

Experimental Performance Evaluation of Networked Virtual Reality Services

Lea Skorin-Kapov§, Danko Vilendečić†, Dario Mikić†
§Research and Development Centre

Ericsson Nikola Tesla
Krapinska 45, 10000 Zagreb, Croatia

Tel: +385 1 365 39 65 Fax: +385 1 365 35 48 E-mail: lea.skorin-kapov@etk.ericsson.se
†Department of Telecommunications

Faculty of Electrical Engineering and Computing, University of Zagreb
Unska 3, 10000 Zagreb, Croatia

Tel: +385 1 612 97 38 Fax: +385 1 612 98 32 E-mail: danko.vilendecic@fer.hr

Abstract - Networked virtual reality (NVR) services with
integrated multimedia components and perceived ”real-time”
interactivity impose certain Quality of Service (QoS)
requirements at the user/application level as well as on the
underlying network. In this paper we are concerned with
measuring end-to-end performance parameters for NVR
services and determining the effect of various network
conditions on user perceived quality. We discuss
measurements performed in an emulated network
environment on four heterogeneous NVR applications. Test
procedures have been outlined and results have been
analyzed to determine the network requirements of each
application.

I. INTRODUCTION

Networked virtual reality services with integrated
multimedia components and perceived ”real-time”
interactivity may be considered a good representative of
advanced services in the new generation network [9]. Such
services impose certain QoS requirements at both the
user/application level as well as on the underlying network
[10]. Network level QoS parameters related to NVR
services include bandwidth (to support large volumes of
media data and multiple users), latency and jitter (support
for ”real-time” interactivity), and reliability. Multi-user
virtual environments are thus characterized by
unpredictable traffic flows due to dynamic user
interactions. Existing 3GPP standards describe the QoS
requirements of various types of services and define
accepted parameter values from an end user viewpoint
[1,2]. However, no clear description is provided describing
the requirements of NVR services.

This paper describes measurements of QoS parameters
that have been performed using four different prototype
NVR applications, grouped together as single-user and
multi-user virtual environments. The idea in each case was
to determine the effects of various network conditions on
user perceived quality. Under certain conditions (i.e. if an
end user has limited bandwidth due to access network
capabilities), a service may not achieve its intended
functionality and may therefore be considered
unacceptable. A set of network requirements for a service
is therefore needed for the adaptation and negotiation of
QoS between a VR service and a VR end user. The
performed measurements provide some empirical data on
the QoS requirements of different types of NVR services.

The paper is organized as follows: Section II discusses

related work addressing the network requirements of NVR
services. Section III describes the testbed used for
measurements and the NIST Net tool used for emulating
network parameters. Sections IV and V cover the test
procedures and achieved results for measurements
performed on single-user and multi-user virtual reality
applications. A discussion and conclusions are presented in
section VI.

II. RELATED WORK

Previous research on NVR communication requirements

includes a comprehensive overview of communication
architectures, protocols, and mechanisms [17]. Managing
dynamic shared state and resource management have been
considered as key issues for achieving scalability and
performance.

In [8], bandwidth, latency, distribution schemes, and
reliability are identified as critical when addressing
network QoS for large scale and distributed virtual
environments (VE). VEs supporting collaborative
experiences among users, termed collaborative virtual
environments (CVE), in general require high bandwidth
and low latency in order to maintain natural interactions.
The effects of latency and jitter on human performance
were measured in [13], with multiple users cooperating on
a teleoperation task in a CVE. Another example may be
found in [6], where the effects of latency and jitter have
been tested on haptic force feedback display in the
teleoperation of a distant microscope. When considering a
virtual environment with integrated multimedia
components, the quality of the VE depends largely on the
quality of the synchronization between media components.
Some experimental values describing human perception of
media synchronization in terms of delay and jitter can be
found in [20].

3GPP standards define 4 different QoS classes based on
delay tolerance [2]:

• Conversational (real-time) class
• Streaming class
• Interactive class
• Background class

Key performance parameters and target values have been
outlined for each QoS class in [1]. The parameter values
are commonly accepted values from an end-user viewpoint
as proposed in [4]. An example of the end user QoS
requirements for the conversational class is given in Table
I (taken from [1]).

