
Modeling and Design of an Adaptive Virtual Reality Service

Dario Mikic1, Danko Vilendecic1, Lea Skorin-Kapov2, Maja Matijasevic1

1FER, University of Zagreb

Unska 3, HR-1000 Zagreb, CROATIA
{dario.mikic, danko.vilendecic,

maja.matijasevic}@fer.hr

2Ericsson Nikola Tesla
Krapinska 45, HR-10000 Zagreb, CROATIA

lea.skorin-kapov@etk.ericsson.se

Abstract

This paper presents a model for an adaptive virtual
reality (VR) service. The service adaptation, as described
by the model, is performed by matching the parameters of
– and possibly transcoding – the VR service in order to
achieve the “best possible quality”, given the limitations
of the terminal and access network, and taking into
account individual user preferences. The matching
process is based on two sets of parameters, called
“profiles”: the VR service profile, which describes the VR
service, and the client capabilities and preferences
profile, which describes the client. Both profiles use
Extensible Markup Language for notation, and are thus
in line with the existing W3C standards. The model is
independent of the particular VR service and network
scenario, and it is suitable for heterogeneous
environments such as the Internet and 3G wireless
networks. A case study involving two prototype VR
services demonstrates the applicability of the proposed
approach.

1. Introduction

The concept of the next generation network [1] is
guided by a vision of a multiservice, multi-access
network of networks, providing a number of advanced
services “anywhere – anytime”. With the ever increasing
demand for new services and applications [2][3], a virtual
reality (VR) service may be considered as a yet another
advanced service, in the area of merging of multimedia
computing and (tele)communication technologies [4]. A
wide range of VR services with tremendous market
potential may be foreseen, ranging from virtual shopping
and entertainment to data visualization, simulation-based
applications, and education/training. Recently, there is a
growing interest in augmented reality (AR) [5]. With
advances in capabilities and varieties of mobile terminals
[6] comes a challenge to provide such services to mobile
users [7][8].

In this work, we are particularly interested in non-
immersive VR delivered over the World Wide Web [9].

Such virtual worlds may be experienced on any
“terminal”, for example, a multimedia desktop PC, a
hand-held/palmtop PC, a multimedia-enhanced mobile
phone, or a personal digital assistant (PDA). Clearly,
these terminals differ in terms of processing, storage and
display capacity, as well as networking capabilities. In
such a heterogeneous environment, the goal of a VR
service provider may not necessarily be to provide “the
best” (meaning, the most expensive) service – which may
be rendered useless by, for example, a lack of display
capability – but to provide the “the best achievable”
service instead. In this scenario, the user gets the best
possible service, given terminal limitations, and the
service provider still profits.

The issue of terminal capabilities is not the only one
source of heterogeneity. When discussing multimedia and
VR services, human factors greatly contribute to the
overall quality of service as perceived by the user. Thus,
when determining the “best possible” service, user
preferences must be taken into account as well.

In this paper, we propose a VR service adaptation
model [10] that addresses adaptation in response to both
terminal heterogeneity and user preferences. The
proposed model represents an extension of a general VR
framework [11] and it builds on existing standards and
techniques for multimedia (trans)coding, compression,
and networking, as well as 3D graphics optimization, in
order to achieve actual service adaptation. It is also
suitable for service architectures for personal mobile
communications [12]. Other work in this area addresses
VR-related protocol enhancements [13], as well as QoS
adaptation of particular VR services [14][15]. As opposed
to these specific approaches, we focus on a more general
method of specifying and matching the sets of VR service
parameters (“profiles”) that adequately describe a VR
service.

This paper is organized as follows. The proposed
service adaptation model is presented in Section 2.
Section 3 describes the implementation of the model, and
Section 4 shows some preliminary results, using two
simple prototype VR services. Section 5 concludes the
paper.

