
MUVA: A FLEXIBLE VISUALIZATION ARCHITECTURE
FOR MULTIPLE CLIENT PLATFORMS

Lea Skorin-Kapov*, Hrvoje Komerički§, Maja Matijašević§, Igor Pandžić§, Miran Mošmondor*

*Research and Development Center
Ericsson Nikola Tesla

Zagreb, Croatia
{lea.skorin-kapov}@ericsson.com

§Department of Telecommunications

FER, University of Zagreb
Zagreb, Croatia
nvr@tel.fer.hr

Abstract
Information visualization techniques are invaluable tools in numerous applications such as those
involving large databases and document collections. Ubiquitous usage of such techniques can
provide universal access to complex information. The main goal of our work is to provide such
universal visual access to information through the proposed Multiplatform Universal Visualization
Architecture (MUVA). MUVA is a collection of software modules that allow visualization of the
same data across a wide range of platforms, from workstations to mobile phones, while
automatically adapting the visualization and delivery modes to the particular platform. In the
center of the architecture are the visualization tools, which represent various concepts of
visualizing the data, such as 3D tree displays or simple 2D tables. The visualization tools are
separated from actual client platforms by platform drivers, which adapt the output and delivery
mode to each particular platform. On the input side, MUVA separates the data retrieval from the
abstract visualization tools, so that any data source can be easily connected by implementing a thin
application interface. In this way, MUVA can be used to provide ubiquitous information
visualization for various services spanning a wide range of application domains. Implementation of
the proposed architecture is demonstrated in two multiplatform visualization case studies; one for
visualization of Grid monitoring data, and the other for weather data based on geographical
location.

1 Introduction

Information visualization is a growing area of interest and research. As opposed to “traditional”

data representations, user-friendly visualizations are becoming multi-modal, i.e., they may combine
various media such as text, hypertext, pictures, multi-dimensional graphics, audio, and video in 3D
Web-based virtual environments. Enhanced and interactive visualizations are designed to improve
the ability of users to comprehend, work with, and interact with rich data spaces [4]. Various
application domains that have been the focus of data visualization include large information spaces,
software engineering, databases, network monitoring, data mining, and multi-user collaboration. It
may be assumed that users, once being used to such interfaces, would wish to access such virtual
environments by using various devices, for example, a powerful graphical workstation at work, a
PC at home, and a Personal Digital Assistant (PDA) or a mobile phone while traveling. Recent
advances in mobile and wireless networking, as well as improved presentation and communication
capabilities of new mobile devices, have created a challenge to incorporate suitable visualizations in
applications running not only on graphical workstations and PCs, but also on hand-held and
wearable computers as well as new-generation mobile phones.

There has been a lot of recent work directed towards presenting content on mobile and hand-held
devices. A software architecture to support computing on hand-held devices has been proposed in
[9]. An overview of current technologies and standardization efforts for enabling device-
independent Web applications may be found in [3]. One of the main technologies for adapting
standard Hypertext Markup Language (HTML) content is transcoding [1], which unfortunately has
known limitations when it comes to more complex structures. A recent approach to transcoding
Web pages for display on mobile devices attempts to take into account semantics as well [7].

Still, applications designed from the start to run on multiple platforms are rather scarce and fairly
recent. An example is a context-aware system for managing hospital information capable of running
on a PDA and a desktop computer, presented in [10], which does not include visualization. Early
work in complex visualizations on a PDA using remote visualization has been reported in [8]. To
date, however, most applications that include visualization are still being developed to run on a
target (group of) devices, rather than being open towards new devices and alternative visualization
techniques.

In this paper we propose a Multiplatform Universal Visualization Architecture (MUVA). MUVA
is a collection of software modules enabling visualization of data on multiple client platforms,
where by client platform we consider a networking-capable terminal hardware (device) with
specific operating system and application software. The focus of MUVA is not on applying
visualization techniques to a specific application area, or on a specific platform, but rather on
proposing a high-level flexible visualization architecture that may easily be applied to various
domains. The key features of the proposed architecture are its independence of data acquisition, as
well as a thin adaptation “layer” for the device on which the visualization is presented.