Table I. End-User Performance Expectations –
Conversational/Real-Time Services.

Medium Application Degree of

symmetry
Data rate

End-to-end
one way
delay

Delay
variation
within a call

Information
Loss

Audio Conversational
voice Two-way 4-25 kb/s

<150 ms
preferred
<400 ms limit

<1 ms <3% FER

Video Videophone Two-way 32-384 kb/s

<150 ms
preferred
<400 ms limit
Lip-Synch:
<100 ms

<1% FER

Data
Telemetry
-two way
control

Two-way <28.8 kb/s <250 ms N.A. Zero

Data Interactive
games Two-way <1 KB <250 ms N.A. Zero

Data Telnet Two-way
(asymmetric) <1 KB <250 ms N.A. Zero

Key performance parameters
and target values

Due to the fact that no clear description is provided of
the QoS requirements of NVR services, our goal was to
address this area. Performance measurements have been
conducted for different NVR services to determine the
effects of various network QoS values on end-user
perceived quality.

III. TESTBED CONFIGURATION

In our testbed, we used a NIST Net software emulator [3]

to test the behavior of each prototype application under
various network conditions.

The NIST Net network emulator tool, implemented as a
kernel module extension to Linux, was installed and used
to emulate numerous network conditions. Performance
scenarios which can be emulated include bandwidth
limitations, tunable delay distributions, congestion and
background loss, and packet reordering/duplication. NIST
Net offers a command line interface which allows the user
to define desired performance parameters for a selected IP
traffic stream passing through the router. It was thus
possible emulate various network conditions.

Maximum bandwidth in the testbed configuration
corresponds to 10 Mbits/s. In addition, delay was measured
to be < 1ms and packet loss 0%. By using NIST Net
desired values for these parameters could be set.

The testbed configuration used to perform
measurements is shown in Figure 1. The following
hardware and software has been used:
• PC 1: Pentium IV (1.6 GHz, 512 MB RAM) with

Linux 2.4.17 (RedHat 7.2) OS. Additional software:
NIST Net network emulation package version 2.0.10.

• PC 2: Pentium III (750 MHz, 256 MB RAM) with
Windows 2000 Professional OS. Additional software:
Cortona 3.0 VRML plug-in; Blaxxun Contact multi-
user 3D plug-in; Java Media Framework 2.1.1. Beta 3;
SteadyHand 1.0 Dynapel Systems Inc. (for analyzing
video frames).

• PC 3: Pentium III (750 MHz, 256 MB RAM) with
Windows 2000 Professional OS. Additional software:
Cortona 3.0 VRML plug-in; Blaxxun Contact multi-
user 3D plug-in; Java Media Framework 2.1.1. Beta 3;
Apache httpd Server v.1.2.17; Savant Web Server;
Alicebot.net Server 4.0 (Demy).

Switch Hub

ATM Switch

HUB Repeater

PC 5
(measurements)

PC 4
(measurements)

WS 1
(WWW server)

Micro HUB
Repeater

PC 6
(router)

10 Mbit/s Ethernet
LAN

PC 2

PC 3

PC 1
(router)

Figure 1. Testbed Configuration.

• PC 4: Pentium I (133 MHz, 64 MB RAM) with Linux

2.4.0 (Debian) OS. Additional software: Ethereal
(network protocol analyzer) version 0.8.16.

• PC 5: Pentium III (600 MHz, 256 MB RAM) with
Windows 2000 Professional OS. Additional software:
Cool Edit 2000 (for audio recording).

• PC 6: Pentium II (200 MHz, 96 MB RAM) with
Linux 2.4.0 (Debian) OS.

• WS 1: Sun Sparc Ultra 5, Sparc v9 (270 MHz, 256
MB RAM) with Solaris 8 OS. Additional software:
Blaxxun Virtual Worlds Platform 5.1.