2. Proposed service adaptation model

The purpose of the model is to describe the process of
providing “highest achievable” VR service quality, from
the point of view of the user and the “VR service
provider”. A distinction is made between the quality of
service (QoS) at the user/application level, and the QoS at
the communication level. The model, shown in Fig. 1,
consists of three components:
• Client
• Access Server
• Application Server

The service invocation works as follows. Upon user’s
request, the client contacts the Access Server (the term
“client” here denotes a particular combination of terminal
hardware, operating system, and client software
application). The Access Server identifies the client
characteristics and determines and negotiates QoS. It then
communicates with the Application Server, which is
responsible for retrieving the VR service from the VR
service repository and transforming the service as needed.

Client

Application
Server

PC Mobile PC

PDA Telephone

Transparent User
Access

Determining QoS at
the Communication

Level

Access
Server

Negotiation of QoS
at User/Application

Level

Service Profile
Repository

Service
Profile

Client Profile
Repository

VR Service
Processor

VR Service
RepositoryVR Service Transcoder

Figure 1. VR service adaptation model

Adapted content is returned to the Access Server and
passed back to the client. It may be noted that the QoS
negotiation and adaptation remains completely
transparent to the client.

2.1. Access server

The Access Server is responsible for receiving the user
request, identifying the user terminal, and determining the
client profile. Based on the client profile, an appropriate
service profile is then formed and passed to the
Application Server.

The Access Server contains three modules providing
the following functionality:
• Transparent user access
• Determining QoS at the communication level
• Negotiation of QoS at the user/application level

These modules are described in more detail in the sequel.

Transparent User Access

The role of the Transparent User Access module is to
identify the access network and terminal of the user
requesting the VR service. Two methods for
implementing this function include:
• Identification based on the User-agent field in the

HTTP header [16].
• Identification based on Composite Capabilities/

Preference Profile (CC/PP) [17]. CC/PP is a client
profile data format used for describing device
capabilities and user preferences based on the
Resource Description Framework (RDF) [18].

After receiving the request and identifying the header
fields, the Transparent User Access determines whether
the request contains a CC/PP extension. If not, the client
identification based on the User-agent is used. However,
this approach lacks parameters needed for forming a
complete client profile (parameters describing access
network characteristics, precise terminal characteristics,
and user preferences). Identification based solely on the
User-agent field is therefore insufficient for supporting
universal access to VR applications.
The preferred way of identification is via CC/PP profile,
extending the HTTP request. The generic client profile
(Fig. 2) is described using Extensible Markup Language
(XML), and it consists of two parts: the terminal profile
and user preferences profile. The terminal profile contains
relevant and necessary information concerning the user
terminal and access network (nominal, or otherwise
known) communication capabilities. The user preferences
profile describes parameters considered relevant by the
user for achieving acceptable VR service quality.
Acceptance parameters allow a user to choose the desired
service format, along with whether or not to accept

textures, audio or video. In terms of performance request
parameters, a user may wish to specify a maximum
acceptable download time. Performance optimization
refers to whether the user wishes functional or visual
service optimization to be pursued during the matching
process. Special options are included for extending
“standard” user preferences in special cases (such as
availability of new services and technology).

User preferences profile

Acceptance Info

Performance request

Special Options

Accept format

Accept textures

Accept audio

Accept video

Maximum download time

Performance optimisation

Option 1

Option n

Terminal profile

General Info

Processing capabilities

Communication capabilities
(access parameters)

Terminal name

OS

Browser info

Processor type

Memory

Display size

Color depth

Sound option

Bandwidth

Delay

Jitter

Loss

BER

Client profile

Figure 2. Generic client profile parameters

Determining QoS at the Communication level

The parameters passed on from the transparent user
access module are important for determining QoS at the
communication level. Again, we are considering the “best
achievable” networking capabilities, and assume that
further “downsizing” will follow as a consequence of
networking conditions and QoS mechanisms. We plan to
address this issue in more detail in future work.

