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Abstract - Networked virtual reality (NVR) services with 
integrated multimedia components and perceived ”real-time” 
interactivity impose certain Quality of Service (QoS) 
requirements at the user/application level as well as on the 
underlying network. In this paper we are concerned with 
measuring end-to-end performance parameters for NVR 
services and determining the effect of various network 
conditions on user perceived quality. We discuss 
measurements performed in an emulated network 
environment on four heterogeneous NVR applications. Test 
procedures have been outlined and results have been 
analyzed to determine the network requirements of each 
application.  
 
 

I. INTRODUCTION 
 

Networked virtual reality services with integrated 
multimedia components and perceived ”real-time” 
interactivity may be considered a good representative of 
advanced services in the new generation network [9]. Such 
services impose certain QoS requirements at both the 
user/application level as well as on the underlying network 
[10]. Network level QoS parameters related to NVR 
services include bandwidth (to support large volumes of 
media data and multiple users), latency and jitter (support 
for ”real-time” interactivity), and reliability. Multi-user 
virtual environments are thus characterized by 
unpredictable traffic flows due to dynamic user 
interactions. Existing 3GPP standards describe the QoS 
requirements of various types of services and define 
accepted parameter values from an end user viewpoint 
[1,2]. However, no clear description is provided describing 
the requirements of NVR services.  

This paper describes measurements of QoS parameters 
that have been performed using four different prototype 
NVR applications, grouped together as single-user and 
multi-user virtual environments. The idea in each case was 
to determine the effects of various network conditions on 
user perceived quality. Under certain conditions (i.e. if an 
end user has limited bandwidth due to access network 
capabilities), a service may not achieve its intended 
functionality and may therefore be considered 
unacceptable. A set of network requirements for a service 
is therefore needed for the adaptation and negotiation of 
QoS between a VR service and a VR end user. The 
performed measurements provide some empirical data on 
the QoS requirements of different types of NVR services.  

The paper is organized as follows: Section II discusses 

related work addressing the network requirements of NVR 
services. Section III describes the testbed used for 
measurements and the NIST Net tool used for emulating 
network parameters. Sections IV and V cover the test 
procedures and achieved results for measurements 
performed on single-user and multi-user virtual reality 
applications. A discussion and conclusions are presented in 
section VI. 

 
II. RELATED WORK 

 
Previous research on NVR communication requirements 

includes a comprehensive overview of communication 
architectures, protocols, and mechanisms [17]. Managing 
dynamic shared state and resource management have been 
considered as key issues for achieving scalability and 
performance.  

In [8], bandwidth, latency, distribution schemes, and 
reliability are identified as critical when addressing 
network QoS for large scale and distributed virtual 
environments (VE). VEs supporting collaborative 
experiences among users, termed collaborative virtual 
environments (CVE), in general require high bandwidth 
and low latency in order to maintain natural interactions. 
The effects of latency and jitter on human performance 
were measured in [13], with multiple users cooperating on 
a teleoperation task in a CVE. Another example may be 
found in [6], where the effects of latency and jitter have 
been tested on haptic force feedback display in the 
teleoperation of a distant microscope. When considering a 
virtual environment with integrated multimedia 
components, the quality of the VE depends largely on the 
quality of the synchronization between media components. 
Some experimental values describing human perception of 
media synchronization in terms of delay and jitter can be 
found in [20]. 

3GPP standards define 4 different QoS classes based on 
delay tolerance [2]: 

• Conversational (real-time) class 
• Streaming class 
• Interactive class 
• Background class 

Key performance parameters and target values have been 
outlined for each QoS class in [1]. The parameter values 
are commonly accepted values from an end-user viewpoint 
as proposed in [4]. An example of the end user QoS 
requirements for the conversational class is given in Table 
I (taken from [1]). 



  

Table I. End-User Performance Expectations – 
Conversational/Real-Time Services. 