The paper is organized as follows. First, we briefly describe properties of typical client devices
with their communication and presentation capabilities. Next, we describe the proposed architecture
and its implementation. Finally, we demonstrate the application of the proposed architecture by two
case studies. The first is a visualization of Grid monitoring data on four platforms: a desktop PC, a
handheld PC, a Java-enabled new-generation mobile phone, and a standard WAP-enabled mobile
phone. The second is a visualization of weather data on three platforms: a desktop PC, a handheld
PC, and a WAP-enabled mobile phone.

2 Client platform capabilities

With the growing heterogeneity arising from differences in client network devices and network
connections, there is a need for systems providing users with transparent access to services
independent of access capabilities. Service content therefore needs to be adapted accordingly.
Various parameters dictate client platform capabilities (e.g. available memory, processor speed,
graphics card, display) and connection types (e.g. LAN, Wireless LAN, General Packet Radio
Service (GPRS)). Table 1 gives an overview of some client devices that were used in this work as
test platforms, with their respective characteristics, processing capabilities, and communication
capabilities.

For the purposes of this paper we divide client platforms with regards to visualization capabilities
into three groups (full, midi, mini) as follows:
• Full clients: platforms with enough processing power and visualization capabilities to locally

process the raw data received from a server and visualize it while simultaneously supporting all
visualization modes (2D and 3D graphics, tables, text, etc). In addition, the full client may offer
better interaction capabilities with the data. Although other types of full clients may emerge, the
representative of a full client is a PC (Windows, Linux, etc.) running a standard Web browser
with Java support. Example interfaces and visualization tools may be implemented as Java

applets (e.g. Shout3D) and standard HTML elements, so there is no need to download/install
any software on the client machine. Additional software, however, may be installed if needed
depending on the interface implementation (e.g. Virtual Reality Modeling Language (VRML)
[1] plug-in). Client hardware and software may vary from lower-end configurations to
higher-end configurations.

• Midi clients: platforms with medium processing power and visualization capabilities, powerful
enough to present a user interface, simple 2D/3D graphics, as well as text and tables. The
representative of a midi client would be a PDA (e.g. Compaq iPAQ or Palm) or a PDA-
integrated mobile phone (e.g. Sony Ericsson P800).

• Mini clients: platforms that have insufficient processing power for local processing of raw data,
and insufficient presentation capabilities for showing graphics. Such a terminal would receive
pre-formatted WAP pages ready for presentation instead of raw data.

Table 1. Overview of processing and communication capabilities for client platforms

 Full Client PC
(low-end)

Full Client PC
(high-end) Midi Client PDA Midi Client Smart Phone

Terminal
Name Desktop PC low-end Desktop PC high-end Compaq iPAQ 3870 Sony Ericsson P800

Operating
System Windows 2000/XP Windows 2000/XP Windows Pocket PC (CE 3.0) Symbian

7.0

IE 5.5 / Netscape 6.0 IE 6.0 / Netscape 7.1 IE 3.02 Opera 6.0 / SE R101

G
eneral

C
haracteristics Browser HTML, VRML,

Shout3D
HTML, VRML,

Shout3D
HTML, VRML,

Shout3D
HTML
WML

PIII
800 MHz

P4
2.66 GHz

Intel Strong
ARM SA 1110

206 MHz

ARM 9
156 MHz Processor

Type
1066 MIPS 4904 MIPS 235 MIPS N/A

Memory
Size 128 MB 512 MB 64 MB 16+16 MB

Display
Size 1024x768 1280x1024 240x320 208x320

Color
Depth 32-bit 32-bit 12-bit 12-bit

16-bit 16-bit 8-bit 16-bit

Processing C
apabilities Sound

Quality Stereo Stereo Mono speaker, Stereo headph. Mono speaker, Stereo headph.

