e-NEIGHBORHOODS OF ORBITS OF
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COHOMOLOGICAL EQUATIONS
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ABSTRACT. In this article, we study analyticity properties of (di-
rected) areas of e-neighborhoods of orbits of parabolic germs. The
article is motivated by the question of analytic classification using
e-neighborhoods of orbits in the simplest formal class.

We show that the coefficient in front of €2 term in the asymp-
totic expansion in €, which we call the principal part of the area,
is a sectorially analytic function in the initial point of the orbit. It
satisfies a cohomological equation similar to the standard trivial-
ization equation for parabolic diffeomorphisms.

We give necessary and sufficient conditions on a diffeomorphism
f for the existence of globally analytic solution of this equation.
Furthermore, we introduce new classification type for diffeomor-
phisms implied by this new equation and investigate the relative
position of its classes with respect to the analytic classes.
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1. INTRODUCTION AND MAIN RESULTS

1.1. Motivation. Each germ of a parabolic diffeomorphism in the
complex plane,

(1) f(2) =2+ a2 4 422" + 02", k€N, a; € C, a1 #0,

can, by formal changes of variables, be reduced to the formal normal
form, which is the time-one map of the holomorphic vector field

Zk+1 d
fo(2) = exp(Xy,p), Xi, = R

for k € Nasin (1) and an appropriate p € C. Here, k is the same as in
(1) and p depends on k and the first k+ 1 coefficients aq, ..., ax. ;. The
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formal class of a parabolic germ is given by the pair (k,p), kK € N, p €
C. On the other hand, the analytic class is given by 2k diffeomorphisms
on the spaces of closed orbits of the neighboring petals. They are called
the Ecalle- Voronin moduli or horn maps, see e.g. [6], [27] or [15].

For an overview on use of fractal dimensions in dynamical systems,
see e.g.[28]. The most commonly used fractal dymensions are Haus-
dorff and box dimension. The exact definitions may be looked up in
e.g. [26]. By [19], Hausdorff dimensions of strange attractors (Lorenz
attractor, Smale horseshoe, Hénon attractor) reveal their complexity.
Since Hausdorff dimension is in some cases trivial and not interest-
ing due to its countable stability property, the box dimension may be
used instead. Applied to appropriate invariant sets, they show intrinsic
properties of dynamical systems. It was thus shown that the box di-
mension and the Minkowski content of only one trajectory of a discrete
or a continuous dynamical system classify the system. One can read
from them the multiplicity of the generating function of the discrete
system, the moment or the complexity of bifurcation, see [8], [17], [29].

Along the same lines was the question if we can recognize a complex
germ (1) using box dimension and Minkowski content of only one orbit.
By their definition, they are related to the first term in the asymptotic
expansion of the area of the e-neighborhood of the set. In literature,
the function (in €) of the (inner) area of the e-neighborhood of a set is
sometimes referred to as its tube function. For some interesting sets the
explicit tube formulas for tube functions are given, see e.g. [10] or [11].
We have shown in [21] that the formal class can be recognized from
finitely many terms in the asymptotic expansion in ¢ of the (directed)
areas of the e-neighborhoods of one of its orbits. This question is similar
to the famous question: Can we hear a shape of a drum?, posed by M.
Kac in 1966. It asks if one can reconstruct the equation, that is, the
shape of the domain, from only one solution. The vibrations of a drum
are given by Laplace equation on a domain 2. By the famous Weyl-
Berry conjecture, see [12], the volume of € and the box dimension and
the Minkowski content of 02 can be read from the first two terms in
the asymptotic expansion of the eigenvalue counting function.

Our object of research in this article are the functions of the (di-
rected) areas of the e-neighborhoods of orbits of a germ f and their
relation to the moduli of analytic classification. To investigate if the
analytic class can be seen in functions of e-neighborhoods of orbits
is a natural continuation of the formal classification problem resolved
in [21]. The idea is to see to what extent e-neighborhoods of orbits
describe the given germ. This paper was motivated by the question:
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Can we read the analytic class of a germ from e-neighborhoods of its
orbits, as functions of parameter € > 0 and of initial point z € C?

It is clear that the analytic class, unlike the formal class, cannot be
read from any finite jet of parabolic germ, see e.g. [9, Sec. 21]. Ac-
cordingly, we are forced to analyse analyticity of the whole functions of
the areas of the e-neighborhoods of orbits, instead of considering only
finitely many terms in their expansions. Furthermore, instead of con-
sidering only one orbit, we search for a function constant along orbits,
that is, well-defined on space of orbits. In Section 3, the article gives
different results concerning the analyticity properties of the (directed)
areas of the e-neighborhoods of orbits. We reach the conclusion that
the principal parts in the expansions for f and for the inverse germ f°*
(defined in Subsection 1.2) are the only sectorially analytic objects re-
lated to the above function. They moreover satisfy a cohomological
equation similar to the trivialisation (Abel) equation, standardly used
in context of the analytic classification. As a result, the difference of
principal parts for f and for f°~! is a well-defined function on space
of closed orbits. We investigate in Sections 2, 4 and 5 if this func-
tion reveals the analytic class of a germ. The underlying idea is to
characterize the germs with global principal parts and to compare this
set of germs to the trivial analytic class. The two sets of germs seem
unrelated, and in Section 6 we support the observed fact. We study
solutions of a special type of cohomological equations, which generalize
the equation for principal parts:

Hof—H=1Id™, meN,.

We call them the m-Abel equations. Under this notation, the princi-
pal parts equation corresponds to 1-Abel equation, and the trivialisa-
tion equation to 0-Abel equation. We introduce new classifications of
germs imposed by differences of sectorial solutions of m-Abel equations,
called m-conjugacies. Finally, we show that the 1-classes of germs are
transversal to the analytic classes of germs. The differences of princi-
pal parts on closed orbits are thus not sufficient to read the analytic
class of a germ. One question for the future research is the position of
higher classes to each other.

Apart from standard use of Abel equation in analytic classification
of parabolic germs due to Ecalle and Voronin, the other cohomological
equations in relation to conjugacy problems have been considered for
real-line diffeomorphisms by Belitskii, Tkachenko [2] or Lyubich [16].
In [7], Grintchy and Voronin provide analytic classification of resonant
complex saddles, based on classification of their -monodromies, t € C.
They are 2-dimensional t-shifts, with two components: the parabolic
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holonomy map and the return time function. The quadruple obtained
as moduli are in relation with the pair of moments corresponding to
Abel and higher order cohomological equation for the parabolic germ,
which are defined in Section 7. See Subsection 7.2 for more details.

Recall that sectorial analyticity of formal solutions of difference equa-
tions (the Stokes phenomenon) appears frequently in problems from na-
ture, see e.g. [20] for insight. The fact that the cohomological equation
exhibiting the phenomenon appears in principal parts, due to geomet-
ric properties of e-neighborhoods of orbits (see proof of Proposition 6),
is therefore not unexpected.

Finally, the fact that the areas of the e-neighborhoods of orbits of
parabolic germs were exploited successfully in formal problem, [21], as
well as the existence of a bond between cohomological equations and
classification problems in dynamical systems in general, present the
motivation for studying the classification of germs implied by principal
parts of e-neighborhoods of orbits satisfying 1-Abel equation and its
possible relation to analytic classification.

In the end, some statements and detailed proofs omitted from the
article for the sake of intelligibility can be found in preprints [22] or, in
even more detail, in [23].

