
A Policy Controlled IPv4/IPv6 Network Emulation Environment

Tomislav Grgic and Maja Matijasevic
University of Zagreb, Faculty of Electrical Engineering and Computing

Unska 3, HR-10000 Zagreb, Croatia
tomislav.grgic@fer.hr, maja.matijasevic@fer.hr

Abstract: In QoS enabled IP-based networks, QoS signaling and
policy control are used to control the access to network
resources and their usage. The IETF proposed standard
protocol for policy control is Common Open Policy Service
(COPS) protocol, which has also been adopted in 3GPP IP
Multimedia Subsystem (IMS) Release 5. This paper presents a
prototype for policy-controlled IPv4/IPv6 network emulation
environment, in which it is possible to specify the policy control
and emulate, over a period of time, QoS parameters such as
bandwidth, packet delay, jitter, and packet discard probability
for media flows within an IP multimedia session. The policy
control is handled by COPS, and IP channel emulation uses two
existing network emulation tools, NIST Net and ChaNet,
supporting IPv4 and IPv6 protocols, respectively. The scenario-
based approach allows reproducible performance
measurements and running various experiments by using the
same network behavior. A graphical user interface has been
developed to make the scenario specification more user-friendly.
We demonstrate the functionality of the prototype emulation
environment for IPv6 and analyze its performance.

1. INTRODUCTION

The ability to provide quality of service (QoS) is of vital
importance for supporting advanced multimedia applications
in next generation networks based on IPv6 and IP
Multimedia Subsystem (IMS) [1] . Since the actual networks
or testbeds for such applications are, in general, expensive
and not widely (if at all) available, the application
developers, as well as network administrators, would greatly
benefit from emulated environments in which application
testing and performance measurements could be conducted in
realistic network conditions and in a reproducible way. While
the application designer is primarily concerned with the
impact of network QoS on applications, it is up to the
network administrator to set the policy rules to define the
criteria for network resources access and usage. By setting
the policies, the network administrator can control the
priority level which a particular service, or kind of traffic
(voice, video, data, etc.), would receive from the network.
The Common Open Policy Server (COPS) protocol [2] is an
IETF proposed standard for policy control, which has also
been adopted for use in the 3GPP IMS Release 5.

This paper presents a prototype for policy-controlled
IPv4/IPv6 emulation environment, in which it is possible to
specify the policy control and emulate, over a period of time,

QoS parameters such as bandwidth, packet delay, jitter, and
packet discard probability for media flows within an IP
multimedia session. A certain network behavior, called
scenario, can be stored and reused later. For emulating the
properties of the channel, existing network emulators for
IPv4 and IPv6 networks have been applied. The scenario-
based approach allows reproducible performance
measurements and running various experiments by using the
same network behavior. A graphical user interface (GUI) has
been developed to make the scenario specification more user-
friendly. We demonstrate the functionality of the prototype
emulation environment and analyze its behavior when
controlling bandwidth, delay, and jitter in several
experiments.

The overall idea of the paper is illustrated in Figure 1.
Network behavior in a QoS-enabled IP (IPv4 or IPv6)
network is controlled by the network administrator through
the QoS Control. A QoS scenario, defined by the
administrator, determines how the network parameters, such
as bandwidth, delay, and jitter, would change in time. Once
the experiment starts, the QoS Control runs the scenario, and
uses the previously defined rules to change the network
parameters. The policy control is realized by using COPS.
This approach separates the application data flow from the
control data flow. The QoS-enabled IP network can be
emulated by different network emulators. We designed our
emulation environment so as to be able to use both IPv4 and
IPv6 emulators, with just a “lightweight” adaptation handler.

Figure 1 - Policy based QoS control over the network

This work is organized as follows. First, existing IPv4 and

IPv6 network emulators are described. Next, we describe
COPS and policy control, and continue with the description
of our prototype emulation environment. We describe the
model and its implementation in Java. Finally, we
demonstrate the functionality by using a case study.