Network Type LAN 100 Mbps LAN
100 Mbps GPRS CS-2 53.6 kbps / WLAN 11 Mbps GPRS CS-2 53.6

kbps

Latency <10 ms <10 ms 1s (GPRS) 1s

Jitter <1 ms <1 ms N/A N/A

Packet Loss <1% <1% N/A N/A

C
om

m
unication

C
apabilities

BER <10-8 <10-8 10-5 / 10-5 10-5

In addition to service customization based on client processing and communication capabilities,

customization may be introduced through user preferences. For example, a user may wish to filter
some media types (e.g. sound, video, etc.) in order to increase response time from the system and
thus increase the functionality of a specific application interface at the expense of presentation
level.
3 MUVA system architecture

In this paper, we propose a high-level visualization architecture called MUVA, which is capable
of providing universal visual access to data independent of the client platform, while automatically

adapting delivery modes to the particular platform. Rather than developing data visualization
applications designed to run on a target (group of) client platforms, we propose to separate the
platform adaptation procedure on the output side from the implemented data visualization
technique, and so facilitate ubiquitous client access. In addition, by separating the data source on the
input side from the visualization technique, the result is reusability of such techniques across a wide
range of application domains offering different data sources. For example, the implementation of a
technique such as a 3D tree representation of a hierarchical structure may be reused when
developing any application used to visualize hierarchical data. For 2D visualizations, common
graphical representations such as line graphs, trees, bar-charts, pie-charts, etc. may be used.

MUVA has been designed as a flexible and modular architecture comprised of a collection of
software modules. Crucial parts of the architecture are the visualization tools, which represent
various modes and concepts of visualizing the data (e.g. hyperbolic tree display; cone tree display;
simple table; graph; text). Visualization tools are separated from actual client devices by platform
drivers, designed to adapt the data delivery mode to specific platforms. On the input side, actual
data collection is separated from the abstract visualization tools. This allows for any data source to
be connected simply by developing thin application interfaces. The result is quick adaptability to
various specific application domains. A service logic layer provides the necessary intelligence for
connecting application interfaces, visualization tools, and platform drivers depending on the
identified client platform capabilities and user request.

Figure 1 presents a conceptual view of the MUVA architecture. Each component of the
architecture contains several modules, where not all of them have to be used in each application. A
more detailed description of MUVA components is given below.

Service Logic

Application Interfaces

Visualization Tools

Platform Drivers

- application specific
- retrieve application data

- universal tools

- well defined functionality,
 parameters and behaviour

- independent of actual data

- platform specific
- provide user interaction
- receive formatted data from
 visualization tools and render it

Incoming request

Outgoing response

- client recognition

- control of data
 acquisition

- invocation of
 appropriate
 visualization tools

- delivery of
 formatted data
 to platform drivers

- response delivery

Figure 1. MUVA concept

Visualization tools are responsible for one particular mode of visualization (tool), e.g. a 3D
structure of an input hierarchy, a simple table, pie-chart, etc. Each tool is standardized. This means
that (1) it has a number of standard data parameters that can be fed to it through its API and (2) it
has standard requests it can receive through its request interface, and what kind of visualization
result it produces in reply to each request. For example, the parameters of a 3D Cone tree data
display [12] may be the number of levels, number of children and their connectivity, specific

alphanumeric data for each tree element etc. Valid requests to the Cone Tree tool may be: retrieve
the Cone Tree as VRML; retrieve alphanumeric data for a specific node, etc.

Platform drivers are implemented for each supported platform. They render (visualize) formatted
data received from visualization tools on the screen, and enable user interaction. This rendering may
range from very simple (e.g. display a textual table) to complex, involving local interaction (e.g.
display a complex VRML model with built-in interaction logic). Implementations may vary widely:
for example, browser-embedded Java applets, standalone C++ or Java applications, even script
languages. The communication with the visualization tools may be networked or local, depending
on the location of the visualization tool in relation to the platform driver. Both may in certain cases
be located on the server side, and in other cases on the client.

