
3D Visualization of Data on Mobile Devices

Miran Mošmondor, Hrvoje Komerički and Igor S. Pandžić
Department of Telecommunications

Faculty of Electrical Engineering and Computing
University of Zagreb

Unska 3, HR-10000 Zagreb, Croatia
{miran.mosmondor, hrvoje.komericki, igor.pandzic}@fer.hr

Abstract — This paper discusses current status and recent
advancements of 3D graphics on mobile platforms and
describes an application that is used for 3D visualization of
data on such platforms. The implementation of a 3D
visualization renderer on the Symbian platform for mobile
devices is written as a C++ application and based on the
DieselEngine as a rendering engine. 3D visualization of data
is generated in the form of a VRML (Virtual Reality
Modelling Language) file so this application can also be
considered as a VRML browser. This means that actually
any kind of 3D content written in VRML file format can be
rendered on such a device. The implementation was tested
on the Sony Ericsson P800 mobile device. It was the result of
a project whose main objective was to provide a user
interface on a mobile platform displaying visualization of
hierarchical Grid monitoring data.

I. INTRODUCTION

A. 3D visualization of data
There are many ways in which to display data on a

computer. Most often grids, forms, printed reports or
charts are used. Quite new is a possibility to display data
in three-dimensional space – as a 3D scene. Applications
that visualize data in 3D are very useful analytical tools.
They provide a wide view of a database and an interactive
task of work. Unique views of data are available with 3D
and VRML specification [3] features. 3D visualization of
data has application in medicine, biology, physics,
engineering, networking etc, and offers fascinating new
opportunities in those areas.

Visualizing technical data in a 3D type environment can
be beneficial to interpretation and in the discovery of new
data relationships not easily apparent just from two-
dimensional visualizations. Recent improvement of
graphic workstations allows the frequent use of 3D
visualization of information. 3D visualization has a great
advantage of treating complex information as well as a
large amount of data. State-of-the-art visualization
techniques allow you to gain detailed insight into data.
Graphics hardware support is utilized to display even very
large data sets at interactive speed.

Our work concentrates on providing a user interface
based on 3D graphics on a mobile platform. The
developed application is designed for the Sony Ericsson
P800 mobile device, and was in this particular
implementation used to visualize Grid network monitoring
data. Input for the application was provided by the
MonALISA system [16], a distributed monitoring system
used in this case to monitor AliEn Grid sites
(http://alien.cern.ch/). Cone Trees [18] were used to create
an appealing interactive 3D visualization for hierarchical

data structure. The first prototype was implemented on
desktop computers and an IPAQ PDA. It uses Shout3D
technology to produce applet that runs on Java Virtual
Machine of host device and generates 3D visualization
from WRL file. In this way no plug-in is required. WRL is
basically an enhanced VRML file. However, this
technology is not possible on mobile devices because Java
Virtual Machine on mobile platforms is not yet able to
efficiently render this kind of contents.

B. 3D graphics on mobile platforms
The last few years have seen dramatic improvements in

how much computation and communication power can be
packed into such a small device. Despite the big
improvements, the mobile terminals are still clearly less
capable than desktop computers in many ways. They run
at a lower speed, the displays are smaller in size and have
a lower resolution, there is less memory for running the
programs and for storing them, and you can use the device
for a shorter time because the battery will eventually run
out.

Rendering 3D graphics on handheld devices is still a
very complex task, because of the vast computational
power required to achieve a usable performance. With the
introduction of color displays and more powerful
processors, mobile phones are becoming capable of
rendering 3D graphics at interactive frame rates.

First attempts to implement 3D graphics accelerators on
mobile phones have already been made. Mitsubishi
Electric Corp. [11] announced their first 3D graphics LSI
core for mobile phones called Z3D in March 2003. Also
other manufacturers like Fuetrek [12], Sanshin Electric
[13], Imagination Technologies [14] and ATI [15]
published their 3D hardware solution for mobile devices a
few months after.

Mobile terminals are already in many ways a match or
even superiors to today’s 3D gaming consoles. For
example, in Figure 1 benchmark comparison of ARM's
graphics acceleration solutions is shown. ARM’s
acceleration solutions are based around Imagination
Technologies' PowerVR MBX cores.

Figure 1. MBX benchmark comparison

Igor Sebo
0-7803-8271-4/04/$20.00 ©2004 IEEE 645

Igor Sebo
IEEE MELECON 2004, May 12-15, 2004, Dubrovnik, Croatia

We can see that performance of an ARM10 or ARM11
procesors with MBX HR-S clocked at or near its
maximum clock rate is close to the Dreamcast and
PlayStation2.