2. EXISTING NETWORK EMULATORS

Many network emulation tools have been developed to
date. An overview of terms and generic structure of
emulators, as well as a review of existing tools may be found
in [3]. In this paper, we will focus on two tools used in this
work. The IPv4 network emulation is based on well-known
NISTNet network emulator. The NISTNet network emulator
has been described as “a general-purpose tool for emulating
performance dynamics in IP networks” [4]. It is implemented
in Linux kernel, and it is able to emulate various performance
scenarios, such as bandwidth limitation, tunable packet delay
distributions, and congestion and background loss. It has an
X Window System based graphical user interface. As of June
2007, this tool supports IPv4, but not IPv6. Thus, for IPv6
we used an IPv6 channel emulator ChaNet, developed in
previous work [5] within our group. ChaNet is based on
Linux Netfilter framework and Iptables, which enable control
of packets which traverse through it. Packets are classified
into flows based on their source and destination addresses
and ports, and they are then forwarded into virtual channels,
in which various network conditions (bandwidth, jitter,
delay, and loss rate) are emulated. After passing through the
channel, a packet is forwarded to the destination address.
This tool is able to emulate several channels at the same time.
Concatenation of channels enables routing the packets from
one channel to another, creating a small virtual network. The
user can set the static and dynamic packet classification rules.
Static rules are written in a configuration file and applied
when starting ChaNet. Dynamic rules consist of XML files
which contain rules to be applied on the fly, which enables
modifying of already created channels, as well as adding and
deleting channels.

3. QOS POLICY CONTROL BASED ON COPS

As defined in [2], the COPS protocol is a client/server

protocol, used to exchange policies between two entities,
called the Policy Decision Point (PDP) and the Policy
Enforcement Point (PEP). In [6], a policy is defined as “the
combination of rules and services where rules define the
criteria for resource access and usage”. The PDP is a logical
entity that makes admission control and policy decisions in
response to a request from a user who wants to access
network resources. The PDP is typically a network server, on
which the network administrator sets the policy rules. PEP is
an entity which implements the policy by executing the
resource reservation and policy control provided from the
PDP. It is usually situated on a network router or layer-3
switch. PDP and PEP exchange policy information by using
a COPS messages. In our model, the COPS framework and
most of its rules were used to send control policies from the
QoS Control and the QoS-enabled IP network.

4. PROPOSED MODEL

The requirements for the emulation environments were set
as follows. First, the policy control over the emulated
network must use the COPS protocol, which includes
implementing all necessary entities, such as PDP and PEP.
Network administrator must be able to create a scenario
through a simple GUI, as well as to start it for each
experiment this environment is set for.

Next, we wanted to be able to use any existing IPv4 and
IPv6 network emulator tool, under some conditions: a tool
must be able to create and dynamically modify the
parameters of a single virtual channel. The emulator must
have a means to control the parameters dynamically and from
“outside”, through an open interface. For example, this could
be done by executing system commands, via an established
control TCP connection, by exchanging XML messages, or
in some other way. We use the NistNet emulator for the IPv4
network, and the ChaNet emulator for the IPv6 network.

Proposed model presents a unified way of creating and
managing both IPv4 and IPv6 virtual channels. From the
point of view of the network administrator, there is no
difference in controlling different types of channels. The
model, shown in Figure 2, consists of three components:
Policy Decision Point (PDP), Policy Enforcement Point
(PEP), and Channel Emulator.

4.1 Policy Decision Point

In our model, a PDP module is used by the network

administrator to provide a complete control of network
parameters such as delay, bandwidth, jitter, and loss rate. It is
responsible for interacting with the administrator, making
certain decisions, and creating policies which are passed to
the PEP via COPS protocol. Our model of PDP module
consists of four functional entities, which are described next.

User Interface is the module which enables the
administrator to handle multiple virtual channels in different
ways. For example, the administrator can specify a new
channel and its behavior in time. The administrator can also
store the channel behavior, or scenario, in the Scenario
Repository, and retrieve it when necessary. After initially
defining the channel properties, the channel may be created
and the defined scenario may be initiated. The current
channel configuration is displayed in the GUI, and the
administrator can delete the channel at any time.

Scenario Repository module keeps all previously stored
channels as well as their behaviors. Each channel is uniquely
determined by its source and destination IP addresses and
TCP/UDP ports. An example of a channel behavior is shown
in Figure 3.

The parameters which can be controlled include
bandwidth, delay, jitter, and loss rate. In Figure 3 we show

the channel behavior as being divided into three intervals,
each with its own network parameters. For example, time t1
is the time when the channel is created, with network
parameters (delay) d1, (jitter) j1, and (loss rate) l1. When
time t2 is reached, the channel will change the respective
parameters to d2, j2, and l2.

Figure 3 - Channel behavior

After specifying a new channel or uploading the existing

scenario from the repository, the administrator can initiate the
scenario by starting the Event Handling and Decision
Making module. This is the main control unit, where certain
decisions are made depending on the channel’s behavior.
After the decision is made, a trigger is sent to the COPS
Server module containing updated parameters that should be
sent to the PEP. There are three types of triggers: Create
channel, Modify channel, and Delete channel trigger.

Create channel trigger is sent immediately after scenario
execution is started, containing initial parameters which
should be assigned to the channel. Event handling module
then waits for a specified amount of time (t2–t1 in Figure 3),
and then sends a Modify channel trigger with new
parameters. This is repeated until the entire scenario is
executed. The channel may be deleted by Delete channel
trigger.

