
Implementation of the Diameter-based Cx Interface
in the IP Multimedia Subsystem

1Siniša Tomac, 1Marko Sikirica, 2Lea Skorin-Kapov, 1Maja Matijašević

1University of Zagreb, FER, Unska 3, HR-10000 Zagreb, Croatia
2Ericsson Nikola Tesla, R&D Center, Krapinska 45, HR-10000 Zagreb, Croatia

Tel. +385 1 612-9757, Fax +385 1 612-9832
E-mail: {sinisa.tomac|marko.sikirica|maja.matijasevic}@fer.hr, lea.skorin-kapov@ericsson.com

The Diameter protocol was initially developed by the Internet
Engineering Task Force (IETF) as an Authentication,
Authorization, and Accounting (AAA) framework intended
for applications such as remote network access and IP
mobility. Diameter was further embraced by the Third
Generation Partnership Project (3GPP) as the key protocol
for AAA and mobility management in 3G networks. The
paper discusses the use of Diameter in the scope of the IP
Multimedia Subsystem (IMS) as specified by 3GPP, with
special emphasis on its use on the Cx interface between the
Call Session Control Function (CSCF) and the Home
Subscriber Server (HSS). The goal of this work was to
implement basic Diameter functionality corresponding to the
Cx interface. The paper compares a number of open source
implementations of the Diameter Base Protocol, and provides
the rationale for choosing the Open Diameter solution for
implementation purposes. Experiences regarding installation,
configuration and implementation of basic authorization
functionality using Open Diameter are discussed. The
resulting implementation is verified in a laboratory testbed.

I. INTRODUCTION

Evolution of the 3rd generation network architecture is

driven, among other factors, by the requirement to provide
a rather fast, flexible and cost-efficient way of introducing
new services for operators, as well as third-party service
and content providers. The IP Multimedia Subsystem
(IMS), as specified by the 3rd Generation Partnership
project (3GPP), represents the key element for supporting
ubiquitous service access to multimedia Internet services,
with adequate support for Quality of Service as well as
advanced, service-differentiated charging [1]. Initially
specified by 3GPP/3GPP2, the IMS standards are now
being adopted by other standards bodies including
ETSI/TISPAN. For the purposes of Authentication,
Authorization, and Accounting (AAA) and mobility
management in 3G networks, 3GPP has adopted the
Diameter protocol [2], developed by the Internet
Engineering Task Force (IETF). This paper discusses the
use of Diameter within the scope of the IMS.

The paper is organized as follows. Section II briefly
describes IMS, its functions and interfaces, and the role of
the Diameter protocol as applied to the Cx interface.
Section III provides an overview of publicly available
open source implementations of the Diameter protocol,
while Section IV describes the selected implementation,
Open Diameter, in more detail. Section V describes our
implementation of basic Diameter functionality
corresponding to the Cx interface, as an extension to the
existing Open Diameter implementation. Section VI
concludes the paper.

II. ROLE OF DIAMETER IN IMS
The IMS is based on a horizontally layered architecture,

consisting of three layers, namely, Service Layer, Control
Layer, and Connectivity Layer. Service Layer comprises
application and content servers to execute value-added
services for the user. Control layer comprises network
control servers for managing call or session set-up,
modification and release. The most important of these is
the Call Session Control Function (CSCF). Connectivity
Layer comprises routers and switches, for both the
backbone and the access network.

A. IMS functions

A somewhat simplified IMS architecture is shown in

Figure 1. As mentioned earlier, one of the key functions in
the control layer is the CSCF. In this paper, we focus on
the interface between the Home Subscriber Server (HSS)
and the CSCF. The HSS serves as the main data storage
for user related information, such as IMS user profiles
(including location), security and registration information,
access parameters, and application server profiles.

Figure 1. The IMS architecture

The CSCF may serve three different purposes, as the

Proxy CSCF (P-CSCF), the Interrogating CSCF (I-CSCF),
and the Serving CSCF (S-CSCF).