Beside hardware solutions, other important thing for 3D
graphics on mobile devices is availability of open-
standard, well-performing programming interfaces (APIs)
that are supported by handset manufacturers, operators
and developers alike. When we started working on this
project no implementation of standard 3D APIs for mobile
platforms were available. The reason is that OpenGL ES
(OpenGL for Embedded Systems) [5] was published only
recently and Mobile 3D API for J2ME (Java 2 Micro
Edition) [6] is yet in final stage of standardization.

Sony Ericsson P800 [10] mobile device does not have
any kind of hardware support for 3D graphics, but it is
powerful enough to render 3D content without it. The idea
was to build an application that will be able to produce 3D
content based on WRL files. In this way maximum
flexibility is enabled because application uses the same
WRL file that is used to produce 3D visualization of data
on desktop computers using Shout3D technology as
mentioned before. So if there is a change in structure of
3D visualization of data only the module that produces
WRL files has to be changed.

The first thing that had to be implemented was a WRL
parser. To render 3D content on the P800 mobile device,
the DieselEngine [7] was used. However, DieselEngine
has low-level API and, among other things, the module for
interaction with 3D objects also had to be implemented.
This interaction regards navigation and selecting objects
in the scene.

II. REQUIRED TOOLS
For developing a C++ application with DieselEngine on

P800 mobile device the following SDKs (Software
Development Kits) and tools were needed:

• Symbian UIQ v7.0 SDK [8]
• Metrowerks CodeWarrior for Symbian OS [9]
• DieselEngine SDK version 1.30 or higher
• P800 Connectivity tools

Symbian UIQ v7.0 SDK enables developers to write
applications in C++ and/or Java. The SDK comprises
development tools including the UIQ Emulator, selected
source code, programming examples, documentation and
other system components. The SDK enables application
development for any UIQ based device. Programs are
initially developed and then debugged on the UIQ
Emulator (hosted on a Windows-based PC), and then
rebuilt for a native platform and uploaded to a UIQ-based
device. The SDK also includes deployment tools which
allow developers to package applications for convenient
delivery to end-users.

To run UIQ SDK for Symbian OS v7.0 Metrowerks
CodeWarrior for Symbian OS is needed. The
CodeWarrior IDE provides a set of tools for developing
computer software. Using the IDE, program, plug-in,
library, or other executable code can be developed to run
on a wide variety of computer systems using different
programming languages. The CodeWarrior IDE includes
compilers, linkers, a source-code browser, a debugger, an
editor, and a rapid application development tool set.

DieselEngine is software support for creating 3D
applications on various platforms. It is a collection of C++
libraries that helps build applications with 3D content on
mobile devices. However, DieselEngine has a low-level
API (Application Program Interface) so high level
modules had to be implemented.

III. IMPLEMENTATION
To dynamically generate 3D visualization of data on the

P800 mobile device, a C++ application needed to be built.
This application will be able to produce 3D content
reading it from a WRL file. A module that generates the
WRL file is already implemented for solution with
Shout3D on desktop computers. The system architecture
is shown in Figure 2.

Figure 2. Use case diagram of solution

Main task of WRL parser is to convert 3D content from
WRL file to Diesel3D scene format. In this way WRL
parser is a bridge between high-level interface of WRL
format and low level DieselEngine API. WRL parser is
being summoned on the initialization of Diesel
application.

The user interface enables input and output operations
with the application. It consists of a button for exit, button
for selecting navigation type, info panel and 3D
visualization itself. It uses module for interaction to
navigate and select objects in scene.

The module for interaction implements navigation and
manipulation with the camera and enables selecting
objects in the scene. There are three basic types of
navigation: rolling, moving and zooming.

In the next chapter each of these modules is explained
in detail.

A. Wrl Parser
The WRL parser is the most important part of

application. It is the bridge between high-level interface of
WRL format and low level DieselEngine API. Its main
task is to covert 3D content from WRL file to Diesel3D
scene format.

Building a complete WRL parser is a long process.
However, for 3D visualization of data complete parser is
not needed. We have implemented parser that enables
rendering simple 3D content from WRL or VRML file.
Beside support for primitive objects like box, sphere,
cylinder and cone it has support for arbitrary shapes that
are defined with IndexedFaceSet nodes. In addition, it is
also capable of applying textures from jpg, bmp or gif file

Igor Sebo
 646

format. Even simple animation is enabled using
CoordinateInterpolator and OrientationInterpolator
nodes. Detailed list of supported nodes and fields is given
bellow.