The key network parameters for determining QoS for
NVR services are available network bandwidth B and
end-to-end latency L. We therefore define them as
required parameters that are passed on to the module for
negotiation of QoS at the user/application level. Jitter J
and error rate E are passed on as optional parameters.
Communication level QoS is defined as a function of the
mentioned parameters:

QoS = f(α ·B, β·L, γ·J, δ·E)
where δγβα ,,, are assigned a value of 0 or 1 to indicate

which parameters are to be taken into account when
adapting the VR service. For all classes of VR services,
α and β are assigned a value of 1, while γ =1 for VR
services using data streaming and δ =1 for VR services
with a strict requirement on reliability. Example services
and corresponding parameter values are given in Table 1.

β

Table 1. Example services and corresponding

QoS parameter values

Example Service α γ δ
VR with audio/video streaming 1 1 1 0
Virtual gallery (only download) 1 1 0 1
Collaborative virtual
environment 1 1 1 1

The defined communication QoS level function is

passed on to the next module to be used in the process of
matching VR application QoS to access capabilities.

Negotiation of QoS at the User/Application Level

Based on information received from the user, the
Access Server negotiates user/application level QoS in
order to match service content to client capabilities and
user preferences. Negotiation refers to the ability of the
user to change his/her preferences with each request for a
given VR service.

The module for negotiation of QoS at the
user/application level receives and analyzes parameters
from the previous two modules. This is followed by
matching with VR application QoS (using the service
profile repository) to define the final service profile of the
VR service returned to the user.

Negotiation can be considered passive or active.
Passive negotiation refers to the case when no user
preferences are specified and client capabilities may only
be guessed based on the value in the User-agent field.
Based on this information, the format of the service
(VRML, HTML, WML) that the client is capable of
displaying is determined. Relevant profiles are retrieved
from the client profile repository that match the user’s
browser information and contain default client parameters
describing access networks and terminals. The unknown
terminal characteristics are approximated by choosing the
closest matching profile. Once the client profile has been
determined, the corresponding default user profile is
retrieved from the service profile repository and passed
on to the Application Server.

Active negotiation is based on CC/PP specification. A
well defined CC/PP profile contains all of the information
necessary for precisely defining the client profile and user
preferences. For example, a user may explicitly request
that VR content be converted to HTML format. It should

be noted that active negotiation may only be performed
by a CC/PP-enhanced client. For example, WAP
terminals do not support CC/PP specification and active
negotiation.

VR Service Profile

Upon receiving the user’s request for a particular
service, the service profile repository offers all possible
versions of that service. The “best” version (offering the
highest quality as perceived by the user) is selected based
on the terminal profile and is adapted according to user
preferences. The final VR service profile enables the
Application Server to choose the service content that best
meets the agreed upon level of QoS. The generic service
profile (Fig. 3) is described using XML and contains four
sets of parameters: general service information,
processing requirements, network requirements, and
special options (used for parameters that need to be more
precisely specified).

Service profile

General information Processing requirements

Display size
Polygons
Textures
Sound
Video
Lighting
Text
File size

Service
designation
Processing
requirements

Service format

Special
Options

Min. required
bandwidth

Network requirements

Max. allowed
delay

Loss rate

Figure 3. Generic service profile parameters

The agreed upon service profile is then passed on to

the VR Application Server responsible for returning the
desired content.

2. 2 Application server

The basic function of the Application Server is to
deliver appropriate content based on the negotiated QoS
level. Therefore it must have the capability of adapting
VR content, whether using static or dynamic transcoding
techniques. The Application Server consists of three
separate modules:

• VR service repository
• VR service transcoder
• VR service processor

Depending on the physical location of these modules, the
Application Server may be centralized or distributed. The
core functionality of the Application Server is located in
the VR service processor.

VR Service Repository

The VR service repository stores the files that make up
virtual reality scenes offered by the Application Server.

These files may contain:
• Source code of a virtual reality scene – in VRML [9],

or XML format, according to X3D specification [19].
• Textures.
• Multimedia – sound files and video clips.
Depending on its relative position to the Access Server,
the repository can be central, remote or distributed.

A central repository is positioned at the same physical
location as the Access Server. This means that all the files
that make up the VR service are stored on the same
machine that contains the universal access logic.