Application interfaces are responsible for retrieving data from a data source via a standard API.
This API is application specific and must thus be tailored for each particular application. Retrieved
data is converted to XML format based on the specified input interface for visualization tools. An
example would be an application interface retrieving network monitoring data and converting it to
XML to be used subsequently for populating a Cone Tree display with application-specific data.

Service logic encompasses modules that provide the intelligence needed to connect components
of the architecture in order to enable universal visual access and delivery mode adaptation. Upon
receiving a client service request, the client’s preferences and platform capabilities are identified.
One method of identification is based on the User-agent field in the HTTP header request. This
approach, however, lacks parameters needed for forming a complete client profile (including access
network characteristics, precise terminal characteristics, and user preferences). A more advanced
method is based on Composite Capabilities / Preference Profile (CC/PP), a W3C Recommendation
and a proposed industry standard for describing delivery context. The client profile data format is
based on the Resource Description Framework (RDF). A client profile may either be sent directly as
an extension to an HTTP request, or referenced from a remote location via URL. The
implementation of client identification based on a set of generic profile parameters allows for on-
the-fly identification of the capabilities of an increasing number of end-user devices.

The service logic retrieves raw data independently of the platform capabilities through invocation
of application interface modules. The raw data is then sent to appropriate visualization tools.
Formatted data received as the output from visualization tools is then delivered to necessary
platform drivers. The service logic layer provides the logic necessary to accordingly select
visualization tools and platform drivers to produce the final adapted content.

The modular design and separation of MUVA components allows for easy addition,
modification, and maintenance of software modules. For example, the addition of a visualization
tool would require only slight modification to the service logic (e.g. in terms of the conditions under
which this tool would be invoked).

In order to demonstrate the proposed approach we show two services as case studies. In Section
4, we present a service providing a multiplatform visualization of Grid monitoring data, and in
Section 5 we describe a service for multiplatform visualization of current weather data based on
geographical position. Service implementation helps to demonstrate the separation between
application interfaces, visualization tools, platform drivers, and service logic components, as well as
the main communication channels involved.

4 Case study 1: Grid monitoring data

This service, as implemented in this work, provides an interface for users to view network

configuration and monitoring data, such as load, data rates, and memory on different platforms. The

data source used was a central data repository provided by the MonALISA system [11]. The
MonALISA system provides a distributed monitoring service and was in this case used to monitor
hundreds of AliEn Grid sites (http://alien.cern.ch/). Grid technologies have been described as
supporting the sharing and coordinated use of diverse resources in distributed “virtual
organizations” – that is, the creation, from geographically and organizationally distributed
components, of virtual computing systems that are sufficiently integrated to deliver desired quality
of service [6].

Our goal was to implement a Web based service that would provide a user with a view of the
monitored network hierarchy, in addition to the values of various monitoring parameters for
different Grid sites. Sites are organized into a hierarchy of “farms” and “clusters”, referring to the
geographical and/or logical grouping of nodes into virtual computing systems. The service presents
an alternative to the existing MonALISA graphical user interface (http://monalisa.cacr.caltech.edu/)
by providing support for multiplatform visualization and introducing new visualization techniques.

Users access the service by entering a unique URL, independent of the device being used.
Requested data, which is then retrieved from a central repository and described using XML, is
dynamically converted to a format suitable for displaying on the client device. The different formats
that were used include VRML, HTML, and WML. The service implementation was tested on four
platforms: a desktop PC, a handheld PC, a Java-enabled PDA-type mobile phone, and a standard
WAP-enabled mobile phone.