1.2. Definitions and main results.
Let

f(2) = Az + a12"™ + a2 + 0(2"?), a; €C, k€N,

A = exp(2mim/n), m, n € N, be a germ of a parabolic diffeomorphism.
Without loss of generality, we assume that A = 1. Otherwise, instead
of f, we consider its appropriate iterate f°*. Near the origin, the orbits
of f form the so-called Leau-Fatou flower, see e.g. [15] or [18]. There
exist k attracting and k repelling petals — domains accumulating on
0— bisected by equidistant attracting (repelling) directions and tangent
to two of them at the origin. The attracting/repelling directions are

normalized complex numbers (—a;)~'/*, al_l/ * respectively. Orbits are
tangent to attracting or repelling directions at the origin, see Figure 1.2.
Let V, denote any attracting petal of f. Let

S7(2) = {zn | 20 = f"(2), n € N}

denote the orbit of f with the initial point z lying in V.. We recall the
asymptotic behavior of z, from e.g. [18]. For further terms, see [21].

2n = (—kay) % -n7F +o(n"F), n— oc.
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FIGURE 1. Attracting and repelling petals for e.g. f(z) = z + z* + o(2%).

Definition 1. [see [21]] Let S¥(2), z € V., be an attracting orbit of f,

with initial point z, and SY(2). its e-neighborhood. The directed area

of the e-neighborhood of the orbit S7(z) is the complex number
AC(Z,&‘) = A(Sf(z)e) “tsr(z)

e”

Here, A(S’(z).) denotes the area and tsr(z). the center of the mass of
the -neighborhood.

Here, for convenience, the directed area is defined in a slightly dif-

ferent manner than in [21]. In [21], the center of mass was replaced by

Sf(z)s

the normalized center of mass, 7

st(el’

Recall the asymptotic expansion of A®(z,¢), as ¢ — 0, from [21]. Tt
follows directly by adding expansions from Lemmas 4 and 5 in [21]:
A%(z,e) = q151+ki+1 + q251+ﬁ +... 4+ qk_lsp’kiﬂ + qre?log e+

FHV (2)e24qrpae?tF loge + R(z,¢), R(z,e) = O(e*T7),
(2) keN, k>1,¢€C,i=1,...k+1.

The above expansion and formulas for the coefficients given in [21] hold
in the case k > 1. In the special case k = 1, we have the expansion:

(3) AC(Z,€) _ q15210g8—|—Hf’V+(2)52+
+Q2€g 10g€+R<Z75>7 R(Z,é‘) - O<€g)7 q1, G2 € C.

The coefficients are given by slightly different formulas than in [21]
(divergent for k = 1), but the properties of the expansions are the
same. For more details, see Lemma 1 in the Appendix. In above
expansions, ¢;, ¢ = 1,...,k + 1, are complex functions of k£ and of the
first ¢ coefficients of f. They do not depend on the initial point. The
coefficient H/V+(z) is the first coefficient that depends on the initial
point z. It is a well-defined function in z on V.
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Definition 2. The principal, initial point dependent, part of the di-
rected area of the e-neighborhoods of orbits in V. is the first coefficient
H'V+(2) in the expansion (2) depending on the initial point z, regarded
as a function of z € V., z — H"V+(2).

For simplicity, we call function z — H'V+(2) only the principal part
of area for f on V.. Naturally, on a repelling sector V_, we define the
principal part of area for fo=! on V_ as the first coefficient that depends
on the initial point in the expansion (2) for the orbit S°'(2) of the
inverse germ f°~!, regarded as function z — H" "V=(2), z € V_.

Let us comment shortly on properties of A®(z,¢), as function of
¢ > 0 and of z € V. They justify why we concentrate on the principal
parts as the only parts that display analytic property. The results
are detailed and proven in Section 3. We show that, for fixed initial
point z € V,, the remainder R(e,z) in (2) cannot be fully expanded
in a power-logarithmic scale in ¢, as ¢ — 0. It has accumulation of
singularities at ¢ = 0. Furthermore, for ¢ > 0 fixed, A%(z,¢) is not
analytic in z on any sector around attracting direction. However, we
prove Theorem 1 below about sectorial analyticity of principal parts.

For simplicity, we consider only the germs from the model formal
class (k =1, p = 0), that is, formally equivalent to the model fy,

d z
4 2) = Exp(2*—) = .
g o) = Bap( ) =
Furthermore, we assume f is prenormalized. The first normalizing
change of variables being already made, we admit only changes of vari-

ables tangent to the identity. All such diffeomorphisms are of the form:

f(2) =2+ 2+ 2° +0o(2%).

There exists only one attracting petal V, (around negative real axis)
and only one repelling petal V_ (around positive real axis). We denote
the functions H*V+ and H "V~ simply by H and H/*"'. The as-
sumption p = 0 is not essential; the same analysis could be performed
in any formal class (k = 1, p) (Theorems 1, 3, 4 hold, in Theorem 2 a
slight difference in h,, o, When the right-hand side contains a constant
term). However, it is difficult to compute explicit examples (Example 3,
4) for model germs in other formal classes.

Theorem 1 (Properties of principal parts of areas for a germ). The
principal parts H and H™ are analytic functions on petals V., and
V_ respectively. Moreover, HY and HI are, up to explicit constants,
related to the unique sectorially analytic solutions without constant
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term, Hy on V. and H_ on V_, of difference equation:
(5) H(f(z2)) — H(z) = =7z,
The following explicit formulas hold:

H (z)— % +ir? = H(2), zeV,,

H_(2)— % —nz—H"(2), zeV.
The equation (5) resembles to the trivialization (Abel) equation for

a parabolic germ:

(6) U(f(z) —¥(z) =1

There exist analytic solutions on petals, ¥, on V, and ¥_ on V_, the
so-called Fatou coordinates. Comparing them on intersections of petals
one obtains FEcalle-Voronin moduli of analytic classification, see e.g.
6], [27] or [5], which give the analytic class of f. See Subsection 6.1.
The Fatou coordinates W, and W_ glue to a global Fatou coordinate,
analytic in some punctured neighborhood of the origin, if and only if
f belongs to the model analytic class (class of fy from (4)). That is, if
and only if f is a time-one map of a holomorphic vector field.

We recall here the definition of cohomological difference equations,
which generalize both equations (5) and (6). The name cohomological
stems from algebraic-topological approach to dynamical systems. The
coboundary operator § for a dynamical system generated by f, acting
on a homomorphism H, is given by dH(f,z) = H(f(z)) — H(z). For
details, see e.g. [13]. The notion of cohomological equations is known
in literature, see e.g. [2], [9], [16] or [14, Section A.6].

Definition 3 (A cohomological equation). A cohomological equation
for a germ f with the right-hand side g € C{z}, g 0, is the equation

(7) H(f(2)) — H(z) = g(2).

The function H that satisfies (7) on some domain is called a solution

of the cohomological equation on the given domain. In particular, if
g=C-1d", C €C, me Ny,

we call equation (7) the m-Abel equation.

The Abel equation (6) is thus 0-Abel and our principal part equation
(5) the 1-Abel equation for f.

In Section 2, we discuss solvability of cohomological equations. The
results on existence of sectorially analytic solutions are adapted from
[14] or [9, Proof of the Theorem 21.5]. Our result is Theorem 2, that
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gives necessary and sufficient conditions on a germ f in terms of right-
hand side, for the cohomological equation to have a globally analytic
solution. The proof is in Section 2.

Let the right-hand side g of (7) be of multiplicity . That is,

(8) 9(2) = a2t +o(2") € C{z}, a; #0, 1 € N,.

In the cases | = 0 (ap # 0, i.e., the multiplicity of ¢ is 0) or [ = 1
(g =0, ag # 0, i.e., the multiplicity of ¢ is 1), we define:

o}
hog.ay (2) = —?0 + aq log z.

Theorem 2 (Globally analytic solution of a cohomological equation).
Let f be a parabolic germ from the model formal class. Let g € C{z},
g Z 0, be of multiplicity | € Ny. The cohomological equation

H(f(2)) — H(z) = g(2)
has a (unique up to a constant) globally analytic solution on some
neighborhood of origin if and only if the germ f is of the form!

