
Design of a QoS Signaling API for Advanced Multimedia Applications in
NGN

Ognjen Dobrijevic1, Miran Mosmondor2, Maja Matijasevic1
1University of Zagreb, Faculty of Electrical Engineering and Computing

Unska 3, HR-10000 Zagreb, Croatia
2Ericsson Nikola Tesla, R&D Center, Krapinska 45, HR-1000 Zagreb, Croatia

{ognjen.dobrijevic, maja.matijasevic}@fer.hr, miran.mosmondor@ericsson.com

Abstract

As a standardized NGN architecture, the 3rd

Generation Partnership Project IP Multimedia
Subsystem (IMS) defines standard service capabilities
and interfaces, as well as a common IP-based
infrastructure, which enable operators to introduce
new services in an efficient and flexible way. In order
to exploit the capabilities offered by an IMS operator,
multimedia application developers face a business
challenge to create applications which can run on a
variety of user devices, and possibly adapt to various
network conditions and user preferences. Our goal was
to identify common generic functionality related to
session-level QoS signaling for advanced multimedia
applications and to design a high-level application
programming interface (API), which invokes this
functionality. The paper describes the Dynamic Service
Adaptation model on which the proposed API is based,
the API specification, and its implementation in Java.
A prototype multimedia application featuring a 3D
networked game provides an example of using the API.

1. Introduction

One of the driving forces behind the concept of the
next generation network (NGN) is the ability to
provide advanced multimedia services across a wide
range of user devices and over a heterogeneous
network infrastructure. As a standardized NGN
architecture, the 3rd Generation Partnership Project
(3GPP) IP Multimedia Subsystem (IMS) [1] defines
standard service capabilities and interfaces, as well as a
common IP based infrastructure, which enable
operators to introduce new services in an efficient and
flexible way. Examples of advanced multimedia

services to be offered include multimedia content
streaming, interactive online games, and multi-user
networked virtual worlds, similar to those available in
the Internet today. By merging the telecom and the
Internet worlds, IMS brings quality of service (QoS)
support, advanced charging options, and the ability to
seamlessly support 3rd party application providers. In
order to make use of the capabilities offered by an IMS
operator, multimedia application developers face a
business challenge to create applications which can run
on a variety of user devices, and possibly adapt to
various network conditions and user preferences. Due
to increased user/service requirements on network
QoS, introducing “network-awareness” into media-rich
networked applications could provide a critical
advantage.

An idea behind network-awareness is not new: the
need for end-to-end QoS signaling in networked
multimedia systems has been recognized for Internet
applications in the 1990s [2], and a number of
mechanisms have been proposed at the time to reserve
resources and dynamically adapt multimedia delivery
according to network conditions [3]. The
interdependence of these requirements may be
addressed through the “application aspect” and the
“communication aspect” [4]. Clearly, an exchange of
control information, or signaling, is needed to request
special treatment for traffic in the network, and to
receive indications of particular conditions from the
network that are of interest to the application.

Our work builds on two well-known concepts, that
of end-to-end QoS signaling, and that of adaptive
multimedia applications, which are now being revisited
from the NGN, and more specifically, IMS
perspective. While existing 3GPP specifications
[5][6][7] describe procedures for QoS negotiation and
signaling for multimedia applications such as

audio/video communication and multimedia
messaging, the support for more advanced services,
involving interactive applications with diverse and
interdependent media components, is not addressed
specifically and presents an open area of research. In
addition to IETF Session Initiation Protocol (SIP) [8],
now adopted by 3GPP, other protocols, such as End-to-
End Negotiation Protocol for matching and
coordinating QoS parameters [9], are being proposed.
An evaluation of scenarios, involving relationships
between application-level and network-level QoS
signaling during session (re)negotiation and handover,
can be found in [10].

This work is motivated by the challenge to identify
common generic functionality related to session-level
QoS signaling for advanced multimedia applications
and to design a high-level application programming
interface (API), which invokes this functionality. The
benefits of using a signaling API are well-known from
other areas in telecommunications, such as Parlay/OSA
open APIs (http://www.parlay.org/en/specifications/)
for call control, user interaction, mobility, etc. They
include software reuse, shorter development time, and
shielding the developer from the complexity and the
specifics of the underlying signaling protocol(s).