 
Medium Application Degree of 

symmetry
Data rate

End-to-end 
one way 
delay

Delay 
variation
within a call

Information 
Loss

Audio Conversational 
voice Two-way 4-25 kb/s

<150 ms 
preferred
<400 ms limit

<1 ms <3% FER

Video Videophone Two-way 32-384 kb/s

<150 ms 
preferred
<400 ms limit
Lip-Synch:
<100 ms

<1% FER

Data
Telemetry
-two way 
control

Two-way <28.8 kb/s <250 ms N.A. Zero

Data Interactive
games Two-way <1 KB <250 ms N.A. Zero

Data Telnet Two-way
(asymmetric) <1 KB <250 ms N.A. Zero

Key performance parameters 
and target values

 
 

Due to the fact that no clear description is provided of 
the QoS requirements of NVR services, our goal was to 
address this area. Performance measurements have been 
conducted for different NVR services to determine the 
effects of various network QoS values on end-user 
perceived quality.  

 
III. TESTBED CONFIGURATION 

 
In our testbed, we used a NIST Net software emulator [3] 

to test the behavior of each prototype application under 
various network conditions. 

The NIST Net network emulator tool, implemented as a 
kernel module extension to Linux, was installed and used 
to emulate numerous network conditions. Performance 
scenarios which can be emulated include bandwidth 
limitations, tunable delay distributions, congestion and 
background loss, and packet reordering/duplication. NIST 
Net offers a command line interface which allows the user 
to define desired performance parameters for a selected IP 
traffic stream passing through the router. It was thus 
possible emulate various network conditions.  

Maximum bandwidth in the testbed configuration 
corresponds to 10 Mbits/s. In addition, delay was measured  
to be < 1ms and packet loss 0%. By using NIST Net 
desired values for these parameters could be set.  
 

The testbed configuration used to perform 
measurements is shown in Figure 1. The following 
hardware and software has been used: 
• PC 1: Pentium IV (1.6 GHz, 512 MB RAM) with 

Linux 2.4.17 (RedHat 7.2) OS. Additional software: 
NIST Net network emulation package version 2.0.10. 

• PC 2: Pentium III (750 MHz, 256 MB RAM) with 
Windows 2000 Professional OS. Additional software: 
Cortona 3.0 VRML plug-in; Blaxxun Contact multi-
user 3D plug-in; Java Media Framework 2.1.1. Beta 3; 
SteadyHand 1.0 Dynapel Systems Inc. (for analyzing 
video frames). 

• PC 3: Pentium III (750 MHz, 256 MB RAM) with 
Windows 2000 Professional OS. Additional software: 
Cortona 3.0 VRML plug-in; Blaxxun Contact multi-
user 3D plug-in; Java Media Framework 2.1.1. Beta 3; 
Apache httpd Server v.1.2.17; Savant Web Server; 
Alicebot.net Server 4.0 (Demy). 

Switch Hub

ATM Switch

HUB Repeater

PC 5
(measurements)

PC 4
(measurements)

WS 1
(WWW server)

Micro HUB
Repeater

PC 6
(router)
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PC 3
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Figure 1. Testbed Configuration.  

 
• PC 4: Pentium I (133 MHz, 64 MB RAM) with Linux 

2.4.0 (Debian) OS. Additional software: Ethereal 
(network protocol analyzer) version 0.8.16. 

• PC 5: Pentium III (600 MHz, 256 MB RAM) with 
Windows 2000 Professional OS. Additional software: 
Cool Edit 2000 (for audio recording). 

• PC 6: Pentium II (200 MHz, 96 MB RAM) with 
Linux 2.4.0 (Debian) OS. 

• WS 1: Sun Sparc Ultra 5, Sparc v9 (270 MHz, 256 
MB RAM) with Solaris 8 OS. Additional software: 
Blaxxun Virtual Worlds Platform 5.1. 

 
IV. SINGLE USER VIRTUAL ENVIRONMENTS 

 
In the case of single user VEs, we are looking only at 

interactions between the user and the environment, rather 
than interactions between multiple users. The VE can be 
downloaded from the Internet or locally resident. In this 
case we are concerned with the network QoS requirements 
for VEs on the Internet. One of the key issues is the time 
necessary for scene download. The question concerning 
the end user is how long of a wait may be considered 
acceptable. User interactions with a VE may require 
additional network traffic, such as requesting one way 
audio/video streaming, or additional file download. For 
example, if a virtual world consists of a number of virtual 
spaces that are not all initially downloaded, user navigation 
from one space to another causes additional download and 
deterioration of navigation quality [12]. In this paper, we 
address two different test cases involving single user VEs. 