Where possible, the monitored network configuration (or a particular sub-configuration) was
visualized using the 3D Cone Tree technique [12]. Cone Tree is an interactive visualization
technique suitable for hierarchical structures. The user interface is enhanced by enabling interactive
viewing, zooming, expanding and collapsing of parts of the structure. A formal user study using a
cone-tree-based file system visualization showed that although Cone Trees are not suitable for all
tasks, users “were enthusiastic about the cone tree visualization and felt it provided a better ‘feel’
for the structure of the information space” [5]. The root of the network hierarchy is located at the tip
of a semi-transparent cone. When a level in the hierarchy is expanded (on user click), its children
nodes are distributed at equal distances around the base of a cone.

By applying this idea to visualization of Grid monitoring data, we visualize the hierarchy of
farms, clusters and nodes as shown in Figure 2.

 t(op of the
hierarchy)

cluster

node level

Figure 2. Grid hierarchy as related to
farm level

 level

 a cone tree representation

http://monalisa.cacr.caltech.edu/

The cone tree is interactive in that it also allows the user to vary the level of detail for a particular
part of the hierarchy by expanding (or collapsing) a part of the cone tree. Monitoring data can be
added to this graphical representation as well: for example, the load of a particular node (cluster,
farm) may be shown by coloring the object representing that node (cluster, farm).

4.1 Implementation
In this section we describe the implementation of the MUVA system architecture modules shown

in Figure 3, and discuss how each module fits into one of the following four components: service
logic, application interfaces, visualization tools, and platform drivers.
4.1.1 Service logic

Client recognition functionality was implemented using Apache server 2.0.47. Due to fact that
the developed prototype service was intended to be made available to users outside of a laboratory
environment, and the current lack of widespread availability of CC/PP compliant terminal browsers,
implemented client recognition is in this case based simply on identification of the browser type
specified in the User-Agent header field of the HTTP request.

Data is retrieved in standard XML format through invocation of application interface components
and formated depending on the platform capabilities and requests of the client. Requests are
directed towards a Java servlet that is run using Apache Tomcat Server 4.1.27-LE-jdk14. The
servlet requests data, and invokes the necessary visualization tool. In cases when 3D content is
generated, the Cone Tree tool is called. Once the VRML result is received, the servlet calls on a
platform driver to further adapt the VRML file for rendering in a Shout3D (Eyematic Interfaces
Inc., www.shout3d.com) applet, after which the HTTP response is sent to the client.

In cases where the content generation is based on HTML or WML format, the servlet passes
retrieved XML data to Apache Cocoon 2.0.4. Data is formatted into HTML tables or histograms
using Extensible Stylesheet Language Transformations (XSLT) technology. Where necessary,
additional platform drivers are invoked to further adapt the format prior to sending the response to
the client.
4.1.2 Application interfaces

Data is always requested by application interfaces and returned in standard XML format. The
interface towards the actual data repository storing monitoring data collected by the MonALISA
system is based on Web Service technology. Connectivity to the Web Service was provided using
Apache Axis 1.1 open source solution, the follow up on the Apache SOAP project. The stub code
for the Web Service was generated by Axis' WSDL2Java utility and modified according to our
needs. The Web Service returns values in the form of Java beans, that are then transformed by a
data format transformation module to XML format.
4.1.3 Visualization tools

Once data is retrieved, visualization tools are needed to generate the actual data representation.
Various visualization techniques were used, including text, 2D graphics, and 3D graphics.

The creation of a VRML Cone Tree display based on an input hierarchy was implemented using
Java. In general, any form of hierarchical data structure may be given as a valid input. Additional
requests to this tool may be to display a simpler Cone Tree (e.g. when the client device is a PDA),
where certain elements of the tree hierarchy are filtered based on specific parameters (e.g. display
only nodes or clusters belonging to a particular farm). In certain cases, due to terminal incapability
to display or render complex 3D graphics, data is transformed to simple HTML tables or histograms
by using XSLT.

