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Abstract

It is easy to show that the lower and the upper box dimensions

of a bounded set in Euclidean space are invariant with respect to the

ambient space. In this article we show that the Minkowski content

of a Minkowski measurable set is also invariant with respect to the

ambient space when normalized by an appropriate constant. In other

words, the value of the normalized Minkowski content of a bounded,

Minkowski measurable set is intrinsic to the set.
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1 Introduction

In the last century, there has been a growing interest for computing fractal
dimensions of various sets. The notion of fractal dimension goes back to
H. Minkowski (Minkowski dimension), H. Hausdorff (Hausdorff dimension)
and G. Bouligand (Bouligand dimension). In dynamical systems, fractal
dimensions of invariant sets were used to measure the complexity of systems.
For a short overview of applications of fractal dimensions in dynamics see
e.g. [1].
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We deal here with box dimensions and Minkowski contents of sets. They
both describe the density of accumulation of the set in the ambient space.
That is, the bigger these values are, the more space the set fills. As examples,
see spirals in Figure 1 or discrete sequences in Figure 2. In Figure 1, the first
spiral, in polar coordinates given by r = ϕ− 1

2 , has box dimension d = 4
3
. The

second spiral, r = ϕ− 1

4 , has bigger box dimension d = 8
5
. The third spiral,

r = 10 · ϕ− 1

2 , has the same box dimension d = 4
3
, but bigger Minkowski

content. For computing the box dimension and the Minkowski content of
spiral trajectories, see e.g. [2]. Note the difference in accumulation of spirals.
In Figure 2, the first sequence xn = n− 1

2 , n ∈ N, has box dimension d = 2
3

and Minkowski content M = 3 · 2− 1

3 , while the scaled sequence yn = 5 · n− 1

2

has the same box dimension, but bigger Minkowski content M = 5
2

3 · 3 · 2− 1

3 .
For computing the box dimension and the Minkowski content of sequences
of the type { C

na | n ∈ N}, see [8].
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Figure 1: The difference in accumulation of spirals r = ϕ− 1

2 , r = ϕ− 1

4 ,
r = 10 · ϕ− 1

2 .

Figure 2: The difference in accumulation of sequences xn = n− 1

2 and yn =
5 · n− 1

2 , n ∈ N.

Among other applications, it has been noted that the box dimension and
the Minkowski content of spiral trajectories or of trajectories of Poincaré
maps around limit periodic sets show their cyclicity in perturbations, see e.g.
[3] and [4]. Also, box dimension and Minkowski content of a set are closely
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related to the domain of analyticity of the associated distance zeta function,
see e.g. [5].

A notion closely related to Minkowski content is Minkowski measurabil-
ity. The notion was introduced by Stachó who was interested in Minkowski
measurability of bounded sets in R

N , see e.g. [6]. We cite some articles
dealing with Minkowski measurability, for example [7], [8] and [9]. In their
study of the Weyl-Berry conjecture, Lapidus and Pomerance in [8] charac-
terized compact sets on the real line which are Minkowski measurable. They
provided a method for constructing Minkowski measurable sets on the real
line of any box dimension d ∈ (0, 1). They further showed that the Cantor
set is not Minkowski measurable on the real line.

Bilipschitz transformations preserve the box dimension of a set, see e.g.
[10]. On the other hand, not a lot about preserving Minkowski measurability
is known. Bilipschitz mappings in general do not preserve Minkowski measur-
ability of sets, see [9]. Sufficiently general conditions imposed on mappings
which ensure that Minkowski measurability is preserved have not yet been
proposed.

In this article, we pose the following questions:

(i) Is Minkowski measurability of a set in Euclidean space preserved when
the set is embedded in a higher-dimensional Euclidean space?

(ii) Is Minkowski content of a set invariant with respect to the ambient
Euclidean space in which we consider the set?

Our results are stated in Theorem 5 and Theorem 4 in Sec. 3.