 
A. Test Procedure 

 
In the first case, a user accesses a virtual gallery of 

mobile phones from a WWW server and then freely 
navigates through the gallery. In the second case, we look 
at an example conversational virtual character designed for 
the Web that is capable of having a meaningful 
conversation with a user who types in the input [19]. The 
key parameter influencing performance is the time to 
answer (TTA), or the time that the user must wait for a 
response.  

In both cases, measurements were performed with PC 2 
acting as a WWW client and PC 3 as a WWW server. All 



  

traffic was routed over PC 1 (running NIST Net) in order 
to control network parameters. 

Traffic capture was performed on PC 4 using Ethereal 
version 0.8.16 [5]. Ethereal is a network protocol analyzer 
that enabled us to capture, filter, and analyze network 
traffic. Measurements were conducted according to the 
following steps: 
• Start NIST Net on PC 1 and set desired network 

parameters for all traffic being routed from PC 2 to PC 
3 and vice versa. 

• Restart IE browser on PC 2, clear the memory cache 
and the disk cache. 

• Start Ethereal capture on PC 4. 
• Generate network traffic (click to download, or in the 

case of the conversational character, send text input 
and wait for response). 

• Stop Ethereal capture. 
Download time and TTA were measured from the time 

that the initial request was sent from PC 2 up until the last 
packet containing data from PC 3 arrived at PC 2. 

 
B. Results and Analysis 
 
1) Virtual Gallery 

Virtual Gallery, shown in Figure 3,  is an example of a 
single user virtual environment containing a number of 
virtual models of Ericsson mobile phones. A user can 
access this gallery from a WWW server, in which case the 
gallery is downloaded and the user is then free to navigate 
through the gallery. The user must have a VRML plug-in 
installed (i.e. Cortona). In this case, the only network 
traffic being generated is during download. Due to the fact 
that traffic was sent using TCP, it was expected that 
network delays and packet loss would have a direct effect 
on throughput due to TCP’s congestion control 
mechanism. The total file size (including all wrl files and 
texture files) corresponding to the Virtual Gallery is 1,517 
Mbytes. Measurements were conducted under various 
emulated network conditions. The results are shown in 
Table II. 

Values for maximum bandwidth, delay and packet loss 
indicated in the table were set for both traffic being routed 
from client to server and from server to client. Therefore, a 
delay of 50 ms as shown in the table corresponds to 100 
ms RTT (assuming symmetric delays). 
 

 
 

Figure 3. Virtual Gallery 

Table II. Measurements of download time for Virtual Gallery 

Max. 
Bandwidth

Delay 
[ms]

Packet Loss
[%]

Average 
Download 
Time [s]

Download Time [s] 
with 95 % confidence 
level 

10 Mbit/s 0 0 3,644 3,644 ±  0,134

10 Mbit/s 50 0 14,429 14,429 ± 0,955

10 Mbit/s 50 1 20,391 20,391 ± 0,920

10 Mbit/s 50 2 26,757 26,757 ± 2,412

375 kbit/s 0 0 34,029 34,029 ± 1,879

375 kbit/s 100 0 37,677 37,677 ± 0,868
 

Average download time in each case was calculated 
based on five repeated tests. Download time within a 
confidence interval of 95% was calculated based on 
Student’s t distribution. The results show a clear increase 
in download time caused by an increase in delay and 
packet loss. This was expected due to TCP’s congestion 
control mechanism, where the transmission rate of the TCP 
sender is determined by the level of congestion in the 
network. The modeling of TCP’s steady state throughput 
as a function of loss rate and round trip time (RTT) can be 
found in [14]. We also see an increase in delay variation 
due to packet loss (greater range of values fitting into the 
95 % confidence interval). 

The main question in this case concerning the end user 
is how long the user is willing to wait for download. If we 
assume up to 30 s to be an acceptable download time, we 
can see that at 375 kbit/s (an example UMTS data rate in a 
suburban area) download time is already greater than 30 
seconds. It is possible to then conclude that a decrease in 
data rate or an increase in delay would result in 
unacceptable waiting time. 

  2)     Demy: A Conversational Virtual Character 
Demy is an example of a conversational virtual 

character on the Internet. The user downloads a web page 
(using current versions of Netscape or IE) containing a 
Java applet displaying the animated VRML character 
(Demy) and a text box (Figure 4). The virtual character is 
rendered using Shout 3D technology (written in Java), thus 
eliminating the need for any extra plug-ins or downloads.  