! (haol,m (e (#(2)) + 9(2))> =0, 1,
9) J(2)= o
o (e (L)) ren iz
for some ¢ € z+ 22C{z}. The globally analytic solution H is given by

hogoy ©(2) , 1=0, 1,
l_lgp ) ) - -

We use the term globally analytic in a slightly incorrect manner. In
the case when g contains a constant term, H contains the term —1/z
in the asymptotic expansion. When the linear term of g is non-zero,
H contains a logarithmic term. The global analyticity of solution H of
(7) means the global analyticity of solution R, H(z) = —< 4 a; log 2+
R(z), of the modified equation

1 1

RUE) = R() = 9(:) + oo (575 - ) —antog (1),

Based on Theorem 2, in Theorem 3 we characterize the germs whose

principal parts are globally analytic. The theorem shows that global
principal parts are not the rule. Its proof is in Section 4.

Hf oy # 0, then hq, .o, contains a logarithmic term and is not a well-defined nor
invertible function on some neighborhood of origin. We work with two invertible
branches on overlapping sectors, and then glue the sectors together in function f
analytic at zero by Riemann’s theorem on removable singularities.
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Theorem 3 (Global principal parts of areas). The principal parts
(H! — in®) on Vo and (7 - Id — HI*™") on V_ glue to a global ana-
lytic function on a neighborhood of origin if and only if

flz) =97 (e (),
for some ¢ € z+ z2C{z} analytic. The principal parts are given by

HY(2) = —mlog p(2) + in* — g, z € Vy,

H? ' (2) = nz + wlog o(z) + %, ze V..

The branches of complex logarithm are determined by the petals.

In Section 5, using Theorem 3, we provide examples that suggest
that the set of germs with global principal parts is not related to the
model analytic class. Even the principal parts of the model fy, are
not global. This motivates us to introduce new classifications of germs
with respect to m-Abel equations, m € Ny, in Section 6. This puts
the Abel equation (6) and the principal parts equation (5) in a more
general context. The new m-conjugacy classes are described by pairs of
analytic germs that we call m-moments. They represent the differences
of sectorial solutions of m-Abel equations as functions defined on a
quotient space of closed orbits. Their construction mimics the Ecalle-
Voronin moduli from Subsection 6.1 on higher equations. The analytic
classes correspond to O-moments. Similar construction can be found
in [7, Section 4.2] in different context, as components of moduli of
classification of 2-dimensional shifts, without mention of cohomological
equations or higher moments.

Theorem 4 (Transversality theorem). Let ® be a mapping that asso-
ciates to each germ f its 1-moment. The mapping ® restricted to any
analytic class is surjective onto the set of all 1-moments.

The precise formulation and the proof can be found in Subsection 6.3,
where the question of injectivity is also shortly addressed.

By Theorem 4, each 1-class admits a representative in any analytic
class. In particular, there exist germs in each analytic class with global
principal parts. This gives the negative answer to our question of read-
ing the analytic class from principal parts of areas. However, it opens
new questions of the geometric meaning of new classifications of germs
and of the relative position of higher conjugacy classes to each-other.

2. SOLUTIONS OF COHOMOLOGICAL EQUATIONS

Here we adapt the statements from [14, Section A.6] dealing with
the right-hand side g(z) = O(z?) to the more general cases g € C{z}.
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The argument is standard, and the same is used, for example, in the
proof of the sectorial normalization theorem for parabolic germs that
can be found in e.g. [9, p. 378] or [15, p. 48]. We only state important
steps of the proof.

Proposition 1 (Formal and sectorial solutions of cohomological equa-
tions). Let g € C{z}, g(2) = ap + a1z + a22? + 0(2?), a; € C, i € Ny.
There exists a unique formal series solution i of equation (7) without
constant term of the form

(11) H(z) € —% + a; log z + 2C[[#]].

All other formal solutions in the given scale are obtained by adding
an arbitrary constant term. Furthermore, there exist unique (without
constant term) sectorially analytic solutions, H, on Vy and H_ onV_,
with asymptotic expansion (11), as z — 0.

Proof. The proof of existence and uniqueness of the formal solution is
straightforward, solving the cohomological equation (7) term by term.
To prove existence of sectorially analytic solutions, instead of H, we
consider R,

Q@

R(z) = H(z) + — — ay log 2.

z

By (7), R satisfies the difference equation

(12) R(f(2)) — R(z) = 6(2),

where § € 22C{z}. Now we directly apply results from [14, A.6] or [9,
Proof of the Theorem 21.5, p. 378] and find two sectorially analytic
functions on petals, R, on V, and R_ on V_, that satisfy equation (12).
Moreover, they admit R(z) = H(z) + % — aylogz € 2C[[2]] as their
asymptotic expansion, as z — 0. Let us describe shortly the standard
idea of solving cohomological equations. We consider the following
series:

(13) =Y 6(f"(2), z €V,

(14) > 5 M(2), ze V.

It can be proven that the above series converge uniformly on compact
subsets of V., V_ respectively. By Weierstrass theorem, they converge
to analytic functions on petals, which we denote by R, and R_:

(15)
Ry(z)==> 6(f"(2), 2€ Ve, R_(2)=) o(f"(2), z€ V.

n>0 n>1
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It can be furthermore checked that both R, and R_ admit R as their
asymptotic expansion on petal, as z — 0.

The uniqueness of sectorial analytic solutions R, and R_ with as-
ymptotic expansion Ris easy to prove. On V| iterating equation (12)
along the orbit of f, summing the iterations and passing to the limit,
we see that any analytic solution of the type O(z) of (12) is necessarily
given by the same convergent series (13), and is thus unique. The same
can be concluded for V_ and formula (14).

Finally, the solutions of initial equation (7) are given by

Hi(z) = Ri(z) — ol + aq log z on Vi,
z

where Ry are as in (15). On each petal, we choose the appropriate
branch of logarithm. 0

In the proof of Theorem 2 from Section 1, we need Proposition 2
below. It can be proven easily. Note that the assumptions on the
existence of formal expansions are crucial for the implication to hold.

Proposition 2. Let §, T € C[[z]], h € C{z} non-constant, such that
T=ho g.
Then T is analytic if and only if § is analytic.

Proof of Theorem 2. We consider two cases separately.

i) 1> 2. The formal solution H € 2C[[z]] is of the form
f(z) = la—’lzl—l +o(2Y).

Equivalently, we can write

5 e

H(z) = P(2)

-1
where ¢ € z + 22C[[z]]. By Proposition 2, H is globally analytic if and
only if ¢ is globally analytic.
Suppose now that H is globally analytic. Putting H = l‘j—llgol_l in

equation (7), we can uniquely express f:

(16 1@ =7 (s + o) ™).

l

Here, p(2)'71 ~ 2! and g(z) ~ 2!, as z — 0. The (I — 1)-th root we
take is uniquely determined, since f and ¢ are tangent to the identity.
Formula (16) easily transforms to (9).

Conversely, if f is of the form (9) for ¢ € 2 + 22C{z}, it is easy to
see that H = 2L¢'~! satisfies equation (7) for f and that the formal
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expansion is of the form (11). By uniqueness in Proposition 1, H is
the unique analytic solution of (7).

i1) 1 = 0,1. Similarly, the formal solution H can be written as

H(2) = hagas © 3(2),
where ¢ € 2z + 22C[[z]]. Equivalently,

I/-](z) = —% +ajlogz+r <—gp(z)z— Z) ,

where r is a nonconstant analytic germ. Now, by Proposition 2, H
is globally analytic (in the sense that ﬁ(z) + 20 — ay log 2 is globally
analytic) if and only if @ is. We proceed as in 7). The function Ay, a,
in expression (9) can be regarded as function with two branches. In
the case oy # 0, it is the Fatou coordinate for the vector field X ,,
A =2migt, see e.g.[15]. In the case ag = 0, it is merely a logarithmic
function. It is then invertible on sectors. O

3. ANALYTIC PROPERTIES OF A%(z,6) IN e >0 AND IN z € V.

The missing proofs of propositions can be found in the Appendix.