The paper is organized into five sections, as
follows. Section 2 gives a brief overview of the
Dynamic Service Adaptation (DSA) model, on which
the proposed API is based. Section 3 details the
specification of DSA API. Section 4 describes the
implementation of DSA API and its use in a prototype
multimedia application featuring a 3D networked
game, as a case study. Section 5 concludes the paper.

2. DSA model

In our previous work, we have proposed a generic
Dynamic Service Adaptation (DSA) model, and its
mapping to IMS [11]. In this paper, we go a step
further by wrapping this functionality into an API to be
(re)used for various multimedia applications. For the
purposes of this paper, we will only refer to the most
prominent features of the model, while the interested
reader is referred to [11].

The model takes into account the heterogeneity of
access options and advanced multimedia services in
NGN by specifying the (sets of) parameters related to:

• end-user access network options and terminal
capabilities (referring to client platform),

• user preferences (referring to client application,
personal preferences, and/or (dis)ability),

• available resources and costs (related to network),
• service requirements (related to server application

and/or server platform).

In this paper, we refer to “client profile” as the set
of parameters encompassing the client platform and
user preferences, and the “service profile” as the set of
parameters describing the service requirements. DSA
model focuses on the provisioning of end-to-end
support for signaling QoS requirements at the session
layer and not on the underlying mechanisms. It
includes the entire process of session initiation,
negotiation and renegotiation of QoS parameters, and
service adaptation, from the point in time when an end-
user accesses a service until (s)he terminates it.
Negotiation/adaptation and optimization procedures
are invoked throughout the service lifetime in response
to significant network conditions. Each of the parties
involved–the client, the server, and the network (i.e.
network QoS control entities residing in the signaling
path)–respond to dynamic changes in the system. The
following scenarios are specifically addressed:

• Session establishment refers to starting the session
with initial session parameters;

• Change in service requirements refers to addition
or detraction of application components (e.g.,
starting or stopping video and audio streaming,
adding a 3D object) which result in signaling the
initiation or modification of current resource
reservation, or release of network resources;

• Change in client profile refers to significant
variations in any client profile parameter (user
terminal hardware or software characteristics,
access network conditions, user preferences) and
are simulated by sending new client profile
versions from the client side;

• Change in resource availability refers to variations
of authorized network resources and results in
signaling the new, or updated conditions to the
session end-points.

While DSA model is independent of the particular
network scenario, its applicability has been studied in
the context of IMS. For each of the scenarios covered
by the model, the exchange of signaling messages
between involved parties has been specified according
to the 3GPP specifications. This end-to-end signaling
is preformed using SIP. Implementation of the
signaling functionality has been used as the basis for
DSA API.

3. DSA API

The functionality of the signaling API covers the
signaling of initial service requirements (here specified
as an XML-based service profile), of the initial client
characteristics (here, an XML-based client profile), and
of the final service configuration. The signaling occurs
during the session establishment (i.e., service
invocation) and the session update (i.e., service run-

time). It also includes the capability to receive
notifications of events related to the session/signaling
status. The effects of signaling may include service
adaptation in response to varying conditions, as well as
an adequate network response to client and service
requirements in terms of network resources, with the
overall goal of providing a better service to the user.

DSA API, shown in Figure 1, was designed with
client/server architecture in mind.

Figure 1. DSA API architecture

The client functionality is grouped together into the
DSA Client API to be used by client (user)
application(s), and the server functionality is grouped
into the DSA Server API to be used by server
application(s) hosting the services. The API is now
described in more detail.

3.1. DSA Client API

The requirements for DSA API Client functionality
include the ability to send client profiles and session
descriptions, as well as to receive notifications of
events occurring either in the network, or at the server
side. Additionally, it includes the functionality for
manipulating the client profile parameters. With these
requirements in mind, the following three modules
were identified (Figure 2): Signaling agent, Signaling
event listener, and Client profile manipulation. The
additional module, namely Configuration properties
handling, contains the configuration file properties and
methods for handling them.