When the user types English text in the text box, Demy 
replies by talking. The artificial intelligence of the virtual 
character is based on the latest Java implementation of 
ALICE [19]. The answers are based on the "knowledge" 
which is contained in an AIML (Artificial Intelligence 
Markup Language) file. This file contains answers to 
known questions and rules for interpreting users' inputs 
and providing answers. The animated virtual character 
(Java applet) can be controlled by JavaScript and 
instructed to talk. The speech is stored on the standard 
HTTP server in the form of audio (.au) files and MPEG-4 
lip synchronization files (.fba). These files are streamed 
on-the-fly when speech is requested. Details on the system 
architecture of this application can be found in [19]. 

The applet size is 223 Kbytes (Shout 3D rendering 
engine is 187 Kbytes, and the facial animation player 
implementation is 36 Kbytes) and the facial model size is 
32 Kbytes. 



  

 
 

Figure 4. Demy: conversational virtual character 
 

Measurements were performed to determine the time 
necessary for the virtual character to respond to a question 
asked by the user (TTA). This involved the generation and 
download of an .au file and an .fba file. Measurements of 
TTA where tests were performed in a best effort Internet 
environment can be found in [19]. Our goal was to perform 
these measurements in an emulated network environment 
where we could control network parameters. We measured 
the TTA for two different responses: ”I ask myself that 
question, who am I ?” (in answer to user input: “Who are 
you?”)  and “Hi there!” (in answer to user input: “Hello”). 
TTA is defined as the time from when the user presses 
SEND until the moment when Demy starts to talk. Results 
are shown in Table IV. An increase in the size of the 
response corresponds to an increase in TTA.  

The user perceived quality of virtual characters on the 
Internet depends largely on the purpose of the application, 
whether it be entertainment, commerce, education, or 
personal communications. The issue is to determine the 
requirements of the application in order for it to be 
functional and attractive. In the case of Demy, where we 
have a conversational virtual character, long response  

 
Table IV. Measurements of TTA for Demy 

   

Max. 
Bandwidth

Delay 
[ms]

Packet 
Loss [%]

Average 
Response 
Time[s]

TTA [s] with 95% 
confidence level

375 kbit/s 0 0 4,724 4,724 ± 0,032

46,875 kbit/s 150 0 9,150 9,150 ± 0,048

375 kbit/s 0 0 10,093 10,093 ± 0,165

46,875 kbit/s 150 0 13,009 13,009 ± 0,228

Response: "Hi there! "  
(.fba file size = 7,33 KB, .au file size =  68 B

Response: "I ask myself that question, who am I ? " 
(.fba file size = 23,4 KB, .au file size = 159 B )

 
 
delays during the chat reduce the user feeling of ”real-
time” interactivity. For practical implementation of this 
prototype, we feel that better results are necessary than 
those shown in Table IV. A TTA within the range of 1-2 s 
may be considered acceptable. 

 
V. MULTI-USER VIRTUAL ENVIRONMENTS 

 
In multi-user VEs, multiple users from geographically 

distributed locations can communicate, collaborate or 
interact with each other and the environment. Such 
services often require large bandwidth and low latency. In 
order to consider some of the requirements of such 

services, measurements were performed on two 
applications. The first is a real-time virtual audio chat 
between multiple users where we address audio-streaming 
as one of the key communication capabilities used in VEs. 
In the second case we look at a shared virtual community 
built upon Blaxxun’s Virtual Worlds Platform where 
multiple users can meet and interact.  

 
A.    Virtual Audio Chat    
 

Virtual Audio Chat (VAC) is an application that enables 
real-time audio communication over the Internet between a 
multiple number of users [11]. The user interface includes 
a VRML model of a mobile phone (Figure 5). By way of 
user interactions implemented in VRML, a user can enter 
onto the phone the IP address and port number of another 
user (or a multicast address/port for a group session) with 
whom he wishes to communicate. A Java applet (using the 
Java Media Framework JMF RTP API) then opens an RTP 
based audio streaming session using the entered address 
and port, and waits for the other user to join in an 
analogous manner. 

 

 
 

Figure 5. VRML model of mobile phone. 
 