Let us introduce the main notions. Let U ⊂ R
N be a bounded set. For

ε > 0, by UN
ε we denote its ε-neighborhood in R

N :

UN
ε = {x ∈ R

N : dN(x, U) ≤ ε},

where dN denotes the Euclidean metric in R
N .

For the following definitions, see e.g. [11]. Let volN (UN
ε ) denote the

Lebesgue measure of UN
ε in R

N .
The lower s-dimensional Minkowski content of a bounded set U ⊂ R

N ,
s ∈ [0, N ], is defined as the limit

Ms
∗(U,R

N ) = lim inf
ε→0

volN (UN
ε )

εN−s
∈ [0,∞]. (1)

3



Similarly, we define the upper s-dimensional Minkowski content M∗s(U,RN ),
using lim sup instead of lim inf. If the upper and the lower Minkowski con-
tents agree, then the s-dimensional Minkowski content of U, denoted by
Ms(U,RN ), is defined to be this common value.

Furthermore, the lower and upper box dimension of the set U ⊂ R
N are

defined respectively as

dimB(U,R
N ) = sup{s ≥ 0 : Ms

∗(U,R
N ) = ∞}

= inf{s ≥ 0 : Ms
∗(U,R

N ) = 0},
dimB(U,R

N ) = sup{s ≥ 0 : M∗s(U,RN ) = ∞}
= inf{s ≥ 0 : M∗s(U,RN ) = 0}.

They can be described as the moments of jump of the Minkowski contents
Ms

∗ and M∗s respectively from ∞ to 0, as s grows in [0, N ]. In the literature,
the upper box dimension is sometimes called the limit capacity, see [12].

If dimB(U,R
N ) = dimB(U,R

N ), we define the box dimension of the set
U ⊂ R

N as the common value:

dimB(U,R
N ) = dimB(U,R

N ) = dimB(U,R
N ).

Let us suppose now that the set U ⊂ R
N has box dimension d = dimB(U,R

N ).
If the upper and the lower d-dimensional Minkowski contents of U ⊂ R

N

are both in (0,∞), we say that the set U is Minkowski nondegenerate in
R

N . If moreover both Minkowski contents agree, that is, if M∗d(U,RN ) =
Md

∗(U,R
N ) ∈ (0,∞), we say that the set U is Minkowski measurable in R

N .
For simplicity, in this case, the d-dimensional Minkowski content is called
the Minkowski content and denoted simply by M(U,RN ).

2 Motivation

We state the result about the invariance of box dimension with respect to
the ambient space in which we consider the set. That is, the box dimension
of a set is an intrinsic property of the set. We were not able to find this result
explicitely stated in the literature.
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Proposition 1. Let U ⊂ R
N →֒ R

N+1 be a bounded set. Then it holds that

dimB(U,R
N) = dimB(U,R

N+1),

dimB(U,R
N) = dimB(U,R

N+1),

where dimB(U,R
N ) denotes the box dimension of U when regarded as a subset

of RN .

Proof. Let f : RN → R
N+1, f(x) = (x, 0). Then f is obviously a bilips-

chitz mapping from U ⊂ R
N onto U = U × {0} ⊂ R

N+1. By [10], Sec.
3.2, the upper and the lower box dimensions are preserved under bilipschitz
mappings.

By Proposition 1, we can denote the lower and the upper box dimensions
of the set U ⊂ R

N by dimB(U) and dimB(U) respectively, without mentioning
the ambient space where we consider the set.

Our goal is to obtain a similar result for the Minkowski content of a set
U . We cannot proceed as in the above proof, since the Minkowski content
is not invariant under the bilipschitz mappings. Moreover, the property of
Minkowski measurability is not preserved even by C1 bilipschitz mappings,
see [9].

A bounded set U ⊂ R
N can be embedded in R

N+1 as the Cartesian
product U × {0}. For the Minkowski content of the Cartesian product, the
following estimates hold, see [13, Theorem 3.3.6]:

Proposition 2. If A ⊂ R
M and B ⊂ R

N , then the following result for the
Minkowski contents of the Cartesian product A×B ⊂ R

M × R
N holds:

√
2−(M+N−s−r)/2 · Ms

∗(A,R
M) · Mr

∗(B,RN) ≤
≤ Mr+s

∗ (A× B,RN+M) ≤ M∗(r+s)(A×B,RN+M) ≤
≤ M∗s(A,RM ) · M∗r(B,RN),

where 0 ≤ s ≤ M , 0 ≤ r ≤ N .