Client profile manipulation module is responsible
for the client profile creation and processing. Signaling
agent module is the one responsible for handling all
signaling messages in the Client API. Several methods
were identified as mandatory for this signaling
capability. The establishSession() method initiates the
signaling exchange with other parties (namely, server
applications) involved. It takes the XML-based client
profile description as an input argument. An
established session may be terminated at any time by
invoking the terminateSession() method. The

changeInClientProfile() method may be invoked in
scenarios where a change in client profile parameters
occurs, e.g., due to vertical handoff. The
changeInServiceRequirements() method covers the
scenario, in which the client side “perceives” the
change in service requirements that is related to
releasing network resources previously reserved for (a)
particular service component(s). If a user is required to
register to use the network services, then registration
process may be invoked by the register() method.

Figure 2. DSA Client API specification

Signaling event listener module is responsible for
receiving events related to signaling status. These
include notifications on status of session establishment
(session successfully established, or, session
establishment failed); session update (session
successfully updated, or, session update failed); change
in service requirements/signaling release of network
resources (service requirements changed); and session
termination (session successfully terminated),
regardless of which entity/side initiated the signaling
process. In addition, the client side can be notified of
the registration process (client successfully registered,
or, client registration failed).

3.2. DSA Server API

The purpose of DSA Server API is to provide an
application developer with a means to specify initial
service requirements for various versions of the service
(e.g., for different terminals), as well as to specify the
service behavior in terms of changes in service
requirements triggered by user demands and network

conditions. The service requirements are carried by
signaling messages in the form of the service profile.

The requirements for the Server API include the
ability to send, receive, and process signaling messages
related to service profiles and final service
configurations, as well as to receive and properly
interpret indications from other parties. Such
indications serve to notify the server application of
variable (network) conditions that are of interest to it.
Specification of DSA Server API is shown in Figure 3.

Figure 3. DSA Server API specification

Signaling manager module handles multiple clients
(i.e., Signaling agents). The module receives,
processes, and sends appropriate signaling messages,
depending on the particular scenario. It comprises
methods for starting and shutdown, as well as the
method for handling a change in service requirements
“perceived” by the server side. The change may result
in invoking a different service configuration. Service
configuration manipulation module is responsible for
processing service configurations.

Signaling event listener module is, analogously to
one on the client side, responsible for receiving events
associated to the session status. Session successfully
established and Session establishment failed events
refer to session establishment between the client and
the server, before the initial service retrieval. Session
successfully terminated event relates to session
termination. Session successfully updated and Session
update failed events arise in response to, e.g., variable

network conditions. In addition, there is an event
indicating release of reserved network resources.

Configuration properties handling module handles
the configuration file properties.

3.3. The use of DSA API

The scope of the API, as related to DSA model, is
illustrated by Figure 4. The client runs on a User
Equipment (UE), and the server application runs on an
End point Application Server of the application
provider. In case of IMS, the application provider may
be either the IMS operator, or the 3rd party application
provider. Both the client and the server application are
extended with signaling capability by using the DSA
Client API and the DSA Server API, respectively. The
client and service profiles matching and QoS
optimization processes take place in the IMS operator
domain (e.g., on a dedicated Application Server). They
take client and service profiles as inputs, as well as
network resources availability and cost, and have a
feasible service configuration as output. The negotiated
session parameters are passed over to the network QoS
control entities, which control the logical data channel
for delivering multimedia data. By using the same
vertical interface, data from the network is monitored
and may thus be used by the decision process.

4. Implementation and results

DSA API has been implemented in Java
programming language and tested by using a prototype
multimedia application in a laboratory testbed. The
virtual channel was emulated by the NISTNet network
emulator.

4.1. Software implementation

The DSA API Reference Implementation is based
on the NIST-SIP API [12] and the 3GPP specifications
[5] [6] [7]. Parser for the client and server profiles is
based on the Simple API for XML (SAX) parser [13].