A remote repository is positioned separately from the
Access Server. One advantage of this approach is that it
eases the processing load of the machine that executes the
function of the Access Server, since the VR service
transcoder is migrated together with the repository. Also,
it can reduce the time necessary to transport the adapted
content to the client, assuming that the repository is
located “closer” to the client. “Closer” means that the
repository is placed at a location to which the client has a
faster connection. The disadvantage of this approach is
the increase in time needed for Access Server to
Application Server communication.

A distributed repository is a combination of the
previous two approaches. The files that require longer
downloads are migrated “closer” to the client, while the
original service code is placed at the central location,
together with the transcoder and the Access Server. The
advantage gained by this approach is reduced processing
and content transport time. The complexity of its
maintenance is the main disadvantage of a distributed
repository.

VR Service Transcoder

VR service transcoder is the Application Server
module that carries out the transformation of the VR
service format into a replacement format. The
functionality of the transcoder is described by the
following expression:

TR = ƒ (I, C, T)

where I is the set of input parameters provided by the
service profile, C is the set of completed service contents
stored in the repository and T is the set of content
transformation functions. The set I consists of the
following elements:

I ⊃ {f, p, d, t, a, c}

where f represents the format of the service, p the
maximum supported processing speed, d the display size,
t the texture quality, a the sound quality and c the number
of sound channels.

Each of these elements is a set containing its own
elements:

• f = {VRML, HTML, WML, null}
• p = {MIPS value}
• d = {1280x1024, 1152x864, 1024x768, 800x600,

640x480, 480x240, 320x240, null}
• t = {16, 8, 4, null}
• a = {16, 8, null}
• c = {stereo, mono, null}

The elements of the set C are:

C = {vr1, vr2... html1, html2... wml1, wml2... xml1, xml2...}

where vrn, htmln and wmln are the default service
implementations in the appropriate format, while xmln
represents the universal service code written in XML.

VR service transcoder can may either use one of the
“ready made” instances of the service, or, generate a
service dynamically from the appropriate XML file using
one of its transcoding functions:

() () ()
() () (

, ,

, ,i j i j i

f xml vrml f xml html f xml wml
T

)
,

jf vrml vrml f html html f wml wml

 → → → =
→ → →

The transcoding process can be static or dynamic. The
term transcoding is used here to denote the process of
converting content from one format to another (e.g. from
VRML to HTML) or the process of content modification
(compression and filtering).

Static transcoding assumes the creation of different
versions of the same content. The basic problem is in
choosing the appropriate version of the content for a
specific client using a specific terminal. The advantage of
static transcoding is the reduction of processing time and
load while executing the service. However, creating,
organizing, testing and maintaining different versions of
the service content is difficult and time consuming.

Dynamic transcoding separates the problem of content
creation from the problem of creating different
presentations. Dynamic transcoding is made up of a set of
techniques for shaping the information that is to be
delivered to the client. There are many different
mechanisms of dynamic transcoding. For instance, the
Extensible Stylesheet Language (XSL) may be used to
convert the content stored as an XML file into a format
appropriate for presentation on a specific terminal (XSL
Transformations [20]). Other examples include
converting HTML into other markup languages such as
HDML, compact HTML and WML. Clipper mechanisms
may be used to separate a subset of content, such that it
can then be presented on a small-screen device. In VR
applications the term dynamic transcoding describes the
technique of using XML transformations to form a VR
service from a basic XML file describing the service.

VR Service Processor
As mentioned earlier, the parameters of the VR service

that is to be delivered to the client are defined in the
service profile. The VR service processor receives and
analyzes these parameters, adapts the content obtained
from the repository to match the user defined QoS level,
and delivers the adapted service or notifies the user that
the service cannot be delivered due to limitations listed.

For instance, let us assume that a client requests a
service using a hand-held computer with a GPRS
connection. If the Access Server determines that the
terminal has VR support, finds a matching profile, and
returns the service as requested. Otherwise, the Access
Server determines that the terminal has no VR support
and creates the appropriate service profile. This profile
specifies that the service should be delivered in HTML
format. Upon receiving the service profile from the
Access Server, the VR service processor obtains the
service content from the VR service repository and sends
it to the VR service transcoder. The VR service
transcoder converts the service content from its original
VRML version to an HTML version. The adapted content
is then delivered to the client.