IV. SINGLE USER VIRTUAL ENVIRONMENTS

In the case of single user VEs, we are looking only at

interactions between the user and the environment, rather
than interactions between multiple users. The VE can be
downloaded from the Internet or locally resident. In this
case we are concerned with the network QoS requirements
for VEs on the Internet. One of the key issues is the time
necessary for scene download. The question concerning
the end user is how long of a wait may be considered
acceptable. User interactions with a VE may require
additional network traffic, such as requesting one way
audio/video streaming, or additional file download. For
example, if a virtual world consists of a number of virtual
spaces that are not all initially downloaded, user navigation
from one space to another causes additional download and
deterioration of navigation quality [12]. In this paper, we
address two different test cases involving single user VEs.

A. Test Procedure

In the first case, a user accesses a virtual gallery of

mobile phones from a WWW server and then freely
navigates through the gallery. In the second case, we look
at an example conversational virtual character designed for
the Web that is capable of having a meaningful
conversation with a user who types in the input [19]. The
key parameter influencing performance is the time to
answer (TTA), or the time that the user must wait for a
response.

In both cases, measurements were performed with PC 2
acting as a WWW client and PC 3 as a WWW server. All

traffic was routed over PC 1 (running NIST Net) in order
to control network parameters.

Traffic capture was performed on PC 4 using Ethereal
version 0.8.16 [5]. Ethereal is a network protocol analyzer
that enabled us to capture, filter, and analyze network
traffic. Measurements were conducted according to the
following steps:
• Start NIST Net on PC 1 and set desired network

parameters for all traffic being routed from PC 2 to PC
3 and vice versa.

• Restart IE browser on PC 2, clear the memory cache
and the disk cache.

• Start Ethereal capture on PC 4.
• Generate network traffic (click to download, or in the

case of the conversational character, send text input
and wait for response).

• Stop Ethereal capture.
Download time and TTA were measured from the time

that the initial request was sent from PC 2 up until the last
packet containing data from PC 3 arrived at PC 2.

B. Results and Analysis

1) Virtual Gallery

Virtual Gallery, shown in Figure 3, is an example of a
single user virtual environment containing a number of
virtual models of Ericsson mobile phones. A user can
access this gallery from a WWW server, in which case the
gallery is downloaded and the user is then free to navigate
through the gallery. The user must have a VRML plug-in
installed (i.e. Cortona). In this case, the only network
traffic being generated is during download. Due to the fact
that traffic was sent using TCP, it was expected that
network delays and packet loss would have a direct effect
on throughput due to TCP’s congestion control
mechanism. The total file size (including all wrl files and
texture files) corresponding to the Virtual Gallery is 1,517
Mbytes. Measurements were conducted under various
emulated network conditions. The results are shown in
Table II.

Values for maximum bandwidth, delay and packet loss
indicated in the table were set for both traffic being routed
from client to server and from server to client. Therefore, a
delay of 50 ms as shown in the table corresponds to 100
ms RTT (assuming symmetric delays).

Figure 3. Virtual Gallery

Table II. Measurements of download time for Virtual Gallery

Max.
Bandwidth

Delay
[ms]

Packet Loss
[%]

Average
Download
Time [s]

Download Time [s]
with 95 % confidence
level

10 Mbit/s 0 0 3,644 3,644 ± 0,134

10 Mbit/s 50 0 14,429 14,429 ± 0,955

10 Mbit/s 50 1 20,391 20,391 ± 0,920

10 Mbit/s 50 2 26,757 26,757 ± 2,412

375 kbit/s 0 0 34,029 34,029 ± 1,879

375 kbit/s 100 0 37,677 37,677 ± 0,868

Average download time in each case was calculated
based on five repeated tests. Download time within a
confidence interval of 95% was calculated based on
Student’s t distribution. The results show a clear increase
in download time caused by an increase in delay and
packet loss. This was expected due to TCP’s congestion
control mechanism, where the transmission rate of the TCP
sender is determined by the level of congestion in the
network. The modeling of TCP’s steady state throughput
as a function of loss rate and round trip time (RTT) can be
found in [14]. We also see an increase in delay variation
due to packet loss (greater range of values fitting into the
95 % confidence interval).

The main question in this case concerning the end user
is how long the user is willing to wait for download. If we
assume up to 30 s to be an acceptable download time, we
can see that at 375 kbit/s (an example UMTS data rate in a
suburban area) download time is already greater than 30
seconds. It is possible to then conclude that a decrease in
data rate or an increase in delay would result in
unacceptable waiting time.