• root nodes: Transform (center, children,
hidden, rotation, scale, translation), Group
(children)

• children nodes: Background (skyColor), Shape
(appearance, geometry), TouchSensor
(enabled), Viewpoint (fieldOfView,
orientation, position)

• other: Appearance (material, texture,
textureTransform), Box (size), Cone
(bottomRadius, height, side, bottom),
Coordinate (point), Cylinder (bottom, height,
radius, side, top), IndexedFaceSet (coord,
coordIndex, texCoord, texCoordIndex, color,
normal), Material (ambientIntensity,
diffuseColor, emissiveColor, shininess,
specularColor, transparency), Sphere (radius),
Toggle (route), CoordinateInterpolator (key,
keyValue), OrientationInterpolator (key,
keyValue)

B. User Interface
The user interface enables input and output operations

with the application. It consists of a button for exit, button
for selecting navigation type, info panel and 3D
visualization itself. (Figure 3)

Figure 3. User interface

The user interface uses an interaction module for
determining camera position and object selection.

C. Interaction

The module for interaction implements navigation and
manipulation with the camera and enables selecting
objects in the scene.

1) Navigation
For manipulation with the camera, basic matrix

transforms were used. Using and combining these
matrices navigation types roll, move and zoom were
implemented (Figure 4).

Roll is a navigation type that rotates objects around x-
and y-axis in a camera coordinate system. In this way a
centre of a rotation is the centre of a camera coordinate
system. However, position of an object does not have to
be in a centre of a camera coordinate system, or size of the
object can be changed. For example, when we pick a

sensor another level of data is displayed. So, every time
this happens, a new centre of rotation is being calculated
and the translation is used to properly align a centre of
rotation.

Move and zoom are navigation types that basically
translate objects parallel to x-, y- and z-axis of a camera
coordinate system.

Figure 4. Navigation types: zoom, move, and roll

2) Picking
Picking or selecting objects in 3D scene with a device

pointer is not as easy as it seems at first glance. There are
several ways of selecting objects like ray casting, color
coding, name lists etc [1]. We used a rendering method.
Each of these methods test some kind of intersection with
3D objects. DieselEngine does not have any function for
testing intersections so that has to be done manually.

In the rendering method each 3D object, or to be
precise, every triangle of its face mesh is transformed into
screen coordinates. So, intersection is tested in a 2D
coordinate system. Testing intersection with each triangle
of the object is time-consuming and to speed things up
bounding volumes were used. In this case we used a
bounding sphere. Instead of testing intersection with a
couple of dozen triangles for each object, intersection is
tested with the one bounding sphere what is very simple to
implement using a rendering method. However, the
bounding sphere formation itself is not as clear-cut
because its centre and radius have to be determined in
such a way that with minimum radius all vertices are
inside of the bounding sphere. For primitive objects like
sphere, box, cone or cylinder this is simple to determine.
(Figure 5)

Figure 5. Approximation of primitive objects with sphere when testing

intersection

For other complex objects or face meshes there are a
number of algorithms that perform this task, and these
have speed versus quality tradeoffs. We used the Ritter’s
algorithm [2] that creates a near-optimal bounding sphere.
If there is a multiple intersection, a value in Z-buffer is
compared and the nearest is selected.

Igor Sebo
 647

IV. CASE STUDY
We tried to provide a user interface on a mobile

platform displaying visualization of hierarchical Grid
monitoring data on the P800 mobile device. What is Grid
is best presented in the next sentence: “Grid is a type of
parallel and distributed system that enables the sharing,
selection, and aggregation of geographically distributed
"autonomous" resources dynamically at runtime
depending on their availability, capability, performance,
cost, and users' quality-of-service requirements.” [20].

Grid monitoring data is visualized using the 3D Cone
Tree technique [19]. Cone Tree is an interactive
visualization technique suitable for hierarchical structures.
The user interface is enhanced by enabling interactive
viewing, zooming, expanding and collapsing of parts of
the structure. A formal user study using a cone-tree-based
file system visualization showed that although Cone Trees
are not suitable for all tasks, users “were enthusiastic
about the cone tree visualization and felt it provided a
better ‘feel’ for the structure of the information
space”[18]. The root of the network hierarchy is located at
the tip of a transparent cone. When a level in the hierarchy
is expanded (on user click), its children nodes are
distributed at equal distances around the base of a cone as
shown on Figure 6.