3.1. Properties of ¢ — A%(z,¢), ¢ > 0.
Proposition 3 below presents an obstacle for extending function €
A€ (z, ) from real positive to complex ¢, by means of formal series.

Proposition 3 (Nonexistence of full power-logarithmic asymptotic ex-
pansion in €). Let z € V. be fized. After a certain number of terms,
an asymptotic expansion of A%(z,e) in a power-logarithmic scale, as
e — 0, does not exist. There exists | € N, such that the remainder
R(z,¢) in (2) is of the form:

R(z,e) = hi(2)q1(e) + ... + hi_1(2)gi—1(e) + h(z, e),
h(z,) = O(g(e)), € = 0.

The monomials g;(€) are of power-logarithmic type in €, of increasing
flatness at zero, but the limit
h
lim (2,)
=0 g(e)

does not exist.

Proposition 4 expresses an obstacle for the analytic continuation of
A%(z,¢) in e on the neighborhood of the positive real line.
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Let us denote by z, = f°"(z), n € Ny, the points of the orbit. Let
dy = |zn — Zny1], n € Ny, denote the distances between consecutive
points of the orbit and let

dn,

8n:77 nENO.

Note that ¢, — 0, as n — oo.

The loss of regularity of e — A®(z, ¢) at points &, at which separation
of the tail and the nucleus occurs is related to the different rate of
growth of the tail and the nucleus of e-neighborhoods in ¢, due to their
different geometry (overlapping discs in nucleus, disjoint discs in tail).

Proposition 4 (Accumulation of singularities at ¢ = 0). Let 5 > 0.
The function e — A®(z,€) is of class C* on (0,2¢) and C* on open
subintervals (ep41,€n), n € No. However, in e,, n € Ny, the second
derwative is unbounded from the right:

d2
lim ——A%(z,¢) €C, lim

E—En— 52 e—reént

2
;_AC(Z’ £)

= 400.
=2

3.2. Properties of z — A%(z,¢), z € V.

Let us fix £ > 0. Proposition 5 states that function z — A%(z,¢) is
not analytic on the attracting (repelling) petal.

Let S*(p,7), ¢ € (0,7), r > 0, denote open sectors of opening 2¢
and radius r > 0, bisected by the attracting (repelling) direction.

Proposition 5. Let € > 0. The function z — A%(z,€) is not analytic
on any open sector ST(p,r). The function z Ac’f%l(z,e) is not
analytic on any open sector S~(p, ).

3.3. Properties of the principal parts of areas.
Having described bad properties of the directed areas of orbits, we
concentrate only on their principal parts:

s HI(2), ze Ve, and z— H" '(2), z€ V_.

We prove Theorem 1 about analyticity on petals. The relation of
principal parts with cohomological equation (5) in theorem was inspired
by Proposition 6, which follows from the geometry of e-neighborhoods.

Proposition 6. The principal parts of areas H and H'™" satisfy the
following difference equations:

(17) HY((2) — HY(2) = —72, 2 € V.
(18) H (M 2) = H () = =7z, € VL.
Here, V. denotes any attracting and V_ any repelling petal.
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Proof. Let us first derive (17) for H on V,. By the definition of the
directed area, we have that, for € < e, small enough with respect to z,
(19) A%(z,e) = AC(f(2),e) + 2 -€%m, z € V.
Putting the expansion (2) in (19), we get that
[Hf(z) - Hf(f(z))}es2 + (R(z,€) — R(f(2),¢)) =

By (2), R(z,e) — R(f(z),e) = 0(52+%+1). Dividing by €% and passing to
the limit as ¢ — 0, (17) follows. Equation (18) is derived analogously,
considering directed areas of orbits of f°~! on a repelling petal. O

Proof of Theorem 1.

We analyse the coefficient H/(z) in front of &2 in expansion (3),
as function of z € V. Let us remind, the tail is the part of the
e-neighborhood which is the union of disjoint e-discs, while the nu-
cleus is the remaining part with overlapping discs. We denote by
2 H]{,(z), 2z H%(z), z € V., the principal parts of the directed
area of the nucleus and of the tail respectively. We have:

(20) HY(2) = B (2) + HL(2), 2 € Vi

By Lemma 1(i¢7) in the Appendix, the principal part for the nucleus is
constant and equal to

(21) HL(2) = —%(1 +logd), z € V..

The dependence on z of the principal part comes from the tail. The
directed area of the tail of S/(z). is by its definition equal to:

(22) (A(T) - 1) () = 2n- 3 Fo2).

Here, n. is the index of separation of the tail and the nucleus. Obvi-
ously, n. — 0o, as ¢ — 0. Using the formal expansion of f°(z), as
[ — o0, from Lemma 1(7) in the Appendix,

(23) flz) =~ ()17 +o(172),

and by integral approximation of the sum, we obtain
(24) > fNz) = —logn+C(2) +o(1), n— o0, z € Vi
1=0

Here, C'(z) denotes the constant term in the expansion of the sum
S foU(2), as n — co. Putting (24) in (22), we get:

(25) (A(TE) . tTE)(z) =er. ( —logn. +C(z) + 0(1)), e — 0.
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Further, putting the expansion for n. from Lemma 1.(i7) in the Ap-
pendix in (25), we conclude that

(26) H%(z):glogZ—i-ﬂ'C(z), z€Vy.
By (20), (21) and (26), we get:
(27) H (2) :—%JFW.C(Z), eV,

Our next step is to prove analyticity of the function H/ given by (27)
on V.. To this end, we consider the unique analytic solution on V.,
without constant term of equation (5):

(28) H(f(2)) — H(2) = 2.
By the proof of Proposition 1, it is given by the limit

(29) Ho(z) =7 lim (Z f(2) ~ log f°(”+”(2)> ,

which was proven to converge pointwise to an analytic function on V.
To prove analyticity of H/ on V., it suffices to show that the ex-
pression (27) for H/(z) coincides pointwise with H(z) in (29), up to
a constant. For a fixed z, by (24), we estimate the first terms in the
asymptotic expansion of Y, f°(z) — log fo" 1 (2), as n — oo

S U(2) — Tog () =
=0

(30) = —logn +C(2) +o(1) — log "+ (2) = C(2) — im + o(1).

Here, C(z) is as defined above. The last equality follows using (23):

1
—log" oY (2) —log™n = —log" (_E(l + 0(1))) —log™n =
= —log™ n+log"(—n) —log™ (1 +o(1)) = —im + o(1), n — oco.

Here, log™ z is the principal branch of logarithm, argz € (—m, ), and
log" z the branch for arg z € (0, 27).
Passing to the limit in (29), by (30), we get the pointwise equality:

H (2)=7-C(2) —ir? z€V,.
By (27), we conclude

HY (2) + % —in? = H,(2).

Therefore, since H, is analytic on V,, H” is also analytic on V.
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Analyticity of H/°™" on V_ can be proven in the same manner, con-
sidering inverse diffeomorphism f°~!, and comparing H/ *! with sec-
torial solution H_ of equation (28) on V_. O

4. APPLICATIONS OF THEOREM 2

4.1. Trwvial application: global solution of the Abel equation.
The trivialization (Abel) equation for a parabolic germ f:

(31) U(f(2) = ¥(z) = L

We use Theorem 2 to derive a well-known result by Ecalle and Voronin:
a germ f is analytically conjugated to the model f, if and only if
equation (31) has a global solution W. Of course this is not new, and
we put it here only as a trivial example.

