shorter than 10s in more than 90% of the cases. Figure 5b
shows the number of videos that at some point played in a
certain quality level, while Figure 5c shows the distribution of
percentage of video duration played in a certain quality level.
It can be observed that a large number of videos were not



Fig. 3. Percentage of instances in each class, per experiment.

(a) Number of videos with certain stalling count. (b) Average stalling duration. (c) Number of stalling events per experiment. Experiments
with 0 stalling events are not included.

Fig. 4. Stalling statistics.

(a) Overhead time. (b) Number of videos that played in
certain quality level at some point.

(c) Percentage of video duration played in certain quality level.

Fig. 5. Overhead time and quality level statistics.

played in hd1080 or hd720 because these quality levels were
either not available, or, even if they were available, were not
retrieved by the YouTube client algorithm. This may be due
to the fact that the videos were played on a mobile device
and YouTube assumes that quality level large is good enough
to achieve satisfactory QoE on a small screen. All the videos
from all the experiments were available at least in quality level
large, if not higher.

The collected dataset, with each video instance described
with 33 network traffic features and labelled with a QoE
class, was prepared as input for the WEKA Java library,
which includes implementations of all tested ML algorithms
[19]. To reduce computational cost and eliminate irrelevant
features, features were subset by using Wrapper methods in
WEKA. For each of the five tested algorithms, features were

selected and models built by using selected features only. 10-
fold cross-validation was used for testing all the models. Table
III provides an overview of used algorithms, features selected
by Wrapper methods for each algorithm, and classification
accuracy of the model. Models were built using the full dataset
and a reduced dataset, which contains only the data collected
in experiments with constant bandwidth limitations (Exp. 1-
6, 14, 21, 24-37 and 39). The reduced dataset focuses on
more realistic network conditions, with no drastic bandwidth
fluctuations. On the full dataset, the model built by Random
Forest algorithm had the highest accuracy (80.18%), and on
the reduced dataset the most accurate model was built by using
Naı̈ve Bayes algorithm (83.94%). Further analysis determined
that most of the classification errors corresponded to videos
that were either static or had high resolution and few stalling



TABLE III
CLASSIFICATION RESULTS

Accuracy
Algorithm Selected features Full dataset Reduced dataset
OneR throughputMedian 74.62% 83.8%
Naı̈ve Bayes avgPacketSize, averageInterarrivalTime, minimalInterarrivalTime, sizeThroughTimeMe-

dian, push, interarrivalTimeThroughTimeMedian, initialThroughput2
77.35% 83.94%

SMO maximalSizeThroughTime, minimalInterarrivalTime, sizeThroughTimeMedian, max-
ThroughputThroughTime, dupack, effectiveThrouhput

77.35% 80.97%

J48 minimalInterarrivalTime, avgInterarrivalTimeThroughTime, sizeThroughTimeStdDev,
interarrivalTimeThroughTimeMedian, throughputMedian

78.20% 83.26%

Random Forest avgPacketSize, minimalSizeThroughTime, push, initialThroughput10, minThroughput-
ThroughTime, interarrivalTimeThroughTimeMedian, dupack, effectiveThrouhput

80.18% 83.53%

events. Binary QoE classification (“low” and “high”) was also
tried and the accuracy of the models was raised up to 89%.

IV. CONCLUSION

The instrumented tools and applied test methodology prove
the feasibility of QoE classification of adaptive YouTube video
streaming based solely on encrypted network traffic. We note
that the proposed QoE classes are not based on an official
recommendation or standard, but are rather derived based on
previous studies that primarily model QoE in terms of a limited
number of influence factors. Pending the availability of future
multidimensional models, this classification can be redefined
accordingly. We also note that the primary factor contributing
to QoE was quality level, while stalling events were rarely
observed. Furthermore, while we used a large number of
different bandwidth conditions, a dataset comprising fewer
fluctuations and fewer sharp drops or increases would likely
lead to better classification accuracy. Future work will focus
on further analysis of why prediction errors happen, with the
aim being to incorporate that knowledge into classification
models. Moreover, ongoing work involves application of the
test methodology and tools to network traces collected in
an operational mobile network, followed by an analysis of
classification accuracy using various ML techniques.

ACKNOWLEDGMENT

This work has been conducted in the scope of the project
”Survey and analysis of monitoring solutions for YouTube
network traffic and application layer KPIs” funded by Ericsson
Nikola Tesla, Croatia. This work has also been supported in
part by the Croatian Science Foundation under the project UIP-
2014-09-5605 (Q-MANIC).