Figure 6. Cone tree displayed on P800

A. Results
For testing performances we expand our application

with additional functions. First one measures time
between frames and calculates frames per second (fps)
parameter and the other one calculates and displays the
number of triangles rendered in current frame. For Cone
Tree structure tested on P800 mobile device, results
showed that up to 15 000 triangles per second can be
rendered. Although DieselEngine is 3D polygon-based
renderer, performances don't depend only on the number
of displayed polygons, but also on the number and type of
objects in a scene. For example, we also tested the
application with a face model and results showed up to 16
000 rendered triangles per second. The reason for this is
that the Cone Tree structure consists of up to hundreds of
objects, each with its own material, vertex buffer etc. so
memory requirements are greater.

Nevertheless, with these performances simple 3D scene
from WRL or VRML file can be rendered at acceptable
frame rates.

V. CONCLUSION AND FUTURE WORK
Rendering 3D graphics on handheld devices is still

considered a formidable task. In this paper we presented a
solution for 3D visualization of data on mobile devices
and we showed that interactive frame rates can be
achieved with large amount of displayed data. This
solution can also be considered as a simple VRML
browser so its application is much greater. Work is
ongoing on the development of a facial animation player
as defined in MPEG-4 Face and Body Animation (FBA)
standard [4]. There, a simple VRML browser will be used
to determine static geometry of the head model. Other
applications include product visualization, multimedia
presentations, entertainment and educational titles, and
even shared virtual worlds. We can conclude that 3D
graphics as well as 3D visualization of data will soon be
as common on mobile devices as on desktop computers.

ACKNOWLEDGMENT
This work resulted as a part of FER/ETK Summer

Camp 2003 Workshop.

REFERENCES

[1] T. Akenine-Möller, E. Haines, “Real-Time Rendering”, A K
Peters, Natick, Massachusetts, 2nd ed., 2002.

[2] J. Ritter, “An Efficient Bounding Sphere”, in A. S. Glassner, ed.,
Graphics Gems, Academic Press, pp. 301-303, 1990.

[3] ISO/IEC 14772-1:1997, Virtual Reality Modeling Language
(VRML),
http://www.web3d.org/technicalinfo/specifications/vrml97/

[4] ISO/IEC 14496 - MPEG-4 International Standard, Moving Picture
Experts Group, http://www.cselt.it/mpeg

[5] OpenGL ES Overview, http://www.khronos.org/opengles/
[6] The Java Community Process(SM) Program - JSRs Java

Specification Requests - detail JSR# 184,
www.jcp.org/jsr/detail/184.jsp

[7] Inmar Software Ltd., DieselEngine SDK,
http://www.inmarsoftware.com

[8] Symbian Developer Software Development Kits,
http://www.symbian.com/developer/sdks.asp

[9] Metrowerks Home, http://www.metrowerks.com/mw/default.htm
[10] The Sony Ericsson P800, http://www.sonyericsson.com/P800/
[11] Mitsubishi Electric Corp., http://global.mitsubishielectric.com/
[12] Fuetrek , http://www.fuetrek.co.jp/english/home.html
[13] Sanshin Electric, GSHARK Technology, http://www.gshark.com
[14] Imagination Technologies, PowerVR, http://www.powervr.com/
[15] ATI Technologies Inc., http://www.ati.com/index.html
[16] H. B. Newman, I. C. Legrand, P. Galvez, R. Voicu, and C.

Cirstoiu. MonALISA: A Distributed Monitoring Services
Architecture. In Proceedings of 2003 Conference for Computing in
High Energy NuclearPhysics, La Jolla, California, 8pp, 2003.

[17] OLIVE - On-line Library of Information Visualization
Environments, http://www.otal.umd.edu/Olive/

[18] A. Cockburn, B.McKenzie, An Evaluation of Cone Trees, In
People and Computers XV (Proceedings of the 2000 British
Computer Society Conference on Human-Computer Interaction.)
University of Sunderland, p.p. 425-436. Springer-Verlag, 2000.

[19] G. G. Robertson, J. D. Mackinlay, and S. K. Card, Cone trees:
Animated 3D visualization of hierarchical information. In
Proceedings of the SIGCHI conference on Human factors in
computing systems: Reaching through technology, p.p. 189–184,
ACM Press, New York, USA. 1991.

[20] R. Buyya, “Gridbus Technologies for Service-Oriented Cluster
and Grid Computing”, 2nd IEEE International Conference on
Peer-to-Peer Computing, Linkopings, Sweden, September 2002

Igor Sebo
 648

	Main Menu
	Table of Contents
	Author Index
	Introductory Pages

	Search CD-ROM
	Next Search Result
	Print