Applying the above proposition to the set U ⊂ R
N →֒ R

N , we get the
inequalities involving the ambient spaces:

2−
N−1−s

2 Ms
∗(U,R

N ) ≤ Ms
∗(U,R

N+1) ≤ M∗s(U,RN+1) ≤ 2M∗s(U,RN ), (2)
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where 0 ≤ s ≤ N .
From inequality (2), nothing can be said about preserving the s-dimensional

Minkowski content of a bounded set in R
N , when embedding it into R

N+1.
In Theorem 5 in Sec. 3, we improve the constants from (2) by making them
equal. With improved constants, in Theorem 4, we show that the Minkowski
content of a Minkowski measurable set is invariant with respect to the am-
bient space, when multiplied by an appropriate constant.

Finally, the next paragraph gives us an idea about the constant by which
we should normalize the Minkowski content to ensure invariance. In e.g.
[14], the Minkowski contents are defined in the same way as in Sec. 1, that
is, without any normalizing constant. Let us recall an alternative definition
of Minkowski contents from e.g. [15] and [13]. The s-dimensional Minkowski
contents defined in (1) are additionally divided by the constant

γN−s =
π

N−s

2

Γ(N−s
2

+ 1)
. (3)

We will call them the normalized lower and upper s-dimensional Minkowski
contents,

Ms

∗(U,R
N ) =

Ms
∗(U,R

N )

γN−s

, M∗s
(U,RN ) =

M∗s(U,RN )

γN−s

. (4)

Here, Γ is the usual gamma function. For any integer s ∈ [0, N), γN−s is
equal to the volume of the unit ball in R

N−s.
As before, if Ms

∗(U,R
N) = M∗s

(U,RN ), the common value will be called
the normalized s-dimensional Minkowski content and denoted by Ms

(U,RN ).
Furthermore, if s = dimB(U), we omit writing the superscript d and write
only M∗(U,R

N ), M∗
(U,RN ) and M(U,RN ).

This normalization ensures that, for an integer k, 1 ≤ k ≤ N , the normal-
ized k-dimensional Minkowski content of a k-rectifiable set in R

N coincides
with its k-dimensional Hausdorff measure, which is an intrinsic value of a set,
equal to the k-dimensional Lebesgue measure of the set, within the constant
multiple depending only on k. It is therefore independent of the ambient
space R

N , for N ≥ k. We cite [13, Theorem 3.3.4]:

Proposition 3. Suppose 1 ≤ k ≤ N is an integer. Let U ⊂ R
N be closed

and let U ⊂ f(Rk), for some Lipschitz function f : Rk → R
N . Then the
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k-dimensional Minkowski content of U exists and its normalization is equal
to the k-dimensional Hausdorff measure Hk(U) of the set, that is,

Mk
(U,RN ) = Hk(U).

It remains however the question of invariance of the normalized Minkowski
content of an arbitrary Minkowski measurable set of box dimension d with
respect to the ambient space, also when d ∈ [0, N) is noninteger. We will
show in Sec. 3 that the answer to this question is positive, even for noninteger
d.

3 Results

In this section, we state our main results. Let γN−s be as in (3).
The main result is the following theorem. It states that the Minkowski

measurability is preserved when embedding the set in higher-dimensional
space. Its normalized Minkowski content, as defined in e.g. [15] and [13],
becomes independent of the ambient space.