The reference implementation of DSA Client API
includes two Java packages:

• hr.fer.tel.nims.dsa.client, and
• hr.fer.tel.nims.dsa.client.clientprofilehandler,

while the implementation of DSA Server API includes:
• hr.fer.tel.nims.dsa.server,
• hr.fer.tel.nims.dsa.server.eventlistener, and
• hr.fer.tel.nims.dsa.profilemanipulation.

The API is available for download from:
http://ve.tel.fer.hr

Figure 4. Scope of DSA API as related to DSA model

4.2. Prototype application using DSA API

In order to show the applicability of the API, a
prototype Web-based multimedia application has been
designed and developed. The application is a 3D
virtual world featuring a Treasure Hunt-like game,
which has been extended with signaling capability
using DSA API. Several views of the virtual world are
shown in Figure 5. The plot of the game is as follows:
the players are potential heirs of an excentric dead
millionaire, who hid a key to his treasure somewhere
on his tropical island. Each player has to find it first in
order to earn the inheritance. To achieve that, the
player follows a series of audio and/or video clues. The
3D world objects are developed using the Virtual
Reality Modeling Language (VRML). Audio and video
clues are streamed through the network and displayed
using Java Media Framework (JMF) API based
players. The service content is placed onto an Apache
Tomcat Web server.

Figure 5. View of the 3D virtual world

When a player joins the game, the main 3D scene is
retrieved from the server. Each player is represented by

a virtual 3D character, or avatar, visible to other
players. While exploring the world, players come
across the clues, which they activate by selecting
particular objects. All this media-rich content (virtual
3D scenes, avatars, real-time media) contributes to the
service complexity in terms of transport layer QoS
requirements. The game has been developed in three
service versions, each described by a service profile:

(v1) high quality audio and video streaming,
(v2) low quality audio and video streaming,
(v3) low quality audio streaming only (no video).

The version specifies which service components, and
in what format, may be delivered to a user. For each
version, the content has been prepared in advance
using different high- and low-quality codecs. Several
types of clients were foreseen, assuming diverse
terminal equipment/access networks/user preferences.
Client profile format is based on the Session
Description Protocol next generation [14].

The prototype application with DSA API was
tested in four scenarios of DSA model. Session
establishment is invoked by a player. It includes
registering a user-terminal with the network,
negotiating initial service configuration, and service
(the main scene) retrieval based on the configuration.
Network QoS control entity (represented in DSA
model by the Session control, Fig. 4) is being signaled
to allocate and release network resources used for
scene download, as needed. Change in service
requirements is caused by a user initiating, e.g., an
audio/video streaming. The server updates the service
requirements, and a new service configuration is
negotiated based on information related to requested
streams. The matching and QoS optimization
calculates optimal audio and video codec combination.
Reservation of network resources is set up on the
virtual channel. Change in client profile is caused by,
e.g., an increase in the player’s access network
bandwidth, which results in renegotiation, followed by
the matching and the optimization. For instance, if

media streaming is in progress, and if a variation of the
bandwidth increase is significant, an automatic change
of the streaming quality will occur based on the
updated service configuration. Change in network
resource availability is detected by the Session control,
which monitors the Virtual channel (Fig. 4). This again
invokes renegotiation and the matching/optimization,
which result in a new service configuration. Automatic
changes of service parameters (e.g. audio codec due to
a decrease of authorized resources) occur at both the
client and server sides based on the negotiated profile.

In each of the scenarios, it has been demonstrated
that, based on signaling, an adapted version of the
service is delivered to the user. Thus, the required
functionality of the API was achieved. Our preliminary
measurements (where a 100 Mbit/s LAN emulated an
access network) of the time needed for session
establishment obtained a result of up to 8 seconds,
while the renegotiation time was from less than 1
second to up to 4 seconds, depending on a scenario.
These being only initial results, our current work
focuses on developing more elaborate scenarios and
studying the critical performance issues.