The P-CSCF is a Session Initiation Protocol (SIP) proxy
that acts as the first contact point between the IMS
terminal and the IMS network. It is assigned to an IMS
terminal during IMS registration. The I-CSCF is also a SIP

AS AS

HSS

MRF

CSCF

SG/MGCF

IP/MPLS

PSTN/PLMN

MGW

Service Layer

Control Layer

Connectivity
Layer

proxy, usually located in the home network, at the edge of
the administrative domain. Main functions of the I-CSCF
are to contact HSS in order to obtain the name of the
S-CSCF that is serving the user, and to assign the S-CSCF
to the user based on received information received from
the HSS.

The S-CSCF is the central node of the signaling plane,
the “brain” of the IMS. The S-CSCF is located in the home
network and it uses the Diameter-based Cx and Dx
interfaces (reference points) towards the HSS to download
and upload the user profiles.

B. The Cx reference point

As per IMS technical specifications [3][4], the Cx

reference point is located between the S-CSCF/I-CSCF
and the HSS, as shown in Figure 2. The Subscription
Location Function (SLF) is required in a network in which
there is more than one HSS; it provides the mapping
between a particular user address and its corresponding
HSS. As already noted, the protocol used at the Cx
reference point is Diameter. (The unmarked interface
between the S-CSCF/I-CSCF and the SLF is Dx, which
also uses Diameter.)

SLF

HSS
Cx

Cx

S-CSCF

I-CSCF

Figure 2. The Cx interface

Procedures in the Cx reference point may be grouped
into three areas:

1. Location management procedures
2. User-data handling procedures
3. Authentication procedures

Each group of procedures is briefly described next.

Location management procedures. In location
management procedures, the User-Authorization-Request
(UAR) command is sent to the HSS whenever the I-CSCF
receives a SIP REGISTER request from the P-CSCF. The
UAR command contains private and public user identity,
visited network identifier, routing information, and type of
authorization. In response to the UAR command, the HSS
responds with the User-Authorization-Answer (UAA)
command. The UAA command contains the name of the
S-CSCF assigned to the user. After authorization, the
I-CSCF finds an S-CSCF that will serve the user, and it
forwards the SIP REGISTER request to the S-CSCF. Once
the S-CSCF receives the SIP REGISTER request, it uses
the Server-Assignment-Request (SAR) command to
communicate with the HSS, and it informs the HSS which
S-CSCF will be serving the user. The HSS responds with
the Server-Assignment-Answer (SAA) command, which
contains the user profile and charging information. Later,
when the HSS wants to initiate de-registration it uses the

Registration-Termination-Request (RTR) command,
stating the reason for de-registration. The RTR command
is acknowledged by a Registration-Termination-Answer
(RTA) command. If an I-CSCF receives any SIP method
other than REGISTER, a procedure for finding S-CSCF
uses the Location-Info-Request (LIR) command
containing public user identity and routing information.
The HSS responds to LIR with Location-Info-Answer
(LIA) command, containing the name of the S-CSCF.

User-data handling procedures. During the registration
process, user and service-related data are downloaded from
the HSS to the S-CSCF via the Cx reference point by using
SAR and SAA commands. It is possible, however, for this
data to be changed later, during the time while the S-CSCF
is still serving the user. To update the data in the S-CSCF,
the HSS sends a Push-Profile-Request (PPR) command
with private user identity, routing information, and user
data. The response to the PPR command is
Push-Profile-Answer (PPA) command.

Authentication procedures. In the IMS, authentication
relies on a pre-configured shared secret and a sequence
number stored within the IP Multimedia Services Identity
Module (ISIM) in the User Equipment (UE) as well as in
the HSS in the network. To authenticate the user, the
S-CSCF sends a Multimedia-Auth-Request (MAR)
command to the HSS. MAR contains the private and the
public user identities, S-CSCF name, routing information,
number of authentication items, and authentication data.
The HSS responds to the MAR command with the
Multimedia-Auth-Answer (MAA).