Theorem 4. Let U ⊂ R
N be a Minkowski measurable set in R

N , with the
box dimension d ∈ [0, N ]. Then U is also Minkowski measurable regarded
as a subset of RN+1. Moreover, for Minkowski contents in R

N and R
N+1, it

holds that
M(U,RN+1)

γN+1−d

=
M(U,RN )

γN−d

. (5)

In other words, the normalized Minkowski content of a Minkowski measurable
set from R

N remains unchanged by the embedding R
N →֒ R

N+1,

M(U,RN+1) = M(U,RN ). (6)

Proof. The proof follows directly from Theorem 5 below. Since the set U is
Minkowski measurable, all the inequalities in (7) become equalities.

We illustrate the statement of the previous Theorem in Example 1.

Example 1. We consider the discrete set U = {n− 1

2 | n ∈ N} on the real line,
but embedded in R, R2 and R

3 respectively. The ε-neighborhoods used in
definition of box dimension and Minkowski content depend on the ambient
space, as shown in Figure 3. From [8], the set U ⊂ R has box dimension
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d = 2
3

and Minkowski content M(U,R) = 3 · 2− 1

3 ≈ 2.38. By Theorem 4,
when considered in R

2 and R
3, the same set U has Minkowski contents

M(U,R2) = 3 · 2− 1

3 ·
√
π · Γ(7/6)

Γ(5/3)
≈ 4.34,

M(U,R3) = 3 · 2− 1

3 · π · Γ(7/6)

Γ(13/6)
≈ 6.41.

Figure 3: The ε-neighborhoods of the set U →֒ R, R2, R3 respectively.

The following Theorem gives the inequalities concerning the upper and
the lower Minkowski contents in ambient spaces, in general case, also when
U is not Minkowski measurable.

Theorem 5 (Minkowski contents and embedding). Let U ⊂ R
N be a bounded

set and let 0 ≤ s ≤ N . Then the following inequalities between s-dimensional
Minkowski contents in ambient spaces R

N and R
N+1 hold:

Ms
∗(U,R

N )

γN−s

≤ Ms
∗(U,R

N+1)

γN+1−s

≤ (7)

≤ M∗s(U,RN+1)

γN+1−s

≤ M∗s(U,RN )

γN−s

.

The above inequalities hold also in the case of Minkowski contents equal to 0
or ∞.
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Remark 1 (Optimality of constants in (7)). Let us reformulate (7). For any
s ∈ [0, N ] and for any bounded set U ⊂ R

N , it holds that

Ms
∗(U,R

N+1) ≥ Ms
∗(U,R

N )
γN+1−s

γN−s

, (8)

M∗s(U,RN+1) ≤ M∗s(U,RN )
γN+1−s

γN−s

.

The constant γN+1−s

γN−s

in (8) is optimal for a given s ∈ [0, N ]. Let s ∈ [0, N ].
By Theorem 3 in [9], there exists a Minkowski measurable set in R

N with box
dimension equal to s. By Theorem 4 above, for Minkowski measurable sets,
inequalities in (8) become equalities. This proves that the constant γN+1−s

γN−s

in (8) is the best possible.
Let us comment here on an alternative proof of the fact used above: for

every s ∈ [0, N ], there exists a Minkowski measurable set U ⊂ R
N , such

that dimB U = s. First, on the real line, one can construct a Minkowski
measurable set of any box dimension d ∈ [0, 1]. The set can be constructed
using fractal strings, as in [8], or as a discrete orbit generated by function
g(x) = x− xα, α ∈ R, α > 1, as in [16]. It is easy to prove that, if U ⊂ R

N

is Minkowski measurable in R
N , with box dimension d, then U × [0, 1] is

Minkowski measurable in R
N+1, with box dimension d + 1. Moreover, the

values of their Minkowski contents (in R
N and R

N+1 respectively) are the
same. The proof follows directly from definition of Minkowski content and
the obvious geometric fact:

volN+1

(

(U × [0, 1]
) N+1

ε
) = volN(U

N
ε ) · 1 + volN+1(U

N+1
ε ).

In the proof of Theorem 5, we use the following two auxiliary propositions.

Proposition 6. Let U ⊂ R
N be a bounded set. Let UN

ε and UN+1
ε denote

the ε-neighborhoods of U in R
N and R

N+1 respectively. For ε > 0, it holds
that

volN+1 (U
N+1
ε ) = 2

∫ ε

0

volN (UN√
ε2−y2

)dy,

where volN denotes the Lebesgue measure in R
N .