 2) Demy: A Conversational Virtual Character
Demy is an example of a conversational virtual

character on the Internet. The user downloads a web page
(using current versions of Netscape or IE) containing a
Java applet displaying the animated VRML character
(Demy) and a text box (Figure 4). The virtual character is
rendered using Shout 3D technology (written in Java), thus
eliminating the need for any extra plug-ins or downloads.

When the user types English text in the text box, Demy
replies by talking. The artificial intelligence of the virtual
character is based on the latest Java implementation of
ALICE [19]. The answers are based on the "knowledge"
which is contained in an AIML (Artificial Intelligence
Markup Language) file. This file contains answers to
known questions and rules for interpreting users' inputs
and providing answers. The animated virtual character
(Java applet) can be controlled by JavaScript and
instructed to talk. The speech is stored on the standard
HTTP server in the form of audio (.au) files and MPEG-4
lip synchronization files (.fba). These files are streamed
on-the-fly when speech is requested. Details on the system
architecture of this application can be found in [19].

The applet size is 223 Kbytes (Shout 3D rendering
engine is 187 Kbytes, and the facial animation player
implementation is 36 Kbytes) and the facial model size is
32 Kbytes.

Figure 4. Demy: conversational virtual character

Measurements were performed to determine the time
necessary for the virtual character to respond to a question
asked by the user (TTA). This involved the generation and
download of an .au file and an .fba file. Measurements of
TTA where tests were performed in a best effort Internet
environment can be found in [19]. Our goal was to perform
these measurements in an emulated network environment
where we could control network parameters. We measured
the TTA for two different responses: ”I ask myself that
question, who am I ?” (in answer to user input: “Who are
you?”) and “Hi there!” (in answer to user input: “Hello”).
TTA is defined as the time from when the user presses
SEND until the moment when Demy starts to talk. Results
are shown in Table IV. An increase in the size of the
response corresponds to an increase in TTA.

The user perceived quality of virtual characters on the
Internet depends largely on the purpose of the application,
whether it be entertainment, commerce, education, or
personal communications. The issue is to determine the
requirements of the application in order for it to be
functional and attractive. In the case of Demy, where we
have a conversational virtual character, long response

Table IV. Measurements of TTA for Demy

Max.
Bandwidth

Delay
[ms]

Packet
Loss [%]

Average
Response
Time[s]

TTA [s] with 95%
confidence level

375 kbit/s 0 0 4,724 4,724 ± 0,032

46,875 kbit/s 150 0 9,150 9,150 ± 0,048

375 kbit/s 0 0 10,093 10,093 ± 0,165

46,875 kbit/s 150 0 13,009 13,009 ± 0,228

Response: "Hi there! "
(.fba file size = 7,33 KB, .au file size = 68 B

Response: "I ask myself that question, who am I ? "
(.fba file size = 23,4 KB, .au file size = 159 B)

delays during the chat reduce the user feeling of ”real-
time” interactivity. For practical implementation of this
prototype, we feel that better results are necessary than
those shown in Table IV. A TTA within the range of 1-2 s
may be considered acceptable.

V. MULTI-USER VIRTUAL ENVIRONMENTS

In multi-user VEs, multiple users from geographically

distributed locations can communicate, collaborate or
interact with each other and the environment. Such
services often require large bandwidth and low latency. In
order to consider some of the requirements of such

services, measurements were performed on two
applications. The first is a real-time virtual audio chat
between multiple users where we address audio-streaming
as one of the key communication capabilities used in VEs.
In the second case we look at a shared virtual community
built upon Blaxxun’s Virtual Worlds Platform where
multiple users can meet and interact.

A. Virtual Audio Chat

Virtual Audio Chat (VAC) is an application that enables
real-time audio communication over the Internet between a
multiple number of users [11]. The user interface includes
a VRML model of a mobile phone (Figure 5). By way of
user interactions implemented in VRML, a user can enter
onto the phone the IP address and port number of another
user (or a multicast address/port for a group session) with
whom he wishes to communicate. A Java applet (using the
Java Media Framework JMF RTP API) then opens an RTP
based audio streaming session using the entered address
and port, and waits for the other user to join in an
analogous manner.