C. Diameter Protocol

Diameter is an authentication, authorization and

accounting (AAA) protocol developed by the Internet
Engineering Task Force (IETF). It is based on an earlier
IETF’s AAA protocol called RADIUS (Remote
Authentication Dial-In User Service), widely used for
dial-up PPP (Point-to-Point Protocol) and terminal server
access. Extending the functionality of RADIUS, Diameter
is designed to provide AAA services for a range of access
technologies, including wireless and Mobile IP. The
Diameter specifications consist of the Diameter Base
Protocol [2], Transport Profile, and applications such as
Mobile IPv4, network access server, credit-control, and
Extensible Authentication Protocol (EAP).

The Diameter Base protocol is utilized for negotiating
capabilities, delivering Diameter data units, handling
errors, and providing for extensibility. On the other hand,
the Diameter application defines application-specific
functions and data units. Diameter is an application layer
protocol. Transport protocols to carry Diameter messages
include Transmission Control Protocol (TCP) and Stream
Control Transmission Protocol (SCTP). For securing the
connection, Internet Protocol Security (IPSec) and
Transport Layer Security (TLS) are applied.

Diameter is a peer-to-peer protocol, meaning that any
Diameter node may initiate a request. The three types of
nodes are clients, servers, and agents. Clients are generally
edge devices of a network which perform access control. A
Diameter agent provides relay, proxy, redirect, and

translation services, while Diameter server handles the
AAA requests for a particular domain, or realm. Message
routing is based on the network access identifier of a
particular user.

As to data structure, in each Diameter node there is a
peer table, which contains a list of known peers and their
corresponding properties. Each peer table entry is
associated with an identity and can be either statically or
dynamically assigned. It includes a relative priority setting,
which specifies the role of the peer as primary, secondary,
or alternative. The status of the peer relates to a specific
configuration of the finite state machine of the peer
connection, called the Diameter Peer State Machine. As a
part of message-routing process, Diameter realm-routing
table references the Diameter peer entries. All realm-based
routing lookups are performed against a realm-routing
table. The realm-routing table lists the supported realms,
with each route entry containing certain routing
information. Each route entry is either statically or
dynamically discovered. Dynamic entries are associated
with an expiry time and also route entry is associated with
an application identifier, which enables route entries to
have a different destination depending on the Diameter
application. In a Diameter peer table the destination of a
route entry corresponds to one or more peer entries.

A Diameter message consists of a Diameter header,
followed by a certain number of Diameter attribute-value
pairs (AVPs). The Diameter header is composed of fields
denoting Command Flags, Command Code, and
Application ID. The Command Code denotes the
command associated with the message, while the
Application ID identifies the application to which the
message is applicable. AVPs define the method of
encapsulating information relevant to the Diameter
message.

III. DIAMETER PROTOCOL IMPLEMENTATIONS

Table I lists four publicly available, open source

implementations of the Diameter Base protocol which we
reviewed and considered for possible implementation.

TABLE I. Diameter Base Protocol implementations

Name DISC
Open

Diameter
WIRE

Diameter

Diameter
Charging

SDK

Programmin
g language C C++ C++ Java

Source code
availability

yes
 (GPL)

yes
(GPL)

yes
(GPL)

only
partially

(client yes,
emulator

no)

Platform Linux/
FreeBSD

Cross-
Platform

Cross-
Platform

Platform
Independen

t

Diameter
Base Protocol

support
yes; full yes; full

yes; partial
(8 out of

10
functions)

vendor-
specific

extensions

We now briefly describe each implementation and note

the features based on which we selected Open Diameter as
a basis for our experimental implementation of Cx
interface functionality.