Proof. Let U ⊂ R
N →֒ R

N+1. We fix the coordinate system in R
N+1 such

that U lies in the N -dimensional plane {x = 0}. Let dN and dN+1 denote
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the Euclidean distances in R
N and R

N+1 respectively.
We have

volN+1 (U
N+1
ε ) =

∫ ∫

. . .

∫

{(x,y)∈RN×R : dN+1((x,y), U)≤ε}

1 · dx dy. (9)

Obviously, dN+1((x, y), U) =
√

dN(x, U)2 + y2. For a fixed y ∈ [−ε, ε], the
following sets are equal:

{x ∈ R
N : dN+1((x, y), U) ≤ ε} = {x ∈ R

N : dN(x, U) ≤
√

ε2 − y2}. (10)

Using Fubini’s theorem, from (9) and (10) we get

volN+1 (U
N+1
ε ) =

∫ ε

−ε

dy

∫

{x∈RN : dN (x,U)≤
√

ε2−y2}

1 · dx

=

∫ ε

−ε

volN (UN√
ε2−y2

) dy

=2

∫ ε

0

volN (UN√
ε2−y2

) dy.

Proposition 7. Let 0 ≤ s ≤ N and ε > 0. It holds that

2

∫ ε

0

(
√

ε2 − y2)N−s dy =
γN+1−s

γN−s

· εN+1−s,

where γN−s is defined in (3).

Proof. The above integral is computed substituting y = ε sin t. We get

2

∫ ε

0

(
√

ε2 − y2)N−s dy = εN+1−s · 2
∫ π

2

0

(cos t)N+1−s dt

= εN+1−s · B(1
2
,
N − s

2
+ 1)

=

√
π Γ(N−s

2
+ 1)

Γ(N−s
2

+ 3
2
)

· εN+1−s

=
γN+1−s

γN−s

· εN+1−s.

Here, B(x, y) denotes the Beta function and the equalities follow from its
relation with the Gamma function, which can be found in any book on special
functions, see e.g. [17].
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Proof of Theorem 5.
Let us prove the first inequality in (7). That is,

Ms
∗(U,R

N ) · γN+1−s

γN−s

≤ Ms
∗(U,R

N+1).

Suppose first that Ms
∗(U,R

N ) ∈ (0,∞). From

Ms
∗(U,R

N ) = lim inf
ε→0

volN (UN
ε )

εN−s
,

by the definition of the limit inferior, we get that for each δ > 0, there exists
εδ > 0, such that for all ε ≤ εδ,

volN (UN
ε ) ≥ (Ms

∗(U,R
N )− δ) · εN−s. (11)

By Proposition 6, substituting (11) in the integral, we get that for each δ > 0,
there exists εδ > 0, such that for all ε < εδ,

volN+1 (U
N+1
ε ) ≥ 2(Ms

∗(U,R
N )− δ)

∫ ε

0

√

ε2 − y2
N−s

dy,

≥ (Ms
∗(U,R

N )− δ)εN+1−sγN+1−s

γN−s

. (12)

Here, the last inequality is obtained using Proposition 7.
Reformulating (12), for each δ > 0, there exists εδ, such that for all ε < εδ,

volN+1 (U
N+1
ε )

εN+1−s
≥ Ms

∗(U,R
N ) · γN+1−s

γN−s

− δ. (13)

Since Ms
∗(U,R

N+1) = lim infε→0
volN+1 (U

N+1
ε )

εN+1−s , using (13), we conclude that

Ms
∗(U,R

N+1) ≥ Ms
∗(U,R

N )
γN+1−s

γN−s

. (14)

Note that from (13) it is not possible to conclude equality in (14).
In the case when Ms

∗(U,R
N) = ∞, the proof is similar. The case when

Ms
∗(U,R

N ) = 0 is obvious.
The last inequality in (7),

M∗s(U,RN+1) ≤ M∗s(U,RN ) · γN+1−s

γN−s

,

can be proven analogously, using lim sup instead of lim inf.