Proof by Theorem 2. Abel equation is a cohomological equation with
right-hand side g = 1. Therefore, hyo(z) = —1/z. By (9), there exists
a global analytic solution of (31) if and only if f is given by

_ 1 _
f=9 1<__;+1>:‘P Yo foop,
©

for some ¢ € z + 22C{z}. ¢ realizes the conjugacy between f and fo.
The solution is unique up to additive constant and, by (10), of the form
U ="Uj0¢p, Vo(z)=—1/z. O

4.2. Nontrivial application: Theorem 3.

Proof of Theorem 3. The theorem is a direct consequence of Theo-
rems 1 and 2. By Theorem 1, the principal parts are explicitely related
to the sectorial solutions of the cohomological equation with right-hand
side g = —m - Id. By Theorem 2, this equation has a global solution if
and only if f(2) = ¢ 1 (p(z) - €*), for some ¢ € z + z°C{z}. O

We provide here two simple examples of parabolic germs with global
principal parts of areas from Theorem 3.

Example 1 (Germs with global principal parts).

(1) f(z) =z-€*, for p=1d,
(2) f(2) = —log(2 —¢€*), for p(z) =1—e".

5. COUNTEREXAMPLES: TRIVIAL ANALYTIC CLASS VERSUS
SET OF GERMS WITH GLOBAL PRINCIPAL PARTS

We consider germs belonging to the formal class (k = 1,p = 0),
prenormalized. This standard restriction allows simpler presentation of
analytic classification. Changes of variables are tangent to the identity.
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Recall that the analytic class of a germ is hidden in differences of
sectorial Fatou coordinates, or sectorial solutions of Abel equation, on
intersections of petals. We give examples that illustrate the inability
of reconstructing the analytic class by subtracting principal parts (or
sectorial solutions of 1-Abel equation) on intersections of petals.

We denote the upper and the lower component of V., N V_ by:

VP ={zeV,NV_|Im(z) >0}, V' ={z € V,NV_|Im(z) <0}.

By Riemann’s theorem on removable singularities, the trivial differ-
ences of sectorial solutions of (5) on intersections of petals (up to con-
stant 27i from different branches of logarithm):

(32) Hi(2)—H_(2) =0, 2 € V*; H_(2)—H,(2) = —2mi, z € V",

corresponds to the fact that (5) has a global analytic solution.

Let Cy be the class of diffeomorphisms analytically conjugated to
fo- Denote by S the set of germs such that (5) has a global analytic
solution. By Theorem 3, it follows that

§ = {f(2) = z+22+240(") | £ = 07 0(2)), 0(2) = 2+2°Ce} ).

Example 2 shows that SNCy is nonempty. Furthermore, none of the sets
is a subset of the other. The trivial analytic class and the trivial class
with respect to 1-Abel equation are in general position. To conclude,
information given by differences H, — H_ on V* U V% is insufficient
for determining the analytic class.

Example 2.

(i) f(z) = —log(2 —€*) € SN Cy,
(i) g(2) = ze%, g(2) € S, g(2) ¢ Co,
(i11) fo(2) € Cos fo(z) & S.

In (i), we take ¢~ 1(z) = —log(1l — z) for both classes. Example (ii)
follows from the fact that no entire function is analytically conjugated
to fo, see [1]. Exzample (iii) follows from Example 3 below.

In Example 3, we compute the differences H, — H_ for the model
germ (with global Fatou coordinate), and get a nontrivial cocycle.
We apply the Borel-Laplace technique directly to equation (5). The
method is standard, a similar one to be found in e.g.[5, Example 2],[4].
The example is explained in details in preprint [23, Ex.3.5].
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Example 3 (The differences for fo(z) = 1%). We substitute H(z) =

—7logz + 7R(2), R e 2C[[z]], in equation (5) for fo. We get:
RUp(2)) - B(e) = 2 +1og 1200

By the change of variables w = —1/z, R(w) = Rovy, y(w)=—1/w,

(33)  R(w+1)— Rw) = w — Log(1+w™) = S

The right-hand side of this equation is of the type w2 C{w™1}. Put

>
k=2

Applying the Borel transform to (33), we get

Bb(§) et +E-1
et —1’ £ '

It can be shown that function & — Bé({) has 1-poles at 2iwZ* in di-
rections +1, and is exponentially bounded and analytic in every other
direction. For details, see [5]. Therefore, Laplace transform yields two

analytic solutions, RT on Wy = {w| Re(we”) > By, 0 € (—m/2,7/2)},
and R~ on W_ = {w| Re(we®?) > By, 0 € (7/2,37/2)}, where 3y > 0.
By the residue theorem, for w € W = {w | Im(w) > 5o}, we have:

BR(¢) =

Bb(¢) =

191 09

~ ~ 7§w8b oo-e 7§w6b
R+<w>_R—<w>:/0 e [T P

—§w 27w
= —onmi - ZR BN ¢~ omik) = 2mi—

e=€—1 1 — e2miw’

Here, 0, € (—7T/2,7T/2) and 0y € (7/2,37/2) are close to —m /2.
Similarly, for w € W = {w| Im(w) < —fFo}, we get
. . —2mi-w
R* - R = 2Mi—.
(w) (w) 7”1 _ 6_27”'w

Returning to the variable z = —1/w and to H(z), we get
—2mit
Hy(2)-H_(s)=2n" = 2n%ify(e), eV,

— e Z

H_(2)—H, (2)=2n% +27r2¢1€W —on?it2nifo (e ), 2 € ViU
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For the model fy, the 1-cocycle of differences H, — H_ defines on
orbit (quotient) space - see Section 6 for details - the germ 2% f; itself,
in both components. This is certainly not a coincidence. It would
be interesting to have some geometrical explanation. The differences
can be similarly computed by Borel-Laplace transform for any germ f
analytically conjugated to fy. In general, their cocycles are not trivial.

Example 4 (Explicit formulas for the sectorial solutions Hf for fo).

By (27) in the proof of Theorem 1, using f5"(z) = 1=, we compute:

d
HP(2)=7-CP(2) —in® =7 - Elog(lj(z))‘_l —in?, 2z €V,

z

H()=mz—7m-CP()=nmz+7- 4 log(T'(2))

V_.
7 z €

l’
z

Here, T' is the standard Gamma function, holomorphic on C \ —Ny.
Therefore, Hio are well-defined and analytic on V4.

6. HIGHER-ORDER MOMENTS AND HIGHER CONJUGACY CLASSES

We define new classifications of parabolic germs from trivial formal
class, based on differences of sectorial solutions of m-Abel equations,
as functions on spaces of closed orbits. The well-known Ecalle-Voronin
moduli are obtained in this manner from Abel equation (m = 0), see
Subsection 6.1. In particular, in Subsection 6.2, we define a new clas-
sification of germs based on 1-Abel equation. We have anticipated in
Theorem 2 and supported in Examples 2 and 3 the fact that the trivial
class for 1-Abel equation is not related to the trivial analytic class. In
Subsection 6.3, we analyse the relative position of analytic classes and
classes with respect to 1-Abel equation and get the transversality result
— they are actually far away from each other.

6.1. Ecalle-Voronin moduli of analytic classification.

This approach to Ecalle-Voronin moduli of analytic classification of
germs is a reformulation of Fourier representation of moduli from [6, 27|
or [5]. The classes are given by pairs of germs at zero, after appropriate
identifications. We will use similar approach further in this section to
define new classifications imposed by higher Abel equations.

Let U (2), z € V4, and U_(z), z € V_, be sectorial solutions of
Abel equation (6) (unique up to additive constant). By pair (h, k), we
denote their differences on V', View:

h=¥,—-V_, onV¥ k=W¥_—T, onV
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The pair (h, k) is a 1-cocycle, in the sense that h and k are analytic
germs on petals V%, Vv with exponential decrease, as z — 0.