5. Conclusions

With an appropriate support within the network
related to the matching and QoS optimization, DSA
API offers various benefits to application developers. It
may simplify the development of advanced multimedia
applications with network-aware adaptation and thus
shorten the development time. The proposed approach
differs from current approaches, where applications
either (1) do not use signaling at all (e.g., most Internet
applications), or, (2) use a standard network and/or
service-specific signaling protocol (e.g., SIP) but have
the signaling capability built into, and thus inseparable
from the application and/or the platform. While the
second approach enables the exchange of control
information, it is practically impossible to reuse this
functionality due to tight coupling with the application.
Moreover, this approach requires that the application
developer knows the signaling protocol specifics very
well, and is capable of building a “signaling agent”
into each new application from scratch. Finally, once
built into the application, signaling support can not be
upgraded to, e.g., a newer release of the signaling
protocol without significant effort in rebuilding the
whole application. The proposed approach solves these
problems, however, further research is needed to
properly address performance and scalability issues.

6. Acknowledgments

This work was carried out within the research
projects “Content Delivery and Mobility of Users and
Services in New Generation Networks,” supported by
the Ministry of Science, Education and Sports of the
Republic of Croatia, and “Networked Virtual Reality in
IMS,” supported by Ericsson Nikola Tesla, Croatia.
The authors would also like to acknowledge the
students Ivan Piskovic and Mirko Suznjevic for their
contribution in developing the prototype application
during eNTERFACE’06, the SIMILAR NoE Summer
Workshop on Multimodal Interfaces.

7. References

[1] Camarillo, G., and M.A. Garcia-Martin, The 3G IP
Multimedia Subsystem (IMS): Merging the Internet and the
Cellular Worlds, John Wiley & Sons, West Sussex, 2004.
[2] K. Nahrstedt, “Challenges of Providing End-to-End QoS
Guarantees in Networked Multimedia Systems,” ACM Comp.
Surv. Jour., Vol. 27, No. 4, December 1995, pp. 613-616.
[3] X. Wang, and H. Schulzrinne, “Comparison of Adaptive
Internet Multimedia Applications,” IEICE Trans. on
Commun., Vol. E82-B, No. 6, June 1999, pp. 806-818.
[4] M. Matijasevic, D. Gracanin, K.P. Valavanis, and I.
Lovrek, “A Framework for Multi-user Distributed Virtual
Environments,” IEEE Trans. SMC, Part B, Vol. 32, No. 4,
August 2002, pp. 416–429.
[5] ––, 3GPP TS 23.228: IP Multimedia Subsystem (IMS);
Stage 2, Release 7, June 2005.
[6] ––, 3GPP TS 23.218: IP Multimedia (IM) session
handling; IM call model; Stage 2, Release 7, June 2006.
[7] ––, 3GPP TS 24.228: IP multimedia call control protocol
based on Session Initiation Protocol (SIP) and Session
Description Protocol (SDP); Stage 3, Release 7, December
2005.
[8] J. Rosenberg et al., “SIP: Session Initiation Protocol,”
IETF RFC 3261, June 2002.
[9] T. Guenkova-Luy, A.J. Kassler, and D. Mandato, “End-
to-End Quality-of-Service Coordination for Mobile
Multimedia Applications,” IEEE JSAC, Vol. 22, No. 5, June
2004, pp. 889-903.
[10] R. Prior, S. Sargento, D. Gomes, and R.L. Aguiar,
“Heterogeneous Signaling Framework for End-to-end QoS
Support in Next Generation Networks,” Proc. of 38th HICSS,
CD-ROM Proceedings, Big Island, HI, USA, January 2005.
[11] L. Skorin-Kapov, and M. Matijasevic, “End-to-end QoS
Signaling for Future Multimedia Services in the NGN,” Proc.
of New2AN 2006, LNCS vol. 4003, 2006, pp. 408-419.
[12] NIST-SIP [Online: http://snad.ncsl.nist.gov/proj/iptel/]
[13] SAX [Online: http://www.saxproject.org/sax1-
roadmap.html]
[14] D. Kutscher, J. Ott, and C. Bormann, “Session
Description and Capability Negotiation,” IETF Internet
Draft, draft-ietf-mmusic-sdpng-08.txt, February 2005.