The network traffic corresponding to this application 
includes TCP traffic during initial download, and 
afterwards a continuous RTP stream for the duration of the 
audio chat. An audio chat was started between two users 
and measurements of bandwidth, delay, jitter, and packet 
loss during RTP streaming were performed to determine 
their effect on user perceived quality. 

1) Test Procedure 
The VRML mobile phone model was downloaded from 

WS 1 onto PC 2 and PC 3 acting as WWW users. Each 
user then entered the IP address of the other user in order 
to initiate the audio chat. All traffic was routed over PC 1. 

In general, delay and packet loss are the key factors 
determining the QoS of real-time multimedia applications. 
Components comprising total end-to-end delay, as outlined 
in [7], include network delay (transmission, propagation, 
and queuing delay), operating system delay at the sender or 
receiver, hardware input/output delay, possible look ahead 
delay, and application delay (introduced by the receiver to 
compensate for jitter). Due to the fact that all of these 
components together affect user perceived quality, 
measurements were conducted to determine overall end-to-
end delay. We define T1 as the moment when the sender 
(user 1) speaks, and T2 as the moment when that sound 
reaches user 2’s output device (speaker). We define end-to-
end delay as T2-T1. T1 and T2 were determined by using 



  

COOL EDIT 2000 software for recording audio.  
Measurements of jitter were performed in conjunction 

with the RTP [16] definition of jitter that defines 
interarrival jitter as the mean deviation (smoothed absolute 
value) of the difference D in packet spacing at the receiver 
compared to the sender for a pair of packets.  

 
2) Results and Analysis 
Initial measurements were performed without the use of 

NIST Net to determine end-to-end delay and interarrival 
jitter. Measurements were repeated 20 times and an end-to-
end delay of 532,35 ±  8,905 ms and interarrival jitter of 
3,466 ±  0,203 ms were determined. Due to the fact that 
delay in our LAN is < 1 ms, we conclude that the measured 
end-to-end delay and jitter are a result of OS delay, 
hardware input/output delay, and application delay. Audio 
is captured from a live source (using a microphone) and 
then passed on for further processing (filtering, 
compression, format conversion). After passing through 
the network and reaching the receiver, data once again 
needs to be manipulated before being presented to the user.  
In our case, an ADPCM codec is used with dvi audio 
format. A playout buffer size was set to 250 (in ms) 
throughout all tests. This means that 250 ms of audio data 
is buffered prior to being passed on for further processing.     

The next step was to use NIST Net to increase delay to 
see the effect that this would have on conversational 
quality as perceived by the user.  Figure 6 shows how 
measured end-to-end delay increased with an increase in 
network delay. Values for jitter remained the same as in 
the initial test without NIST Net. 

We found that up to 300 ms network delay in both 
directions was noticeable,  but conversation was possible 
without greater difficulty. In our opinion, 400 ms network 
delay ( ≈ 920 ms end-to-end) was the border of acceptable 
quality. Once again, buffer size was set to 250 ms. 
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Figure 6. Measured end-to-end delay for VAC. 

 
In order to test the effect of jitter, we set the NIST Net 

delay standard deviation parameter (delsigma) to values as 
shown in Figure 7 to achieve an increase in measured 
interarrival jitter. 

Up until a set deviation of 15 (average measured jitter 
11,48 ms) there was no degradation detected. At a set 
deviation of 20 (average measured jitter 14,3 ms) jitter 
became noticeable, but users had no problem 
understanding each other. A set deviation of 35 (average 
measured jitter 17,5 ms) resulted in increased degradation, 
but speech was still understandable. At a set deviation of 
50 (average measured jitter 19,0 ms) jitter was highly 
noticeable and conversation required attention. At 75 

(average measured jitter 20,0 ms) users needed 
considerable effort to understand each other, and quality 
was no longer acceptable. Therefore, we consider a value 
of 19,0 ms as the border of acceptable quality. 
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Figure 7. Measured interarrival jitter for VAC. 

 
In order to determine the bandwidth limitations of our 

application, maximum bandwidth was limited to see at 
which point packet loss would start to occur (due to limited 
queue size at the router) and what kind of effect this would 
have on delay and user perceived quality. Queue size was 
set using NIST Net by defining minimum and maximum 
derivative random drop parameters (in number of packets). 
No packets are dropped if the queue length is under the 
specified minimum (50), and 95% dropped if queue length 
is greater than the specified maximum (80). Results 
showed that 4800 bytes/s was the minimum bandwidth 
required to achieve acceptable quality. At a bandwidth less 
than 4800 bytes/s, the router queue begins to fill up, 
causing great increases in delay and packet loss. This 
results in unacceptable speech quality and the inability to 
lead a normal conversation. 