In order to send policy decisions from PDP to PEP, COPS
protocol is used. The protocol is based on a client-server
model: after receiving a request from the PEP, the PDP sends
a proper answer by provisioning policies to be enforced on
the PEP. The request contains client specific information like
supported client type and context. In order to establish
communication between entities in our model, COPS server
and COPS client need to be run on the PDP and the PEP,
respectively. COPS server receives network parameters from
the Decision Making module, encapsulates them in COPS
Decision message, and sends the message to the PEP. On the

PEP side, policy information is extracted from the message
and forwarded to the other PEP entities.

4.2 Policy Enforcement Point

In our model, PEP accepts new policies via COPS

protocol, adapts them for the channel emulator in use, and
forwards them to the emulator. Its main characteristic is
extensibility, because it can be adjusted to work with any
emulator which satisfies the requirements listed earlier in this
paper. PEP consists of several modules.

User Interface module enables choosing which emulator to
use when starting the PDP, selecting which PDP to connect
to, and controlling the exchanged COPS messages.

COPS Client handles communication with the PDP and
forwards incoming policies to the Control unit, which
analyzes the policy, saves it and forwards to the Channel
Interface module.

Channel Interface module realizes the idea of extensibility.
It separates the content of the policy from the enforcement of
the policy itself. The model does not “see” any specific
emulator, but this interface. The interface contains three
methods, one of each for adding, modifying and removing a
channel. New types of emulators can easily be introduced by
creating a handler which would implement this interface.

Depending on which emulators are used in our model,
handlers for each of them have to be made. It is necessary
because instructions for enforcing the same policy are
emulator-specific. In order to be compatible with the model,
each Emulator Handler must implement the Channel
Interface module. The current implementation contains
Emulator Handlers for two types of emulators: NistNet, an
IPv4 emulator, and ChaNet, an IPv6 emulator.

4.3 Channel Emulator

NistNet and ChaNet emulators used in the model emulate

IPv4 and IPv6 network, respectively. No modifications or
other adjustments need to be made on them. It is only
required that the selected emulator is up and running before
starting the PEP module.

Figure 2 – Proposed model

5. MODEL IMPLEMENTATION

The proposed model was implemented in Java

programming language. The portability of Java enables
testing of emulators designed for different operating systems.
Handlers for two different emulators were implemented, as
described in previous section. Graphical user interfaces were
made for PDP and PEP to make policy handling more user-
friendly. COPS client implements PR (Policy-Provisioning)
[7] client-type, since it is the most suitable for controlling all
the network parameters we need. Laboratory testbed needed
to run the software is shown in Figure 4.

Figure 4 - A laboratory testbed

Figure 4 shows the experimental IPv6 network, which
consists of two sub-networks connected with a router (PC2),
on which a virtual channel is emulated. Network
administrator controls the behavior of the virtual channel by
using PDP graphical user interface on PC1. PC3 and PC4 are
the host computers on which the application under study is
placed. For the use case we made in this work, we used two
applications for performance measurements, ping6 and iperf.
Standard Linux ping6 tool measures Round Trip Time
between two end nodes in the IPv6 network. It is used for
measuring delay and jitter while executing the experiments.
Iperf [8] tool was used for measuring bandwidth between the
end nodes. Table 1 shows computer configurations in the
testbed as well as the entities installed on each of them.

Table 1 - PC configurations

6. CASE STUDY

In order to demonstrate the use of the emulation
environment, we present a case study involving policy-based
control of bandwidth, delay, and jitter. A network testbed
was established in a laboratory environment as shown in
Figure 4. ChaNet was running on a PC-based router PC2
between two sub-networks. It intercepted packets from PC4,
sent them through the virtual channel, and forwarded to PC3.

For each measurement a different channel behavior was
created and stored in the Scenario repository. Figure 5
presents a PDP graphical user interface used for creating a
new scenario. At the top of the window channel
characteristics are shown. Each line of the table presents a
scenario interval with its specific network parameters. In this
example, the channel has initial bandwidth of 500 kbit/s,
which is decreased after 10 seconds to 400 kbit/s. Jitter is
also increased for 1 μs.

For each channel a new thread is created on the PDP,
which starts to run once the administrator initiates the
scenario. PEP controls ChaNet by sending XML messages
from the ChaNet handler, which contains information
extracted from COPS messages.