Figure 5. VRML model of mobile phone.

The network traffic corresponding to this application
includes TCP traffic during initial download, and
afterwards a continuous RTP stream for the duration of the
audio chat. An audio chat was started between two users
and measurements of bandwidth, delay, jitter, and packet
loss during RTP streaming were performed to determine
their effect on user perceived quality.

1) Test Procedure
The VRML mobile phone model was downloaded from

WS 1 onto PC 2 and PC 3 acting as WWW users. Each
user then entered the IP address of the other user in order
to initiate the audio chat. All traffic was routed over PC 1.

In general, delay and packet loss are the key factors
determining the QoS of real-time multimedia applications.
Components comprising total end-to-end delay, as outlined
in [7], include network delay (transmission, propagation,
and queuing delay), operating system delay at the sender or
receiver, hardware input/output delay, possible look ahead
delay, and application delay (introduced by the receiver to
compensate for jitter). Due to the fact that all of these
components together affect user perceived quality,
measurements were conducted to determine overall end-to-
end delay. We define T1 as the moment when the sender
(user 1) speaks, and T2 as the moment when that sound
reaches user 2’s output device (speaker). We define end-to-
end delay as T2-T1. T1 and T2 were determined by using

COOL EDIT 2000 software for recording audio.
Measurements of jitter were performed in conjunction

with the RTP [16] definition of jitter that defines
interarrival jitter as the mean deviation (smoothed absolute
value) of the difference D in packet spacing at the receiver
compared to the sender for a pair of packets.

2) Results and Analysis
Initial measurements were performed without the use of

NIST Net to determine end-to-end delay and interarrival
jitter. Measurements were repeated 20 times and an end-to-
end delay of 532,35 ± 8,905 ms and interarrival jitter of
3,466 ± 0,203 ms were determined. Due to the fact that
delay in our LAN is < 1 ms, we conclude that the measured
end-to-end delay and jitter are a result of OS delay,
hardware input/output delay, and application delay. Audio
is captured from a live source (using a microphone) and
then passed on for further processing (filtering,
compression, format conversion). After passing through
the network and reaching the receiver, data once again
needs to be manipulated before being presented to the user.
In our case, an ADPCM codec is used with dvi audio
format. A playout buffer size was set to 250 (in ms)
throughout all tests. This means that 250 ms of audio data
is buffered prior to being passed on for further processing.

The next step was to use NIST Net to increase delay to
see the effect that this would have on conversational
quality as perceived by the user. Figure 6 shows how
measured end-to-end delay increased with an increase in
network delay. Values for jitter remained the same as in
the initial test without NIST Net.

We found that up to 300 ms network delay in both
directions was noticeable, but conversation was possible
without greater difficulty. In our opinion, 400 ms network
delay (≈ 920 ms end-to-end) was the border of acceptable
quality. Once again, buffer size was set to 250 ms.

0

100

200

300

400

500

600

700

800

900

1000

50 100 150 200 300 400

Set one way network delay [ms] (using NIST Net)

En
d-

to
-e

nd
 d

el
ay

 [m
s]

Figure 6. Measured end-to-end delay for VAC.

In order to test the effect of jitter, we set the NIST Net

delay standard deviation parameter (delsigma) to values as
shown in Figure 7 to achieve an increase in measured
interarrival jitter.

Up until a set deviation of 15 (average measured jitter
11,48 ms) there was no degradation detected. At a set
deviation of 20 (average measured jitter 14,3 ms) jitter
became noticeable, but users had no problem
understanding each other. A set deviation of 35 (average
measured jitter 17,5 ms) resulted in increased degradation,
but speech was still understandable. At a set deviation of
50 (average measured jitter 19,0 ms) jitter was highly
noticeable and conversation required attention. At 75

(average measured jitter 20,0 ms) users needed
considerable effort to understand each other, and quality
was no longer acceptable. Therefore, we consider a value
of 19,0 ms as the border of acceptable quality.

0

5

10

15

20

25

5 10 15 20 25 35 50 75

Set delay deviation using NIST Net [ms]

M
ea

su
re

d
in

te
ra

rr
iv

al
 ji

tte
r [

m
s]

Figure 7. Measured interarrival jitter for VAC.