 
C. Blaxxun Multi-User Community 

The application used for test purposes is a shared virtual 
environment built upon Blaxxun’s Virtual Worlds Platform 
that allows multiple users (community members) to meet 
and interact. A client server architecture is used to 
distribute information among community members 
whenever they need updates automatically and in real time 
using the UDP protocol. This is necessary for cases such as 
chat, avatar motion, and shared events/objects. In multi-
user interactive virtual environments, all changes resulting 
from a user’s actions need to be made visible to other 
user’s in a consistent manner in order to achieve ”real-
time” interactivity. Delay is therefore the key factor 
determining user perceived quality. Our tests involved 
measuring the end-to-end delay between two users, 
represented by 3D avatars, interacting in the shared 
community. The goal was to determine the maximum 
allowed delay in order to maintain acceptable user 
perceived quality of real-time interactivity. After initial 
download, network traffic corresponds to dynamic sending 
of updates depending on the degree of user interactivity.  

 
1) Test Procedure 
The Blaxxun Virtual Worlds Platform was installed on 

WS 1. Two users on PC 2 and PC 3 joined the community 
by downloading the world description from WS 1. All 
traffic was routed over PC 1. 

End-to-end delay was measured from the moment when 
one user clicked on the keyboard to trigger a waving 

Max. bandwidth = 10 Mbit/s 
Packet loss = 0 % 

Max. bandwidth = 10 Mbit/s 
Packet loss = 0 % 
Fixed network delay = 200 ms 



  

gesture until that gesture was made visible on the other 
user’s screen (Figure 9). In the case of an avatar gesture, 
only packets carrying information necessary to trigger the 
accompanying action are sent. Due to such low bandwidth 
utilization, after initial download there was no need to test 
bandwidth limitations, rather delay proved to be the key 
factor influencing quality.  

Measurements were conducted by using a camera 
(Video Blaster WebCam 3 USB) to record the moment 
when one user clicked to trigger a waving action and the 
moment when that action was made visible on the other 
user’s screen. The recording frame rate was 30 frames/s. 
The software used for analyzing video frames was 
SteadyHand 1.0  (http://steadyhand.dynapel.com). 

 

 
 

Figure 9. Avatar waving gesture in Blaxxun community 
 

2)  Results and Analysis 
Initial measurements were performed without the use of 

NIST Net to determine end-to-end delay. Measurements 
were repeated 20 times and the end-to-end delay with a 
95% confidence level was measured to be 201,15 ± 19,721 
ms. Due to the fact that LAN delay is < 1 ms, this delay 
corresponds to processing delay at the server and rendering 
at the end user. It is also important to take into account 
measurement errors due to a maximum frame rate of 30 
frames/s while recording (33,33 ms between frames).  

The next step was to use NIST Net to increase network 
delay to see the effect that this would have on perceived 
quality. We found that delay up to 300 ms in each direction 
remained practically unnoticed by the users, who reported 
a feeling of real-time interactivity. At 400 ms delay in each 
direction, delay became more noticeable. Specific values 
of acceptable delay for interactive VR applications depend 
on the nature of the application. It is clear that in this 
particular scenario, involving only user communication 
through gestures, delay is more tolerable than in multi-user 
interactive games [18] or military simulations [15].  

 
VI. DISCUSSION AND CONCLUSIONS 

Achieved test results serve to provide some empirical 
data on the QoS requirements of different types of NVR 
services. In the case of downloading a single user VE from 
the Web, we are looking at a type of service comparable to 
classical web browsing. However, VE services designed 
for specific purposes such as a conversational virtual 
character pose stricter requirements on the underlying 
network. In the case of multi-user NVR services, 
requirements are characterized by unpredictable traffic 
flows due to dynamic user interactions. We can see this 

example in various network games, simulations, or CVEs.  
Further work in this area will include additional tests 

involving a greater number of heterogeneous NVR services 
for the purpose of modeling such services with respect to 
standardized QoS classes as defined by 3GPP. 
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