Figure 5 - Channel behavior interface

6.1 Bandwidth measurement

We used the Iperf tool for bandwidth measurement. Iperf

server generated the UDP traffic with specific bitrate for the
duration of 10 seconds, and Iperf client measured the
received traffic. The channel through which the packet flow
was routed was specified by using ChaNet. We defined a
scenario in which the channel bandwidth was increased from
300 kbit/s to 500 kbit/s in steps of 50 kbit/s every 20
seconds. After reaching 500 kbit/s, bandwidth was not
increased any more. Delay, jitter, and loss rate were set to
zero during the scenario. At the same time, UDP flow bitrate
generated by Iperf server was manually increased every 20
seconds from 300 kbit/s to 850 kbit/s in steps of 50 kbit/s and
duration of 10 seconds, and measured on Iperf client. The
result is shown in Figure 6.

It may be noted that the amount of the received traffic is
the same as the amount of the sent traffic as long as the
channel bandwidth is below the threshold of 500 kbit/s.
When the sent bitrate reaches 500 kbit/s, the channel begins
to discard all superfluous packets.

Figure 6 - Bandwidth measurement

6.2 Delay measurement

For delay measurement we started ping6 tool on the server,

with the channel’s behavior defined as follows: Bandwidth
was set to fixed value of 100 kbit/s, jitter and loss rate were
set to zero, and delay was increased every 20 seconds from 0
ms to 0.5 ms, 1 ms, 2 ms and 5 ms. The results are shown in
Figure 7. It is easy to see how the round trip increases as the
channel characteristics change. For a given delay value, the
delay variation is very small since jitter value was set to zero.

Delay [ms]

0,0

1,0

2,0

1 2 3 4 5 6 7 8 Package [#]

Delay = 2 ms
Delay = 1 ms
Delay = 0.5 ms
Delay = 0 ms

Figure 7 - Delay measurement

6.3 Jitter measurement

The measurement in this case followed the same procedure

as in the previous measurement, with a new channel
behavior. Bandwidth was set to 100 kbit/s, loss rate was set
to to 0%, and delay was set to a fixed value of 1 ms. The
jitter was increased every 20 seconds from 0 ms to 0.4 ms
and 0.7 ms. The results are shown in Figure 8. We can see
how jitter affects delay of packets. By increasing jitter, RTT
scattering increases as well.

In the described measurements only one QoS parameter
was varied, while other parameters were fixed. To create
realistic scenarios, all parameters can be combined in a single
scenario, with the QoS characteristics as needed.

Figure 8 - Jitter measurement

7. CONCLUSIONS AND FUTURE WORK

We presented a model and a prototype implementation of a

network emulation environment for policy-controlled QoS
scenarios. The implementation uses the existing ChaNet and
NistNet emulation tools. The case study demonstrated the
functionality of the emulation environment by showing how
the virtual channels can be configured and used for
performance measurements. The performance of the
emulation environment in terms of accuracy for a given
scenario was satisfactory.

Future work will explore behavior of various audio and
video multimedia applications in a laboratory environment,
while controlling the network parameters.

ACKNOWLEDGEMENT

This work was carried out within the research project 036-
0362027-1639 "Content Delivery and Mobility of Users and
Services in New Generation Networks", supported by the
Ministry of Science, Education and Sports of the Republic of
Croatia.

REFERENCES

[1] G. Camarillo and G.-M. Miguel-Angel: “The 3G IP

Multimedia Subsystem (IMS): Merging the Internet and the
Cellular Worlds”, John Wiley & Sons, 2004.

[2] D. Durham, J. Boyle, R. Cohen, S. Herzog., R. Rajan,
A. Sastry: “The COPS (Common Open Policy Service)
Protocol”, IETF RFC 2748, Jan. 2000.

[3] D. Herrscher, K. Rothermel: “A Dynamic Network
Scenario Emulation Tool”, Proceedings of the 11th
International Conference on Computer Communications and
Networks (ICCCN 2002), pp. 262–267, Miami, FL, USA,
October 2002.

[4] NIST Net, the Network emulation tool,
http://www-x.antd.nist.gov/nistnet/
[5] H. Komerički, V. Levačić: “ChaNet – IPv6 channel

emulation tool”, Proceedings of the 13th IEEE Mediterranean
Electrotechnical Conference MELECON 2006, pp.709-712,
Benalmadena, Malaga, Spain, May 2006.

[6] R. Yavatkar, D. Pendarakis, R. Guerin: “A Framework
for Policy-based Admission Control”, IETF RFC 2753, Jan.
2000.

[7] K. Chan, J. Seligson, D. Durham, S. Gai, K.
Mccloghrie, S. Herzog, F. Reichmeyer, R. Yavatkar, A.
Smith: “COPS Usage for Policy Provisioning (COPS-PR)”,
IETF RFC 3084, Mar. 2001.

[8] Iperf, the TCP/UDP Bandwidth Measurement Tool,
http://dast.nlanr.net/Projects/Iperf