A. Diameter Server Client

Diameter Server Client (DISC) is an open source AAA

Diameter implementation, developed by the DISC project,
(http://developer.berlios.de/projects/disc/). It can be
configured to act as either a Diameter Server or a Diameter
Client. On the project’s Web page, the authors state that
DISC enables what they call “a plug-in model” for new
applications, meaning that third parties can link their
plug-in with the server or the client code and thus provide
various services. DISC is written in programming
language C and it has been designed for Linux/FreeBSD
platform. Since we needed a platform-independent
solution, DISC was not applicable for our purposes.
Should an attempt to port DISC onto other platforms, such
as MS Windows, be made, it would require significant
changes in the transport part of DISC.

B. Open Diameter

Open Diameter (OD) is an open source implementation
of Diameter Base Protocol developed by the Sourceforge
community (http://sourceforge.net/projects/diameter). It is
written in C++, and it is platform independent. Supported
platforms include Linux, FreeBSD, and MS Windows
2000/XP. OD supports both Internet protocols IPv4 and
IPv6.

Open Diameter has all Diameter Base Protocol functions
implemented and the source code is available under GNU
General Public License (GPL). Some documentation is
also available. Functionality of the Diameter protocol is
provided to other applications through dynamic-link
library files (*.dll files on MS Windows platform).

C. WIRE Diameter

The WIRE Diameter is an open source implementation
of the Diameter Base Protocol and Diameter EAP
Application, developed by the Wireless Internet Research
& Engineering (WIRE) Laboratory at the NTHU Taiwan
(http://wire.cs.nthu.edu.tw/WIREDiameter). The software
is in part based on OD, but the source code has been
modified (support for two functions of Diameter Base
Protocol is missing) and it is differently organized.

The WIRE Diameter provides various authentication
schemes, including EAP-MD5, EAP-TLS, EAP-TTLS,
and PEAP. WIRE Diameter is written in C++, and it is
platform independent. Supported platforms include Linux,
FreeBSD, and various versions of MS Windows.

D. Diameter Charging SDK

The Diameter Charging Software Development Kit

(SDK) is developed by Ericsson, and it intended to support
client applications. It is written in Java, and it is platform
independent. The software is made available through the

Ericsson Web site at
http://www.ericsson.com/mobilityworld/sub/open/technolo
gies/charging_solutions/tools/diameter_charging_sdk. It
includes the Diameter Charging API, Diameter Charging
Emulator (which emulates the charging server), Diameter
Charging Client, and documentation. Due to its intended
use for client applications, only the Diameter Charging
Client source code is available, and the rest is provided in
form of Java class files. The package uses a vendor-
specific Service Charging Application Protocol (SCAP),
which is based on Diameter Base Protocol.

The Diameter Charging API isolates the core protocol
implementation and allows the application to use the
Diameter interface with operations that are relevant to the
application. The Diameter Charging Client is a reference
application that uses the Diameter Charging API. It is used
for setting up connections to Diameter server. By using the
client, it is possible to insert data, send requests to and
receive responses from the (emulated) charging server.

Having considered the implementations listed above, we

decided to base our implementation on OD, because it was
an open source solution, fairly well documented, and it
was under active development and discussion by the
community. OD is now described in more detail.

IV. OPEN DIAMETER

This section describes the software architecture of OD.
Parts of this text have been taken verbatim from OD
documentation.

The Open Diameter API is a session based API, in which
each type of Diameter session is being represented by a
C++ class. Each session class is derived from a specific
AAA state machine framework as defined in Section 8 of

RFC 3588 [2]. Session classes handle message
transmission, message processing, and event handling.
Applications can implement their own AAA functionality
by using the appropriate session classes. Figure 3, taken
from OD documentation and somewhat simplified, shows
the architecture of the OD framework.

In general, session classes may be either client classes or
server classes, providing AAA capabilities for clients and
servers, respectively. Classes may also be further divided
into authentication/authorization classes and accounting
classes.