Service Logic Application Interfaces

Visualization Tools

Platform Drivers (server side)

HTTP request

Transparent
user access

(Client recognition
through User-agent

field)

Data format
transformation

Application data

Visualization
tool(s)

invocation Cone
trees ... Tables

(XSLT)

Platform
driver

selection PC ->
adapt. for
Shout3D

H/PC ->
adapt. for
Shout3D

WAP
Phone ->
convert
to WML

VRML,
HTML

VRML VRML HTML

XML - Shout3D applet
 classes

 - Pocket Cortona
 plug-in

- Diesel Engine
- Application:
 converts VRML to
 Diesel3D format

 - WML browser

Composite
content

XML data

Standard API

XML data

- Shout3D applet
classes
- Cortona plug-in

Platform Drivers (client side)

HTTP
response

Data
request

Java API

Figure 3. MUVA system architecture

4.1.4 Platform drivers
The interface displaying the 3D scene, designed to be viewed on a client with a standard Web

browser and Java support, was implemented as a Java applet and based on the Shout3D engine.
Shout3D is a library of Java classes for rendering 3D scenes over the Internet, thus offering the user
the ability to view and interact with 3D scenes without the need for any additional plug-ins. In a
different set-up, Cortona VRML plug-in and Pocket Cortona (for rendering on the iPAQ PDA) were
used to render the 3D scene. Within the scope of MUVA, the Shout3D applet classes and Cortona
plug-in are all considered platform drivers.

In addition to displaying 3D content on the PC and iPAQ clients, we implemented a C++
application to dynamically generate a 3D scene (in our case a 3D Cone tree display) on the Sony
Ericsson P800 mobile device. The DieselEngine SDK 1.3 was used for software support. It is a
collection of C++ libraries for creating 3D applications on mobile devices. Additional software used
included Symbian UIQ v7.0 SDK and Metroworks CodeWarrior for Symbian OS. The application
that was built reads a VRML file dynamically generated by the Cone tree visualization tool, parses
the file, converts it to Diesel3D scene format and displays the content to the user. Additional
interaction modules for navigation, camera manipulation, and object selection within the scene were
also implemented. Also, XSLT files were implemented to further adapt content for display on a
particular device. This includes creation of WML format for display on a WAP-enabled mobile
phone.

4.2 Results
The result is a multiplatform Grid data visualization service that is developed in a modular

fashion with the possibility for adaptation across different application domains. The implemented

service provides visualization of monitoring parameters for a large number of Grid nodes. The
monitored nodes are arranged in a hierarchical manner into farms and clusters. The MonALISA
system collects monitoring data from all distributed sites and stores the data in a central repository.
Data is collected by our service from the central repository via a Web Service interface.

A view of the full client display interface is shown in Figure 4. Upon initial loading, the 3D view
window renders the 3D scene displaying the dynamic node configuration. The imaginary top of the
hierarchy is shown as a sphere, as well as the farms (actual top level in the Grid organization).
Clusters are shown as cylinders, and individual nodes are shown as cubes.

3D view
window

Parameters
window

Histogram
window

Output window:
average values for
chosen parameter
accross all nodes

Legend displaying
parameter ranges (used
to color 3D nodes)

Figure 4. Full client: Java applet with text and 3D content

The Parameters window enables a user to choose a monitoring parameter. The Histogram
window enables a user to choose between displaying real-time data and history data. Once the user
has chosen a parameter and histogram button, clicking on the “Execute!” button will initiate the
coloring of tree nodes and writing text to the output window. Parameter values are retrieved for
each node, and coloring is based on the range that the value fits into. In Figure 4, it may be noted
that overloaded clusters are colored red, medium loaded clusters are colored yellow, while
underloaded clusters are colored green. The upper and/or lower threshold values for each range are
displayed in the Legend window. The interactivity of the display is very useful when the user is
interested in a particular part of the structure (for example, the status of nodes in the local
computing center) and expands only that part of the hierarchy for further observation (Figure 5).
Hiding some parts of the hierarchy, as well as selecting the parameters of interest, helps the user
acquire an intuitive perception of the overall Grid infrastructure and status and at the same time
allows a closer inspection of the part or parameter of interest.