2.3 VR parameters needed for matching QoS

To precisely define and describe the VR service
matching process, it is necessary to determine the
fundamental parameters that affect its outcome.

QoS parameters

VR service QoS parameters determine the level of user
satisfaction by affecting the way the service is shaped and
transported over the network.

Parameters included in the VR service matching
process are defined as elements of the set of negotiation
parameters P:

{ }1 2, ,..., nP p p p=

The set P must be finite and precisely defined so that the
negotiation process can be executed relatively quickly
(say, a few seconds) if not in real time.

For the implementation of the basic model for VR
service adaptation, elements of the set P are defined as:
• p1 – service format
• p2 – VR service display size
• p3 – video content (yes/no)
• p4 – audio content (yes/no)
• p5 – textures
• p6 – maximum download time
• p7 – minimum bandwidth requirements
• p8 – maximum delay permitted
• p9 – maximum jitter permitted
• p10 – transmission loss
• p11 – visual quality - determined by matching

processing capabilities, amount of memory and color
depth of the terminal with the number of polygons,
texture depth, lighting complexity, and application of
textual representation of the service request.

• p12 – audio quality – denotes the matching of audio
capabilities of the terminal with the audio
requirements of the service.

All of these parameters, except for the parameter p1,
may have a NULL value, which indicates that the
parameter should be ignored in the matching process. The
matching of the values of individual parameters is done
by the Access Server.

The UML sequence diagram shown in Figure 4
describes the basic functionality of the proposed model.

At the top of the diagram we see the objects (classes,
modules) involved in the matching process.

3. Model implementation

The proposed service adaptation model was
implemented using the Java programming language (JDK
1.3.1). Java was selected because of its portability. This
characteristic makes it easy to move individual
components of the system, so that different topologies can
be tested, for example the central and the remote
repository.

Client Determining QoS at
comm. level

Neg. of QoS at
user/appl. level

Client profile repos.

VR service transcoder

VR service repos.

Return service based on final profile()

Send adapted service ()

Tr. user access

Service profile repos. VR service processor

Relevant access network parameters()

Communication parameters()

Request()

Identified requested service()

Get service profile()

Processing
parameters()

Client profile()

Return service
profile()

Return profile ()

Find client profile()

Matching based on QoS parameters ()

Final service profile
determined ()

Passive negotiation
used if there is no

CC/PP profile

Decompose CC/PP profile()

Decompose terminal profile()

Service network
requirements()

Find content()

Return
content()

Only for passive
negotiation

only when
conversion is

necessry in the
adaptation process

Adapt service format()

Return adapted
format()

Reply()

Analyze request()

Access Server Application Server

Figure 4. Sequence diagram for process of matching VR application QoS to access capabilities

As XML was used to describe client and service profiles,
the integration is achieved through use of JDOM and
XERCES APIs.

Following the structure of the proposed model (Fig. 1),
each module, the Client, the Access Server, and the
Application Server, was implemented as a separate Java
class.

3.1. CC/PP capable client

As mentioned earlier in this paper, the proposed model
implies sending CC/PP extended HTTP requests in order
to achieve active QoS negotiation. Although the role of
the CC/PP-capable client would normally be performed
by the VRML-capable Web browser, as of April 2002,
such browsers were not yet available. Thus, we developed
a helper application which is capable of sending CC/PP
extended HTTP requests.

This “new” client application enables a user to select a
request containing the service identification, terminal
profile and user preferences. An HTTP connection is then
established to the Access Server and the request sent. The
consequent response is displayed in a standard Web
browser.

3.2. Access Server implementation

The functionality of the Transparent User Access
module described by the model is implemented in the
TransUserAccess class. This is the only module that the
client side is aware of since all the communication with
the client is carried out through it.