In order to determine the bandwidth limitations of our

application, maximum bandwidth was limited to see at
which point packet loss would start to occur (due to limited
queue size at the router) and what kind of effect this would
have on delay and user perceived quality. Queue size was
set using NIST Net by defining minimum and maximum
derivative random drop parameters (in number of packets).
No packets are dropped if the queue length is under the
specified minimum (50), and 95% dropped if queue length
is greater than the specified maximum (80). Results
showed that 4800 bytes/s was the minimum bandwidth
required to achieve acceptable quality. At a bandwidth less
than 4800 bytes/s, the router queue begins to fill up,
causing great increases in delay and packet loss. This
results in unacceptable speech quality and the inability to
lead a normal conversation.

C. Blaxxun Multi-User Community

The application used for test purposes is a shared virtual
environment built upon Blaxxun’s Virtual Worlds Platform
that allows multiple users (community members) to meet
and interact. A client server architecture is used to
distribute information among community members
whenever they need updates automatically and in real time
using the UDP protocol. This is necessary for cases such as
chat, avatar motion, and shared events/objects. In multi-
user interactive virtual environments, all changes resulting
from a user’s actions need to be made visible to other
user’s in a consistent manner in order to achieve ”real-
time” interactivity. Delay is therefore the key factor
determining user perceived quality. Our tests involved
measuring the end-to-end delay between two users,
represented by 3D avatars, interacting in the shared
community. The goal was to determine the maximum
allowed delay in order to maintain acceptable user
perceived quality of real-time interactivity. After initial
download, network traffic corresponds to dynamic sending
of updates depending on the degree of user interactivity.

1) Test Procedure
The Blaxxun Virtual Worlds Platform was installed on

WS 1. Two users on PC 2 and PC 3 joined the community
by downloading the world description from WS 1. All
traffic was routed over PC 1.

End-to-end delay was measured from the moment when
one user clicked on the keyboard to trigger a waving

Max. bandwidth = 10 Mbit/s
Packet loss = 0 %

Max. bandwidth = 10 Mbit/s
Packet loss = 0 %
Fixed network delay = 200 ms

gesture until that gesture was made visible on the other
user’s screen (Figure 9). In the case of an avatar gesture,
only packets carrying information necessary to trigger the
accompanying action are sent. Due to such low bandwidth
utilization, after initial download there was no need to test
bandwidth limitations, rather delay proved to be the key
factor influencing quality.

Measurements were conducted by using a camera
(Video Blaster WebCam 3 USB) to record the moment
when one user clicked to trigger a waving action and the
moment when that action was made visible on the other
user’s screen. The recording frame rate was 30 frames/s.
The software used for analyzing video frames was
SteadyHand 1.0 (http://steadyhand.dynapel.com).

Figure 9. Avatar waving gesture in Blaxxun community

2) Results and Analysis
Initial measurements were performed without the use of

NIST Net to determine end-to-end delay. Measurements
were repeated 20 times and the end-to-end delay with a
95% confidence level was measured to be 201,15 ± 19,721
ms. Due to the fact that LAN delay is < 1 ms, this delay
corresponds to processing delay at the server and rendering
at the end user. It is also important to take into account
measurement errors due to a maximum frame rate of 30
frames/s while recording (33,33 ms between frames).

The next step was to use NIST Net to increase network
delay to see the effect that this would have on perceived
quality. We found that delay up to 300 ms in each direction
remained practically unnoticed by the users, who reported
a feeling of real-time interactivity. At 400 ms delay in each
direction, delay became more noticeable. Specific values
of acceptable delay for interactive VR applications depend
on the nature of the application. It is clear that in this
particular scenario, involving only user communication
through gestures, delay is more tolerable than in multi-user
interactive games [18] or military simulations [15].