Figure 5. Full client: only a selected part of the hierarchy is exposed

When a user accesses the same service using an iPAQ (Figure 6), the same data is represented
using a combination of HTML pages (to specify the network configuration) and simpler 3D Cone
trees with only subsets of nodes (e.g. a user chooses to view monitoring parameter values for a
specific cluster). In cases where a large hierarchy needs to be presented, small display size and
lower processing capabilities make it more efficient to present the data using a simpler method,
such as a table that a user can scroll through.

The visualization is also displayed on the Sony Ericsson P800 mobile device, where data is again
represented using a combination of HTML pages and 3D content (Figure 7).

Figure 6. Midi client (iPAQ): HTML and 3D content

Figure 7. Mini client (Sony Ericsson P800): HTML and 3D content

If a user using a WAP enabled mobile phone accesses the service, the result is data presented in
WML format. Simple WML pages allow the user to list through the network configuration, and
request monitoring parameter values (Figure 8).

Figure 8. Mini client: WAP enabled mobile phone: WML content

5 Case study 2: Weather data on a geographical position

The second case study is a service named 3DWeather, which visualizes the current weather in
Croatia, as reported by the Croatian Meteorological and Hydrological Service (DHMZ), using as
representation small 3D objects, similar to TV forecast “icons” (cloud, arrow for wind direction,
temperature scale), which are placed in the respective location on the map.

5.1 Implementation

The implementation of the MUVA architecture may again be discussed in terms its components:
service logic, application interfaces, visualization tools, and platform drivers.

The users access the service via a standard Web interface, i.e. the Web browser. The client
initiates the service by sending an HTTP request to the Java application servlet (service logic)
located on the Web server. The servlet then launches the Java class (application interface), which
retrieves meteorological data from the DHMZ Web page. The collected data includes the air
temperature, atmosphere pressure, wind speed and direction, humidity, and overall weather
conditions description (for example, sunny, cloudy, foggy, etc.). The retrieved data are stored in

XML format and the visualization tools Java classes are called to create a VRML scene. The XSLT
transformations to transform the XML data to HTML tables have been implemented and used to
create content for a mini client (WAP enabled mobile phone). For the full client display, data are
represented by 3D objects, similar to TV forecast “icons” (cloud, arrow for wind direction,
temperature scale), which are placed in the respective location on the map of the Republic of
Croatia. Every 3D object has a built-in trigger, which, when clicked on, shows a window with exact
data values. After the VRML scene is created the servlet also creates all the necessary HTML
elements and returns the HTTP reply with the newly generated content. The client (Web browser)
starts the Shout3D applet (platform driver) to present the returned VRML scene. The Shout3D
applet enables the user to navigate through the VMRL scene.

The service may be accessed by using a full client (PC), midi client (iPAQ), and mini client
(WAP enabled mobile phone). The Java servlet, which receives the HTTP request from the client,
detects the user device and calls the application interface to retrieve the data. Once the data are
retrieved and transformed to XML format, the service logic invokes the right visualization tool for
the user device and the user’s preferences, while later selecting the appropriate platform driver.

5.2 Results

A view of the full client display of the 3DWeather Web page is presented in Figure 9.

Figure 9. Full client display: Java applet showing the 2D map and 3D weather “icons”

A view of the midi client display of the 3DWeather Web page is presented in Figure 10.

Figure 10. Midi client display: Java applet showing the 2D map and 3D weather “icons”

A view of the mini client display of the 3DWeather Web page is presented in Figure 11.