The main difference between client and server classes is
in the way they are instantiated. For application classes
based on client sessions, it is the responsibility of the AAA
client application to create and manage the instances of
these sessions. For application classes based on server
sessions, the library is responsible in creating and deleting
instances of these classes. Server classes are deleted by
using an internal garbage collector, once a server session
has completed its execution as defined by its state
machine. To facilitate the instantiation of application
derived server session classes, the library provides a server
session factory that an application may instantiate and
register.
Once properly registered, these session factories will
create AAA session objects every time a new authorization
and/or accounting request arrive. The only criterion for
this action is whether the local AAA application supports
the application ID advertised in the initial request message.

It should be noted that both client and server session
classes only provide Diameter session management.
Diameter peer connectivity management is provided within
another class called the application class.

Figure 3. Open Diameter software architecture

This class manages configuration loading, peer
connectivity, and AAA message routing. Client session
class binds to this application class via its constructor.
Server classes are bounded to an application class via the
server session factory class which is registered in the
application class. By binding to the application class,
session classes are able to send and receive messages from
the routing platform provided by the application class.

V. IMPLEMENTATION & RESULTS

A. Setting up the Open Diameter

The OD Base packages are available as either “plain
source” files, or as source files organized into Microsoft
Visual Studio solution (provided by Toshiba research). We
used the latter. To compile and use OD libraries support of
following API-s and applications is required:

1.) Perl (Active Perl 5.8.7 Build 813)

The Perl language is utilized by some installation scripts.
The version we used is available from:

http://www.activestate.com/ActivePerl.

2.) Xerces C++ XML Parser
(xerces-c_2_6_0-windows_nt-msvc_60)

Xerces is a shared library for parsing, generating,
manipulating, and validating XML documents. The
version we used is available from:

http://xml.apache.org/xerces c/index.html.

3.) OpenSSL library (openssl-0.9.8.tar.gz)

OpenSSL is an open source toolkit implementing the
Secure Sockets Layer (SSL v2/v3) and TLS v1 protocols,
as well as a full-strength general purpose cryptography
library. It is available from http://www.openssl.org.

4.) ACE library (ACE-5.4)

ACE library is an open-source, object-oriented toolkit
written in C++ that implements core concurrency and
networking patterns for communication software,
including event demultiplexing and event handler
dispatching, signal handling, service initialization,
interprocess communication, shared memory management,
message routing, dynamic (re)configuration of distributed
services, concurrent execution and synchronization. It is
available from:

http://www.cs.wustl.edu/%7Eschmidt/ACE.html.

B. Our implementation

The OD distribution contains several client/server
examples, which we used to examine Diameter
mechanisms. As a starting point in our development we
used the example presenting an authorization application.
In terms of specifications, we followed the specifications
of the Diameter protocol [2][5] and Cx interface [3][4]
provided by 3GPP. Our work included modifying the

client and the server classes provided by OD by adding the
Cx interface specific Diameter messages – UAR, MAR,
and SAR – and building the client and server applications
to use the functionality of those classes.

The client and the server code have rather similar
structures, up to the point of Diameter session
management. The example code included in the OD
distribution provided sample Diameter communication
between the client and the server and we needed to
implement the UAR, MAR, and SAR commands, which,
according to the Cx specification, are sent from the client
(CSCF) towards the server (HSS).

The OD distribution contains both the server and the
client classes to enable a Cx node to operate in a
peer-to-peer network. In our application, we implemented
the functionality of the Cx interface as if the CSCF acted
as a client and the HSS acted as a server. (This could have
also been implemented the other way round to have both
client/server, i.e. peer functionality on each side.) Figure 4
shows the exchange of messages in our implementation. It
may be noted that each message transmission method (i.e.
TxUAR) on the client side has its corresponding
counterpart on the receiving, server side (i.e. RxUAR).
The notation used here is Tx for transmission, and Rx for
receiving. Messages are distinguished by their message
code, embedded in the message header. The client
composes a message with the specific code, and sends it to
the server, which then recognizes the message code and
initiates the appropriate receiving method.