By equation (6), h and k are constant along closed orbits in V",
View We choose positive petal to pass to a space of orbits and represent
the space of orbits on V, by a punctured sphere, using the change of
variables t = e~2™¥+() (each orbit corresponds to a point). Closed
orbits in V" correspond to a punctured neighborhood of the pole t =
oo and those in V¥ to a punctured neighborhood of the pole t = 0.
We define a pair of germs ¢ — (go(t), go(t)) (on a sphere) around
t = oo and t = 0 which lift to the pair (h, k) on the original space:

hz) = goo(e 2™V+E)) 2 e VUPy k(z) = go(e 2™+, 2 € Vi,

Inverting goo(t) = goo(1/t), goo becomes also a germ at ¢t = 0. It can
be seen that the germs are analytic at punctured neighborhood of 0.
They can moreover be extended continuously to 0, by differences of
constant terms in sectorial trivialisations. The extension is analytic by
Riemann’s characterization of removable singularities. We get a pair
of analytic germs (gwgo) at the origin, satisfying g.(0) + go(0) = 0.
Note that the germs are not necessarily diffeomorphisms.

We identify two pairs of germs, (gL, gs) and (g%, g7) if it holds that:

(34) 9a0(0) = g2.(0) + a, g5(0) = g5(0) —a,
9o (t) = g2 (bt),  go(t) = go(t/b),

for a € C and b € C*. This corresponds to choosing trivialisation
functions ¥, and ¥_ up to an additive constant.

The Ecalle-Voronin classification theorem states a bijective corre-
spondence between analytic classes of germs from the model formal class
and all pairs (g0, go) of analytic germs such that g-(0) + go(0) = 0,
after identifications (34). The class of germs analytically conjugated
to the model is characterized (up to additive constant) by trivial differ-
ences ¥, —W_ on V¥ UV Tt is given by trivial pair of germs (0, 0),
up to identifications (34). That is, by constant pairs (—a,a), a € C.

6.2. Higher moments of classification. We now mimic the classi-
fication technique from Subsection 6.1 on general m-Abel equation:

(35) H(f(z))— H(z) = 2™, m € Ny.

By Proposition 1, there exist analytic solutions H* and H™ of (35) on
petals V; and V_, unique up to a constant term. Their difference on
VP x View defines a 1-cocycle (h, k), which can further be lifted to the
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space of orbits of positive sector V,:
h(z) = HY'(2) — H™(2) =gl (e 27"+, 2 e V',
(36)  k(z) = H™(z) — H(2) =(=2mi) + g5 (e 2™+ () 2 € Vv,

The term —27¢ is put in brackets, since we put it only in the case when
m = 1 for later convenience (to get germs disappearing at 0). In the
case m = 1, —2m¢ is the difference of the two branches of logarithm.

As above, we get a pair of germs t — (¢72(t), 95" (t)) on a neighbor-
hood of origin, that can be extended analytically to ¢ = 0.

The trivialisation W, is determined only up to an arbitrary constant.
Also, if we add any complex constant to H* or H™, they remain solu-
tions of m-Abel equation (35). Thus, as before, we identify two pairs
of germs if (34) holds. Again, ¢{'(0) + ¢Z(0) = 0.

Definition 4 (The m-moments). Let m € Ny. The m-moment of a
germ f with respect to trivialization function of the attracting petal
or, shortly, m-moment of f, is the pair

t (gn(t), g5'(t))
of analytic germs at zero from (36), up to identifications (34).

The definition of g-moment can be formulated for any right-hand
side g € C{z} of the equation (7). The similar definition is used in [7,
Section 4] to express the second pair of moduli of analytic classification
of 2-dimensional ¢-shifts. For more information, see Subsection 7.2.

Remark 1. The 1-moments are defined using differences of sectorial
solutions Ry — R_ on V' NV of the modified equation

R(f(2)) — R(z) = z —log (f(2)/2),
instead of differences H. — H_ from the original equation (37). The
equation is obtained substituting H(z) = log z + R(z) in (37). Thus we
remove the constant term —2mi from (36).

Definition 5 (The m-conjugacy relation for parabolic germs). Let m €
Ny. The m-conjugacy is the equivalence relation on the set of all germs
from the model formal class, given by

fi ~ fo, if and only if f and g have the same m-moments.
By [flm = {9 | ¢~ f}, we denote the m-conjugacy class of f.
Instead of equation (5), we consider here the 1-Abel equation:
(37) H(f(2)) — H(z) = z.

The moments are scaled by —%. The conjugacy classes remain the same.
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Example 5 (0- and 1-conjugacy classes).

(1) The Abel equation being 0-Abel equation, the 0-moments cor-
respond to Ecalle-Voronin moduli from Subsection 6.1 and the
0-conjugacy classes to the analytic classes. In particular, the
germs analytically conjugated to the model have the pair (0,0)
as 0-moment (the Abel equation has global solution).

(2) The 1-conjugacy classes are obtained from 1-Abel equation. By
Theorem 2, the trivial 1-conjugacy class (the set of all germs
with 1-moments equal to (0,0), i.e., with global solution to equa-
tion (37) or, equivalently, to (5)) is the set

S={r1f=¢(e 9(). v €2+ 22C{z}}.

We complete the section with question of realization of moments. All
possible 0- or 1-conjugacy classes are given by all pairs of analytic germs
(g1, 92) at zero, after identifications (34), such that g;(0) 4+ g2(0) = 0.

Proposition 7 (Realization of 0-moments). For every pair (g1, g2) of
analytic germs, such that g1(0) + ¢g2(0) = 0, there ezists a germ f from
model formal class, such that the pair (gl,gz) 15 its 0-moment.

Proof. The statement follows directly from the theorem of realization
of Ecalle-Voronin moduli, see [6, 27] or [5, Theorem 18]. O

Proposition 8 (Realization of 1-moments). For every pair (g1, g2) of
analytic germs, such that g1(0) + ¢g2(0) = 0, there ezists a germ f from
model formal class, such that the pair (gl,gg) 15 its 1-moment.

Note that by varying constant term chosen in sectorial trivialisation
function ¥, and constants chosen in solutions H, and H_, we can
realise all other 1-moments identified by (34) by the same germ f.

Proof. See the proof of Theorem 4 in Subsection 6.3 below. U

6.3. Relative position of 1-conjugacy and analytic classes.
Let ® denote the mapping

o(f) = [/,

defined on the set of all germs from model formal class. We precisely
state and prove Theorem 4 from Section 1:

Theorem 4 (Transversality). The restriction ® . maps surjectively
0

from any analytic class [f]o onto the set of all 1-conjugacy classes.
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We first give an outline of the proof. We prove not only that ev-
ery pair of germs can be realized as 1-moment in the model formal
class (Proposition 8), but also as 1-moment in any analytic class (The-
orem 4). Take any analytic class [f]p and a representative f. Let
(g1, g2) be any pair of analytic germs, ¢;(0) 4+ ¢2(0) = 0. We first show
that there exists an analytic, tangent to the identity right-hand side o
of the cohomological equation for f, such that (g1, ¢2) is the moment
of f with respect to this equation. This idea is borrowed from [14,
A.6]. Then, by change of variables, we transform the equation to 1-
Abel equation for a different germ, analytically conjugated to f by 4.

Proof of Proposition 8 and of Theorem J. Let [f]o be any analytic
class and f € [f]o . Let \Ili(z) be any trivialisation of V. for f. Let
(g1, g2) be any pair of analytic germs, satisfying ¢;(0) + ¢2(0) = 0.

On some petals V* and V' of opening 7 and centered at directions
+1 respectively, we define the pair (Too, TO) by:

(38)
Too(z) = g1 (2, 2 e VP, Ty(z) = go(e 279G, 2 € Viow,

If g1(0), g2(0) # 0, we subtract the constant term. This can be done
without loss of generality, since a constant term can be added to secto-
rial solutions afterwards. By construction, T, and T are f-invariant.