From Theorem 5 and Remark 1, we immediately derive the following
interesting consequence.
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Corollary 8. Let s ∈ [0, N ]. For a given s, let U s
∗ and U∗s denote the

following families of sets:

U s
∗ = {U ⊂ R

N : Ms
∗(U,R

N) ∈ (0,∞)},
U∗s = {U ⊂ R

N : M∗s(U,RN ) ∈ (0,∞)},

which are nonempty by Remark 1. It holds that

min
U∈Us

∗

Ms
∗(U,R

N+1)

Ms
∗(U,R

N )
= max

U∈U∗s

M∗s(U,RN+1)

M∗s(U,RN )
=

γN+1−s

γN−s

.

Equivalently, for normalized Minkowski contents defined in (4), it holds that

min
U∈Us

∗

Ms

∗(U,R
N+1)

Ms

∗(U,R
N )

= max
U∈U∗s

M∗s
(U,RN+1)

M∗s
(U,RN )

= 1.

Moreover, the minimum and the maximum are achieved for all Minkowski
measurable sets of box dimension s.

To illustrate the results of Theorem 4, let us compute the Minkowski
contents of some basic and some fractal sets, when regarded in the ambient
spaces of different dimensions.

Example 2.

1. Let U = {x} ⊂ R. Directly using definitions, we compute:

dimB U = 0, M(U,R) = 2, M(U,R2) = π.

On the other hand, by (3), γ2/γ1 = π/2, so the formula (5) holds.

2. Let U = [a, b] be a segment of length l = b− a in R. Then

dimB U = 1, M(U,R) = l, M(U,R2) = 2l.

On the other hand, by (3), γ1/γ0 = 2/1 = 2, and the formula (5) holds.
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3. Let f(x) = x− xk, k ∈ N, k > 1. Let

Sf (x0) = {xn| xn+1 = f(xn), n ∈ N0}

denote the discrete set generated by f(x), with initial point x0 > 0
close to the origin. Such sets were considered in [16]. The set consists
of countably many points xn, accumulating at the origin as n → ∞.
Using the difference equation xn+1 − xn = −xk

n, we get the following
asymptotics:

xn ∼ (k − 1)−
1

k−1n− 1

k−1 , n → ∞.

In literature, see [18], such sets are examples of fractal a-strings. By
Theorem 2.2 in [8] or Remarks 8.18, 8.19 in [18], it holds that

dimB(S
f (x0)) = 1− 1

k
, M(Sf (x0),R) =

k

k − 1
· 21/k. (15)

On the other hand, in R
2 (equivalently, in C), we can consider Sf (x0)

as the orbit of complex parabolic diffeomorphism f(z) = z − zk, with
initial point x0 ∈ R+. By Theorem 3 in [19], we have:

M(Sf (x0),R
2) =

k

k − 1

√
π · Γ(1 +

1
2k
)

Γ(3
2
+ 1

2k
)
· 21/k.

The same result for Minkowski content in R
2 may have been obtained

directly using (15) and Theorem 4,

M(Sf (x0),R
2) = M(Sf (x0),R) ·

γ1+1/k

γ1/k

= M(Sf (x0),R) ·
√
π · Γ(1 +

1
2k
)

Γ(3
2
+ 1

2k
)
.

4. We consider a spiral Sα ⊂ R
2, in polar coordinates given by

r = mϕ−α, m > 0, α ∈ (0, 1).

By Corollary 2 in [4], we have

dimB(Sα) =
2

1 + α
, M(Sα,R

2) = mαα− 2α

α+1π
1−α

1+α

1 + α

1− α
.
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If we consider Sα →֒ R
3, by Theorem 4, we compute

M(Sα,R
3) = mαα− 2α

α+1π
1−α

1+α

1 + α

1− α
·
√
π
Γ(2− 1

1+α
)

Γ(5
2
− 1

1+α
)
.
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