Figure 4. Exchange of Cx specific Diameter messages

Each message type carries some specific information,

being coded as AVPs. Thus, it was necessary to implement
the method for composing and resolving the message for
all types of messages. This included definition of message
parts, initialization of message fields, and finally,
construction of message body.

Finally, we also extended the OD dictionary (XML file),
which is used by the parser part of OD for message
identification and validation, with Cx related message type
specifications.

The exchange of messages between the client and the
server goes as follows. The client issues a request, and
then waits. The server, having received the request, parses
the message, processes the request and parameters, and,
invokes the corresponding response message method,
which returns the information required back to the client.
Having completed this task, the method returns a status
code, which may be used to determine the success of
actions performed and to set the application into the
adequate state.

C. Testing

We first tested the initial OD implementation and its
conformance to the Diameter specification, followed by
testing of our extended implementation. Since a more
recent release of OD became available in the course of our
work, our final implementation was based on OD version
1.0.7-g, which was significantly improved compared to the
previous one.

HSS
Cx

CSCF

Ethernet

PC1 PC2

TCP/IP

Figure 5. Laboratory setup

The laboratory setup (Figure 5) consisted of two low-end

PC-compatible computers, PC1 and PC2, attached to the
local TCP/IP network via Ethernet interface. The PC1
served as the CSCF node (running the Diameter client
application), and PC2 served as the HSS node (running the
Diameter server application). We also needed to configure
the applications by editing the XML configuration files
which contain network, routing, identity, and some
additional configuration data.

We used Ethereal (www.ethereal.com, version 0.10.12)
network protocol analyzer to capture the Diameter
messages exchanged between the client and server
applications. Ethereal was installed on the both the client
and the server. It may be noted that the version 0.10.12 of
Ethereal worked well, while many problems were
encountered in the previous version of the package,
regarding proper recognition and dissection of Diameter
protocol messages.

The purpose of the test was to establish the client and the
server behavior, and study the content of messages
exchanged. We activated the packet capturing procedure
within Ethereal and then initialized the server and the

client applications. Once both applications were properly
started, we commenced the message exchange between
them. Messages captured confirmed the correct operation
on both the client and the server side, but with one notable
exception in OD part of the code. Namely, there was no
notification of session termination on the server side,
which could pose a threat to normal operation in real
environment. The OD documentation states that all server
side sessions are being properly terminated by the garbage
collector. Should this implementation be used as a basis
for further development, a notification of that event should
be added.

VI. CONCLUSION

With the emergence of new wireless access technologies
and new applications envisioned in new generation
networks, the need for AAA becomes more pressing. The
AAA solution adopted by the 3GPP and 3GPP2 for use in
the IMS is based on the Diameter protocol. In this paper,
we have studied the Diameter protocol and its application
in the IMS Cx interface. We reviewed four open-source
implementations of the Diameter protocol, and we used
Open Diameter as a basis for implementing the AAA
functionality that IMS needs, more specifically, the
selected Cx interface functions UAR, MAR, and SAR. The
conformance of the implementation to the specification
was verified by testing in a laboratory setup. Our further
work includes implementation of the remaining Diameter
messages for the Cx interface.

REFERENCES

 [1] G. Camarillo, M. A. García-Martín, The 3G IP Multimedia

Subsystem: Merging the Internet and the Cellular Worlds,
John Wiley and Sons, Ltd., England, UK, 2004.

 [2] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko,
Diameter Base Protocol, IETF RFC 3588, September
2003.

 [3] –, IP Multimedia (IM) Subsystem Cx and Dx interfaces;
Signaling flows and message contents, The 3rd Generation
Partnership Project; Technical Specification Group Core
Network and Terminals; TS 29.228, 2005.

 [4] –, Cx and Dx interfaces based on the Diameter protocol;
Protocol details, The 3rd Generation Partnership Project;
Technical Specification Group Core Network and
Terminals; TS 29.229, 2005.

 [5] J. Loughney, Diameter Command Codes for Third
Generation Partnership Project (3GPP) Release 5, IETF
RFC 3589, September 2003.