The functions z — Ty(2) and z +— T (z) are analytic and expo-
nentially decreasing of order one on V* and V%%, The pair (Th,Tp)
defines a 1-cocycle. By Ramis-Sibuya theorem, see e.g. [14, Théoréme]
or [3, Theorem 2.5], [25], there exists a formal series H € zC[[z]],
which is l1-summable® along arcs of directions 6 € (7/2,37/2) and
6 € (—n/2,7/2), and whose differences of 1-sums H, and H_ thus
defined on petals® V, and V_ realize the cocycle (Tw, Tp):

(39) Toy=H,—-H_on V", T.,=H_— H,_on V"

We adapt now slightly functions H, and H_ by adding the appro-
priate branch of logarithm,

(40) He(z) = Hi(z) +log(z), z € V.

2To recall, we say that H(z) is 1-summable in the direction 6 = 6 if there
exists an analytic function H(z), defined on some sector V' of opening at least 7
and centered at 8 = 0y, such that H admits H as its asymptotic expansion on V,
as z — 0, which additionally satisfies some uniform Gevrey bounds, see e.g. [20,
Section 2.1] or [3] for precise definitions. H is then called a I-sum of H on V.

3of opening 27 and centered at § = 7w and § = 0 respectively. Petals are unions
of sectors with decreasing radii while increasing opening.
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We define functions 01 on V. respectively by:
01(2) = Hi(f(2)) — Hi(2), 2 € V4,
(41) 0 (2)=H(f(2)) —H (2), z€ V..

From (39) and (41), using f-invariance of T, and T, and Riemann’s
theorem on removable singularities, we see that 6, and §_ glue to an

analytic germ d. By (40), 6 € z 4 22C{z}. To conclude, H, and H_
are sectorial solutions of the cohomological equation for germ f, with
the right-hand side §. That is,

Ho f— H=4.
By analytic change of variables w = §(z), we get

Hod (8o fod (w))—(Hod ) (w)=uw.

Therefore, (H 0 074 (2) = (Hy 0 071)(2), 2 € Vi (Vi being in fact
d(V1), but identified with Vi since 0 is a conformal map tangent to
the identity) are solutions of 1-Abel equation for germ g = o fod 1,
analytically conjugated to f. Furthermore, by (38) and (39),

(0 67)(=) — (H- 0 67)(2) = Too(071(2)) =
_ gl(ezwiwio&l(z)) _ 91(627”'\1/1(2))’ sevw,
(H_ 06 ) (z) = (Hy o6 V)(2) = —2mi + To(67(2)) =
= 270 + go(e VLT )Y = _9mi 4 go(e 2V (2)), z € VIOV,
Here, U9 (2) = \Ili 07! is a trivialisation function for g, for an appro-

priate choice of constant term. Thus, the cocycle (g, g2) is realized as
1-moment of germ g, analytically conjugated to f. O

We pose the question of injectivity in Theorem 4. Inside any analytic
class we can construct different germs with the same 1-moment:
Proposition 9 (Non-injectivity). Let f, g € [flo. If there exists a
change of variables p € z + 2*C{z} , g = ¢ o f oy, of the form
(42) pl=1Id+rof—r
for some r € C{z}, then f and g have the same 1-moments. Addition-
ally, if [f]o is the model analytic class, the implication takes the form
of the equivalence statement.

The proof can be found in preprint [22].

For future research, we pose the question of relative position of higher
equivalence classes to each other: if transversality holds as a rule.
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7. PERSPECTIVES

7.1. Can we recognize a parabolic diffeomorphism using di-
rected areas of c-neighborhoods of only one orbit?

We use ideas from proof of Proposition 4 to prove that a germ f is
uniquely determined by the function e + A®(2g,¢), € € (0,50), where
g9 > 0 is arbitrary small and z; fixed belongs to the basin of attraction
of f. Since this function is defined using only one orbit, the areas of e-
neighborhoods of only one orbit should be enough to read the analytic
class. How this can be done, remains subject to further research. This
is a different approach to the problem; in the article, we have been
considering sectorial functions, related to A%(z,¢), in variable z.

Let Diff (C,0; z9) C Diff (C,0) denote the set of all parabolic germs
whose basin of attraction contains z.

Proposition 10. Let g9 > 0, zg be fized. The mapping
f € Diff(C,0; ) — (g — A%(20,¢), € € (0,0))
is injective on Diff (C,0; z).

Proof. Suppose that A%/ (zy,e) = A%9(2g,¢), ¢ € (0,g), for some

f, g € Diff (C,0; zg). We show that the germs f and g must be equal.
Separating the tails and the nuclei and dividing by %7, we get

ASHT,) — AS9(Ty) _ ABI(N,) — ABI(N,)

2 2

(43) , € €(0,¢ep).
The proof relies on presence of singularities of directed areas at (£/:9).
Let z,, w,, n € N, denote the points of the orbits S/ (zy) and S9(z)
respectively. Recall that

f _ |Zn_zn+l| g _ |wn_wn+1|

gf=———"— & =—-——"— nelN
" 2 " 2
Suppose that the sequences of singularities for f and g, (¢]) and

(e9), do not eventually coincide. Then there exist m, n € N arbitrary
big and an interval (¢f — 6,&f + d), 6 > 0, such that €, < e/ — § and
el + < &7 . Consider the second derivative ja—i of (43) at &/ from
the right. With the notations as in proof of Proposition 4, by (50),

0=(GL,,)"(el+) = (G9)" (el +)+

1 [ 4e! ()2 2(el)? 1
(44) + % (? L= 62 B 55 1 — (af)z ' (Zn+1 t Zn)'

n

s=6f,,+
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Since all terms are bounded except the term in brackets and z,+ 2,11 #
0, (44) leads to a contradiction. Therefore, sequences of singularities
(ef) and (£9) eventually coincide,

ef =€)k M >0, ko €N.

Now, considering the second derivative of (43) at &, = &f = &7,
from the right, we get:

0=(GL.) (ent) = (G9p 1) (Ent)+

1 (4e, e2 23 1
TR (Y S S
m\ &3 g2 &b <2

'<Zn+1 + 2n — (Wnikey1 + wn+k0)>‘
1— =2
52

e=en+

The term in brackets is the only unbounded term, so (z,11 + 2,) —
(Wnikyr1 + Wnik,) = 0. The middle points of orbits S/ (zp) and S9(z)
eventually coincide. The distances df = 2¢/ and d = 2¢9 coincide, and
both orbits converge to some tangential direction. It is easy to see that
the orbits themselves eventually coincide. Two analytic germs f and ¢
coincide on a set accumulating at the origin, so they are equal. U

7.2. Cohomological equations in analytic classification of 2-
dimensional t-shifts.

This result is due to David Sauzin in personal communication. It
gives an application of cohomological equations for one-dimensional
germs f, along with their Abel equation, to analytic classification of
two-dimensional ¢-shifts, F : (((C,O),(C) — ((C,O),C),

F(z,t) = (f(z),t + a(z)), a(z) € C{z}.

The analytic classification of t-shifts is discussed in [7], in view of ana-
lytic classification of resonant complex saddles. They appear as saddle
t-monodromies, the parabolic germ f being a holonomy map of the
saddle and ¢ the complex return time. In [7, Section 4.2], the four
moduli of analytic classification are deduced without mention of coho-
mological equations. On the other hand, they agree with the quadruple
containing the 0-moment and the a-moment for f, defined in Section 8.

Let f belong to the formal class of fy. The ¢-shift above with a(z) =
ap + a1z + o(z) can by (t-shift) formal change of variables be reduced
to a formal normal form

Fo(z,t) = (fo(2),a0 + a1z + t).