If the Transparent User Access module detects that a
passive QoS negotiation method was requested (CC/PP
profile is not present), service and client (read from the
User-agent field of the HTTP request) identifiers are sent
to the module for negotiation of QoS at the
user/application level. Response received from the
Application Server is forwarded back to the client.

If QoS negotiation is active, the Transparent User
Access module decomposes the CC/PP profile and
separates the terminal profile from user preferences. The
terminal profile is additionally decomposed into
processing capabilities and communication capabilities
(Fig. 5). As already mentioned, CC/PP decomposition is
done using JDOM and XERCES 1.4.3 APIs, which
simplify parsing and manipulation of XML documents.
Communication capabilities are sent to the module for
determining QoS parameters at the communication level,
while user preferences and processing capabilities are
sent to the module for negotiation of QoS at the
user/application level.

Processing
capabilities

Communication
capabilities

CC/PP
 profile

Terminal profile

decompose
CCPP
profile

decompose
Terminal
profile

to
application

QoS

to
communication

QoS

User
preferences

User
preferences

to
application

QoS

Figure 5. CC/PP profile decomposition

The CommQoSDeterminator class implements the

module for determining QoS at the communication level.
Its function is to compare the communication capabilities
of the access terminal, which it receives from
Transparent User Access, with the parameters defining
the network requirements of the service, received from
the module for negotiation of QoS at the user/application
level. The result of the comparison are relevant network
parameters to be used in the final process of matching
according to defined QoS parameters.

The AppQoSNegotiator class implements negotiation
of QoS at the user/application level. The matching of VR
application QoS to access capabilities is done by
comparing service QoS parameters provided by service
profiles with the processing capabilities and user
preferences received from the Transparent User Access
module and relevant communication parameters received
from the module for determining QoS at the
communication level. The set of service profiles for the
given service is retrieved from the service profile
repository based on the service identifier.

If QoS negotiation is passive, the module for
negotiation of QoS at the user/application level
(AppQoSNegotiator class) uses the client identifier
received from the Transparent User Access module to
search the client profile repository for the default client
profile corresponding to the access terminal. Matching

with the service profiles in the case of passive negotiation
is done only based on the p1 parameter (service format).

If QoS negotiation is active, each parameter of each
service profile is compared to the appropriate parameter
defined in the client profile. If the client profile does not
satisfy a requirement set by one of the service profile
parameters, that service profile is excluded from the
matching process.

The goal of the matching process is to determine the
service profile that is to be sent to the Application Server.
If more than one service profile matches the client profile,
the highest quality service profile is sent.

The service and client repositories were implemented
as part of the file system of the Access Server.

3.3.Application Server implementation

The Application Server was implemented using
Apache 1.3.19 and Savant 3.0 Web servers, and Tomcat
3.2.1 Web application server. The logic of interaction
with the Access Server was programmed in Java.

The VR Service Processor module was implemented as
a Java application, which can be located at the same host
running the Web or application server that is serving the
application, or at a different host.

As previously mentioned, Apache and Savant Web
servers were used to provide the functionality of the VR
Service Repository. Since some services were located at a
Web server running at a different host than the Access
Server, the VR Service Repository can be classified as
distributed.

The functionality of the VR Service Transcoder
module was implemented by a Tomcat Web application
server extended by Cocoon servlet technology. Cocoon
was used to transform the service content from XML
format to various presentation formats (HTML, WML,
VRML).

4. Case studies

 In order to verify the proposed service adaptation
model and its implementation, two case studies were
performed of two different VR applications: Virtual
Phone Gallery and Pyramid. In both cases two different
user access scenarios were tested using active QoS
negotiation. These scenarios were defined by the CC/PP
profile parameters (textures on/off, sound on/off, etc.)
sent as part of the HTTP request. The testing environment
for both case studies consisted of the following elements:

• A Pentium IV computer (1.6GHz, 512MB
RAM) with Windows 2000 Professional
operating system, running the client application.

• A Pentium IV computer (1.6GHz, 512MB
RAM) with Windows 2000 Professional
operating system, acting as the Access Server.