Figure 11. Mini client display: WML

6 Conclusions and future work

Most data visualization applications developed to date are designed to run on a target (or, a group
of) client platforms, with limitations regarding new platforms and incorporation of new or various
visualization techniques. In this paper, we have presented the concept of a Multiplatform Universal
Visualization Architecture to address the issue of designing data visualization applications suitable
for running on multiple platforms. The result is a modular, high-level, flexible visualization
architecture that may easily be applied to various application domains. The key features are

independence of data acquisition, as well as a thin adaptation “layer” for the platform on which the
data is visualized.

The presented case studies demonstrate the visualization of Grid monitoring data and weather
data on multiple platforms, with a separation of implemented software modules into four main
MUVA components: visualization tools, platform drivers, application interfaces, and service logic.
We discuss the limitations of various mobile platforms, and the need to adapt visualization
techniques accordingly.

Further goals are to test the proposed architecture by focusing on new application domains, and
possibly a greater variety of devices. This will help to determine the reusability of certain
implemented modules, and open up areas and ideas for new visualization techniques.

7 References

[1] Information Technology – Computer graphics and image processing – The Virtual Reality Modeling Language

(VRML) – Part 1: Functional specification and UTF-8 encoding. ISO/IEC 14772-1:1997
[2] BRITTON, K. H., CASE, R., CITRON, A., FLOYD, R., LI, Y., SEEKAMP, C. , TOPOL, B., AND TRACEY K.

Transcoding: Extending e-business to new environments, IBM Systems Journal 40, 1, 153–178 (2001)
[3] BUTLER, M., GIANNETTI, F., GIMSON, R., AND WILEY, T. Device Independence and the Web. IEEE Intenet

Computing 6, 5, 81–86 (2002)
[4] CARD, S.K., MACKINLAY, J.D., AND SHNEIDERMAN, B. Readings in information visualization: using vision to

think. Morgan Kaufmann Publishers, San Francisco, CA, USA, 1999.
[5] COCKBURN A. AND MCKENZIE, B. An Evaluation of Cone Trees, In People and Computers XIV: Proceedings of

the HCI 2000, 14th Annual Conference of the British Human Computer Interaction Group, 425–436 (2000)
[6] FOSTER, I., AND KESSELMAN, C. The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufmann

Publishers, San Francisco, CA, USA, 1998.
[7] HWANG, Y., KIM, J., AND SEO, E. Structure Aware Web Transcoding for Mobile Devices, IEEE Internet

Computing 7, 5, 14–221 (2003)
[8] LAMBERTI, F., ZUNINO, C., SANNA, A., FIUME, A., AND MANIEZZO, M. An Accelerated Remote Graphics

Architecture for PDAs. In Proceedings Web3D 2003, Saint Malo, France, 55–61 (2003)
[9] MEDVIDOVIC, N., MIKIC-RAKIC, M., MEHTA N. R., AND MALEK, S. Software Architectural Support for Handheld

Computing, IEEE Computer 36, 9, 66–73 (2003).
[10] MUNOZ, M.A., RODRIGUEZ, M., FAVELA, J., MARTINEY-GARCIA, A.I., AND GONZALES, V. Context-Aware Mobile

Communication in Hospitals, IEEE Computer 36, 9, 38–47 (2003)
[11] NEWMAN, H.B., LEGRAND, I.C., GALVEZ, P., VOICU, R., AND CIRSTOIU, C. MonALISA: A Distributed Monitoring

Services Architecture. In Proceedings of 2003 Conference for Computing in High Energy NuclearPhysics, La
Jolla, California, 2003.

[12] ROBERTSON , G.G., MACKINLAY, J.D., AND CARD, S.K. Cone trees: Animated 3D visualization of hierarchical
information. In Proceedings of the SIGCHI conference on Human factors in computing systems: Reaching through
technology, ACM Press, New York, USA, 1991.

	Introduction
	Client platform capabilities
	MUVA system architecture
	Case study 1: Grid monitoring data
	Implementation
	Service logic
	Application interfaces
	Visualization tools
	Platform drivers

	Results

	Case study 2: Weather data on a geographical position
	Implementation
	Results

	Conclusions and future work
	References