REFERENCES

[1] “The Zettabyte Era: Trends and Analysis,”
Cisco, Tech. Rep., 2015. [Online]. Available:
http://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/VNI Hyperconnectivity WP.pdf

[2] A. Callado, C. Kamienski, G. Szabó, B. P. Gerö, J. Kelner, S. Fernandes,
and D. Sadok, “A survey on Internet traffic identification,” Comm.
Surveys & Tutorials, IEEE, vol. 11, no. 3, pp. 37–52, 2009.

[3] T. T. Nguyen and G. Armitage, “A survey of techniques for Internet
traffic classification using machine learning,” Communications Surveys
& Tutorials, IEEE, vol. 10, no. 4, pp. 56–76, 2008.

[4] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: multilevel
traffic classification in the dark,” in ACM SIGCOMM Computer Com-
munication Review, vol. 35, no. 4. ACM, 2005, pp. 229–240.

[5] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield, “Class-of-service
mapping for QoS: a statistical signature-based approach to IP traffic
classification,” in Proceedings of the 4th ACM SIGCOMM conference
on Internet measurement. ACM, 2004, pp. 135–148.

[6] A. W. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in ACM SIGMETRICS Performance Evaluation
Review, vol. 33, no. 1. ACM, 2005, pp. 50–60.

[7] P. Casas, A. D’Alconzo, P. Fiadino, A. Bar, A. Finamore, and T. Zseby,
“When YouTube Does not WorkAnalysis of QoE-Relevant Degradation
in Google CDN Traffic,” Network and Service Management, IEEE
Transactions on, vol. 11, no. 4, pp. 441–457, 2014.

[8] V. Aggarwal, E. Halepovic, J. Pang, S. Venkataraman, and H. Yan,
“Prometheus: toward quality-of-experience estimation for mobile apps
from passive network measurements,” in Proceedings of the 15th Work-
shop on Mobile Computing Systems and Applications. ACM, 2014,
p. 18.

[9] M. Zec and M. Mikuc, “Operating system support for integrated
network emulation in imunes,” in Workshop on Operating System and
Architectural Support for the on demand IT Infrastructure (1; 2004),
2004.

[10] F. Wamser, M. Seufert, P. Casas, R. Irmer, P. Tran-Gia, and R. Schatz,
“YoMoApp: A tool for analyzing QoE of YouTube HTTP adaptive
streaming in mobile networks,” in Proc. of EuCNC 2015. IEEE, 2015,
pp. 239–243.

[11] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni,
and K. Lau, “QoE doctor: Diagnosing Mobile App QoE with Automated
UI Control and Cross-layer Analysis,” in Proceedings of the 2014
Conference on Internet Measurement Conference. ACM, 2014, pp.
151–164.

[12] A. Moore, D. Zuev, and M. Crogan, “Discriminators for use in flow-
based classification,” 2005.

[13] R. Schatz, T. Hoßfeld, and P. Casas, “Passive youtube QoE monitoring
for ISPs,” in 2012 6th IEEE Intl Conf. IMIS, 2012, pp. 358–364.

[14] P. Casas, M. Seufert, and R. Schatz, “YOUQMON: A system for on-
line monitoring of YouTube QoE in operational 3G networks,” ACM
SIGMETRICS Performance Evaluation Review, vol. 41, no. 2, pp. 44–
46, 2013.

[15] D. Ghadiyaram, A. C. Bovik, H. Yeganeh, R. Kordasiewicz, and
M. Gallant, “Study of the effects of stalling events on the Quality
of Experience of mobile streaming videos,” in Signal and Information
Processing (GlobalSIP), 2014 IEEE Global Conference on. IEEE, 2014,
pp. 989–993.

[16] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-
Gia, “A survey on Quality of Experience of HTTP adaptive streaming,”
IEEE Communications Surveys & Tutorials, vol. 17, no. 1, pp. 469–492,
2015.

[17] T. Hoßfeld, R. Schatz, E. Biersack, and L. Plissonneau, “Internet
video delivery in YouTube: From traffic measurements to Quality of
Experience,” in Data Traffic Monitoring and Analysis. Springer, 2013,
pp. 264–301.

[18] T. Hoßfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and
C. Lorentzen, “Initial delay vs. interruptions: between the devil and the
deep blue sea,” in Quality of Multimedia Experience (QoMEX), 2012
Fourth International Workshop on. IEEE, 2012, pp. 1–6.

[19] “Weka 3: Data Mining Software in Java.” [Online]. Available:
http://www.cs.waikato.ac.nz/ml/weka/