• A Pentium III computer (733MHz, 256MB
RAM) with Windows 2000 Professional
operating system, acting as the Application
Server. Apache and Tomcat Web servers and
the VR Service Processor module were installed
on this host.

Virtual Phone Gallery application, developed in
VRML, allows users to access a virtual shop containing
virtual representations of several mobile phones. The
service was implemented in two versions that differ in
their complexity. The service profile belonging to the
more complex version of the service identified it as
having a display size of 1024x768 pixels, 10000
polygons, lighting complexity value 18, texture size of
298 kilobytes, texture color depth 24 bits, audio clip size
of 32.5 kilobytes and file size of 1222.5 kilobytes. The
simpler version had the same display size, 1970 polygons,
lighting complexity value 1, texture size of 26.7
kilobytes, texture color depth 24 bits, file size of 255
kilobytes and no audio.

The case study for this application was conducted by
using the client application (Fig. 6) to send two requests
with different CC/PP profiles. The responses were then
analyzed.

Figure 6. Client application GUI

The first request was sent using the “PC-HQ” (High
Quality) user access scenario, which describes the access
terminal as being a high-performance desktop computer.
Since CC/PP profile parameters that define the “PC-HQ”
access scenario satisfy the requirements, the more
complex service version was returned to the client (Fig. 7
and 8).

Figure 7. “PC-HQ” user access scenario
response-outside view (Gallery)

Figure 8. “PC-HQ” user access scenario
response-inside view (Gallery)

The second request was sent using the “PC-LQ” (Low
Quality) user access scenario, which describes the access
terminal as being a “low performance” desktop computer.
Since the CC/PP profile corresponding to that scenario
does not satisfy the requirements of the more complex
service version, the simpler version is returned (Fig. 9).

The deciding parameters in this case study were:
the processor type and speed •

•
•

memory size and color depth of the access terminal
number of polygons, lighting complexity, depth of
textures of the service.

The Pyramid application, also developed in VRML, is

a game of exploration in which a user’s goal is to find an
object located in a hidden room inside the pyramid. Two
versions of the service were implemented with the main
difference being the display size.

Figure 9. “PC-LQ” user access scenario
response (Gallery)

Figure 10. “PC-HQ” user access scenario
response (Pyramid)

The case study for this application was performed using
two user access scenarios: “PC-HQ” and “IPAQ-GPRS”.
The “PC-HQ” scenario represented a “high performance”
desktop computer, while the “IPAQ-GPRS” scenario
represented an iPAQ pocket PC with a GPRS connection.

As in the first case study, the response received by the
client (Fig. 10) showed that the CC/PP profile describing
the “PC-HQ” user access scenario satisfied all the
requirements of the more demanding service version.

The “IPAQ-GPRS” access scenario did not meet the
requirements of the first service version, so the second
version was returned instead. The deciding factor in this
case was the display size. The service profile describing
the first version defined the display size of the service as
being 800x600 pixels, which exceeded the maximum
display size of 240x320 pixels, as written in the CC/PP
profile.

Figure 11. “IPAQ-GPRS” user access

scenario response (Pyramid)

The display size of the second version of the service

was 240x320 pixels, so the requirement was met.
Figure 11 shows the response as viewed on an iPAQ
pocket PC.

As demonstrated by case studies, the VR service was
successfully adapted to terminal limitations as well as
user preferences.

5. Conclusion and future work

In this paper, we presented a VR service adaptation
model. The proposed model is independent of the
underlying network and the VR service, which is its main
advantage. Future work will address the effects of
dynamic changes in profile parameters.

6. References

[1] A. Caric, K. Toivo. “New Generation Network and

Software Design”, IEEE Communications Magazine 38(2),
February 2000, pp. 108–114.

[2] J.-H. Park, “Wireless Internet Access for Mobile
Subscribers Based on the GPRS/UMTS Network”, IEEE
Communications Magazine 40(4), April 2002, pp. 38–49

[3] E. Ekkuden, U. Horn, M. Melander, J. Olin, “On-demand
mobile media – A rich service experience for mobile
users”, Ericsson Review, No 4, 2001, pp. 168–177.