VI. DISCUSSION AND CONCLUSIONS

Achieved test results serve to provide some empirical
data on the QoS requirements of different types of NVR
services. In the case of downloading a single user VE from
the Web, we are looking at a type of service comparable to
classical web browsing. However, VE services designed
for specific purposes such as a conversational virtual
character pose stricter requirements on the underlying
network. In the case of multi-user NVR services,
requirements are characterized by unpredictable traffic
flows due to dynamic user interactions. We can see this

example in various network games, simulations, or CVEs.
Further work in this area will include additional tests

involving a greater number of heterogeneous NVR services
for the purpose of modeling such services with respect to
standardized QoS classes as defined by 3GPP.

ACKNOWLEDGEMENTS

This research was partially funded by Ericsson Nikola
Tesla under project R00101 "Networked Virtual Reality".

REFERENCES

[1] 3G TS 22.105: Services and Service Capabilities (Release 5),
2001-10.

[2] 3GPP TS 23.107: QoS Concept and Architecture (Release 5),
2002-01.

[3] NIST Net, http://snad.ncsl.nist.gov/itg/nistnet/
[4] ITU-T Recommendation F.700: A framework recom-

mendation for audio-visual/multimedia services., Nov. 2000
[5] --, Ethereal protocol analyzer, http://www.ethereal.com
[6] K. Jeffay, T. Hudson, M. Parris. Beyond Audio and Video:

Multimedia support for Distributed Immersive Virtual
Environments. Euromicro, September 2001.

[7] W. Jiange, H. Schulzrinne. QoS Measurements of Internet
Real-Time Multimedia Services. Technical Report CUCS-
015-99, Columbia University, New York, Dec 1999.

[8] M.R. Macedonia, M.J. Zyda. A Taxonomy for Networked
Virtual Environments. IEEE Multimedia, Vol. 4, No. 1, pp.
48-56, Jan.-Mar. 1997.

[9] M Matijasevic, I. Lovrek, D. Mikić, A Carić, D. Huljenić,
Designing Bandwidth-Aware Virtual Reality Services for the
New Generation Networks, Proc. 9th Int’l. Conf. on Telecom.
Syst., Modeling and Analysis, pp. 84-89, Dallas, TX, 2001

[10] M. Matijasevic, D. Gracanin, K. P. Valavanis, I. Lovrek.
Interconnection model for networked virtual reality
applications. Proc. 24th LCN, pp. 52–61, Lowell, MA, 1999.

[11] M. Matijašević, L. Skorin-Kapov. Design and Evaluation of
a Virtual Audio Chat. Accepted at TERENA Networking
Conference, Limerick Ireland, June 2002.

[12] S. Oh, D. Kado, K. Fujikawa, T. Matsuura, S. Shimojo, M.
Arikawa. QoS mapping for Networked Virtual Reality
System. Proc. SPIE Conf. on Performance and Control of
Network Systems, pages 18-26, Nov. 1997. Dallas, USA.

[13] K.S. Park, R.V. Kenyon. Effects of Network Characteristics
on Human Performance in a Collaborative Virtual
Environment. Proc. IEEE VR `99, Houston, TX, March 1999.

[14] J. Padhye, V. Firoiu, D.Towsley, J. Kurose. Modeling TCP
Throughput: A Simple Model and its Empirical Validation.
Proceedings of the ACM SIGCOMM ’98 conference on
Applications, Technologies, Architectures, and Protocols for
Computer Communication, 1998.

[15] J. Pullen, D. Wood. Networking Technology and DIS.
Proceedings of the IEEE, 83(8), August 1995.

[16] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson. RTP:
A Transport Protocol for Real-Time Applications. RFC 1889,
Internet Engineering Task Force, January 1996.

[17] S. Singhal, M. Zyda. Networked Virtual Environments:
Design and Implementation, ACM Press Siggraph
Series and Addison-Wesley, New York, NY, 1999.

[18] J. Smed, T. Kaukoranta, H. Hakonen. Aspects of
Networking in Multiplayer Computer Games. Proc. Int’l
Conf. on Application And Development of Computer Games
in the 21st Century, 2001.

[19] K. Smid, I.S. Pandzic. A Conversational Virtual Character
for the Web. Accepted at Computer Animation 2002.

[20] R. Steinmetz. Human Perception of Jitter and Media
Synchronization. IEEE Journal on Selected Areas in
Communications, Vol. 14, No. 1, pp. 61-72, 1996.