Equivalently, we search for formal solutions f(z, t) of the trivializa-
tion equation:

(45) T(F(z,t)) = T(zt) + (1,0).
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It can be computed that the formal trivialization T for F is given by
(46) T(z,t) = (\Tz(z>, H(2) + t).

Here, U is the formal solution of the Abel equation for f, and H=a of
the cohomological (—a)-equation for f. Hence, Abel equation appears
as the first and (—a)-equation as the second coordinate in the trivial-
ization equation (45) for t-shift F. Accordingly, it can be compared
with [7] that the analytic moduli of F' from [7] are in fact given by
moments (as defined in Subsection 6.2) with respect to both equations.

8. APPENDIX

Lemma 1 (Asymptotic expansions for germs of multiplicity & = 1).
Let f(2) = 2+ a12% + az2® + 0(23) be a parabolic germ and zy an initial
point. Then we have the following expansions:

(1) £ (z0) = ™'+ (3= Jn~lognta(2) n 2 +o(n™2), n — ox.

a3
(2) ne = (2las]) ™22 + JRe(1 — %) loge + o(loge), € — 0.
1

(3) (Center of the mass of the nucleus)

1 =x

AN (Ne) = = - 7(1 +log4) - e’ -

VT 1 I'3/4)\ . as\ s 5
- 871(2\@1|)2 (ﬁ F(5/4)> ~i-Im(1 - ;%)62 -loge + o(c2 loge), £ — 0.

(4) (Center of the mass of the tail)

™

A(THT) e2loge + HY(z0)e?—

a

1/2
- <‘a21> all i Im(1— Z%)eg loge + o(eg loge), € — 0.
Proof. In [21, Lemmas 1-5, Proposition 3|, expansions are given for
germs of multiplicity £ > 1. First, (1) is obtained as in [21, Proposi-
tion 3|, putting k£ = 1, but iterating further to get more terms of the
expansion. To get expansions (2), (3), (4), we insert k = 1 in the coef-
ficients from [21, Lemmas 1-3]. On the contrary, in [21, Lemmas 4 and
5], the first coefficients diverge for £ = 1. In the case k = 1, the first
formula for ¢, is different: in the proof of [21, Lemma 4], it is computed
evaluating the integral fol (tv/1 — t2+arcsint)t ! dt, whose formula dif-

fers from integrals fol(t\/l —t? +arcsint) - t7*dt, 0 < a <2, a# 1.
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Further, in the proof of [21, Lemma 5] in the case k = 1, the expansion
begins with the logarithmic term that was previously the k-th term. [

Proof of Proposition 3. We show the obstacle for the existence of a

full expansion: the index n, separating the tail and the nucleus of the

e-neighborhood does not have expansion in € after the first £+ 1 terms.
We need here a refinement of the expansion from [21, Lemma 1]:

(A7) no=pie T 4 e R 4o pgy loge + 1(2,8),
r(z,e) = o(loge), € — 0.

We compute one more term of the expansion of z, from [21, Prop. 3]:

Zn :gln_% + ggn_% + ggn_% + g4n_% + ...+

1 _k41 _kp1 _kp1
+agn” + geran F logn+q(z)-n” F +o(n” k), n— oo.

By the same procedure from the proof of [21, Lemma 1], due to one

more term in z, and thus also in d,, = |z,41 — 25|, in (47) we get the

refinement 7(z,¢) = O(1) in . We write z only to denote dependence

of r(z,e) on the initial point. Here, z is only a fixed complex number.
Suppose that lim._,o7(z,¢) exists. Then,

(48) r(z,e) =C(z) +0(1), e >0 (C can be 0).

In the points €, as above, it holds that n(e,+) = n, n(e,—) =n + 1.
The (k + 1)-jet in expansion (47) is continuous on (0,g¢). By (48),
r(en) = C + 0(1), as n — oo. Therefore we get that

1 =n(e,+) —n(e,—) =o(1), n — o0,

which is a contradiction. The limit lim._,or(z, &) does not exist.
Now, in the proofs of Lemmas 4, 5 in [21] for the tail and the nucleus,
we check that A®(z,¢) in general does not have full expansion in e. O

Proof of Proposition 4. We consider the directed area divided by &%.
We show that the points where class C? is lost are points €,, where, as
¢ decreases, one disc detaches from the nucleus to the tail. We have

A(ze) _ AYTY) | AS(N)

2 e e

. . AC(T) . . . .
The tail function ¢ — gé—;) is a piecewise constant function on

[ens1,€n), n € N, with jumps at &, of value z,. The area of the nucleus
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is the sum of contributions of crescents. By Proposition 5 in [21],

(49)

( Znt1 T Gn+1 <€)> SRS [5n+17 8n),
AS(N,) ) et Grti1(e)+
2 —l—% (E?n 1— z—é + arcsin %") (Zn + 2Zn41) + Zn+12_zn7

\

Here, G}, 41(¢) is computed as the sum of contributions of the crescents
corresponding to the points 2,9, 2,13, etc.:

1 Ek 2 . Ek Zh41 — 2k
Gunl(e) =— 3 [y 1-Z+ EE ) (o + 2pa) + EHL R
+1(e) - ( . —y +arcsin — (2 + 2k41) 5

k=n+1

Let 6 > 0 such that €,.1 + 0 < &,. It can be checked that G, is
a well-defined C*°-function on (¢,,11 + 0,£,-1), and the differentiation
is performed term by term. By (49), the singularity of A®(N.) on
(Ens1 + 0, €4—-1) can only be point € = g, where two parts defined by
different formulas are glued together. To check, we differentiate (49)
twice in € on some interval around &,:

d A°(N;) : d A°(N.)
d_&f 827'(' e=€n— —Gn+1(€n_), d_€ 8271' e=en+

= G;Hl (ent),

Both derivatives are finite and equal since G, 41 is of the class C? around
gn. Therefore, AC(N,) is of class C! at ¢ = ¢,,, n € N. However,

&2 AC(N,) ,

E 8271' e=en— - (Gn+1) (Sn—)7
&2 AC(N,) y

E 8271' e=en-+ - (Gn+1) (8n+) +

: (Zn+1 + zn)'

1 [4e, e2 23 1
o (BE B )

Although (Gpi1)"(en—) = (Gny1)"(en+) € C, the other term is un-
bounded. The second derivative of A®(N,) at ¢ = ¢,, n € N, does
not exist and the class C? is lost at €,. Finally, glueing overlapping
intervals (e, 1+ d,e,41), n € N, we get the desired result. O

e=en+

Proof of Proposition 5. For e > 0, let U. = {z € V} : |z — f(2)] < 2¢}.
For z € U., the e-discs centered at points z and f(z) in SY(2). overlap.
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Therefore, by Proposition 5 in [21],

AC(ze) = AS(f(2),6) — =X(f(2) — 2)+

2
(51) 22+ f(2)) - G(%) zel.
Here, G(t) = tv/1 — t? + arcsint, t € (0,1). We define function 7"
(52) T(2) = A(z,e) — AS(f(2),¢), = € V.
By (51), it holds
T(2) = —Z(f(z) = 2) + (= + f(2)) - G('Z_Z—J;(Z”) zeU..

There exists a punctured neighborhood of 0 such that f’(z) # 1, for all
z. Otherwise, by analyticity of f, f/ = 1 on some neighborhood of 0,
not true. By inverse function theorem applied locally to G and Id — f,
since absolute value is nowhere analytic, 7" is nowhere analytic on U..

Take any sector ST(p,r) C Vi, r > 0, ¢ € (0,7). Suppose that
z + A%(z,¢) is analytic on Sy. Since f is analytic, and f(z) € S,
for z € Sy, the function z — T'(z) from (52) is analytic on S;. The
intersection S, N U, is nonempty and we derive a contradiction. ]
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