[4] M. Matijasevic, I. Lovrek, D. Mikic, A. Caric, D. Huljenic,
“Designing Bandwidth-Aware Virtual Reality Services for
the New Generation Networks”, Proc. 9th Int. Conf. on
Telecommunication Systems, Modeling and Analysis,
Dallas, TX, March 2001, pp. 84-89,

[5] L. Rosenblum, “Virtual and Augmented Reality 2020”,
IEEE Computer Graphics and Applications 20(1),
January/February 2000, pp. 38-39.

[6] T. Starner , “Thick Clients for Personal Wireless Devices”,
IEEE Computer 35(1), January 2002, pp. 133-135.

[7] S. Feiner, B. MacIntyre, T. Höllerer, and T. A. Webster,
“A touring machine: Prototyping 3D mobile augmented
reality systems for exploring the urban environment”. In
Proc. Int. Symp. on Wearable Computers ISWC’97,
October 13-14, 1997, Cambridge, MA.

[8] C. Christopoulos, “Mobile Augmented Reality (MAR) and
Virtual Reality", in Book of Visions 2001, Wireless World
Research Forum, 2001, pp. 107–110

[9] D.R.Nadeau, “Building Virtual Worlds with VRML”, IEEE
Computer Graphics and Applications, March/April 1999,
pp.18–29

[10] D. Mikic, Matching virtual reality applications QoS to
access capabilities, M.S. Thesis, FER, University of
Zagreb, 2002.

[11] M. Matijasevic, D. Gracanin, K.P. Valavanis, I. Lovrek, “A
Framework for Multi-user Distributed Virtual
Environments”, IEEE Transactions on Systems, Man and
Cybernetics – Part B: Cybernetics, 32(4), August 2002.

[12] T. Kanter, "An open service architecture for adaptive
personal mobile communication", IEEE Personal
Communications 8(6), December 2001, pp. 8-17

[13] D. Brutzman, M. Zyda, K. Watsen, and M. Macedonia,
“Virtual Reality Transfer Protocol (vrtp) Design
Rationale”, In proc. of the WET ICE 1997, Cambridge,
Massachusetts, June 1997. pp. 179-186

[14] O. Seiwong, et al. “A Dynamic QoS Adaptation
Mechanism for Networked Virtual Reality”, Proc. of the 5th
IFIP Intl. Workshop on QoS, May 1997

[15] Y. Ishibashi, S. Tasaka, and T. Iwama, “Adaptive QoS
Control for Video and Voice Traffic in Networked Virtual
Environments”, Proc. of the 9th Intl Conf. on Computer
Communications and Networks, Las Vegas, Nevada, 2000,
pp. 638–642

[16] –, Hypertext Transfer Protocol -- HTTP/1.1, IETF RFC
2616, June 1999.

[17] –, Composite Capabilities / Preference Profiles: Require-
ments and Architecture, W3C Working Draft, July 2000
[On-line: http://www.w3.org/TR/CCPP-ra/]

[18] O. Lassila, R. Swick, “Resource Description Framework
(RDF) Model and Syntax Specification”, W3C
Recommendation, February, 1999.
[On-line: http://www.w3c.org/TR/REC-rdf-syntax/]

[19] –, Information technology -- Computer graphics and image
processing – eXtensible 3D (X3D), ISO/IEC draft
specification, Web3D Consortium, February 2002
[On-line: http://www.web3d.org/]

[20] –, The Extensible Stylesheet Language Transformations
(XSLT), Version 1.1, W3C Working Draft 24 August 2001,
On-line reference, http://www.w3.org/TR/xslt11/

http://www.w3.org/TR/CCPP-ra/
http://www.w3c.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/xslt11/

	Unska 3, HR-1000 Zagreb, CROATIA
	Transparent User Access
	Determining QoS at the Communication level
	Negotiation of QoS at the User/Application Level
	VR Service Profile
	2. 2 Application server
	VR Service Repository
	VR Service Transcoder
	VR Service Processor

	2.3 VR parameters needed for matching QoS
	QoS parameters

