Aktivni i završeni projekti

AKTIVNI PROJEKTI: 

Sensor Fusion (SENFUS) 

- project (2019 - 2022)

- main partner: ams AG, Graz (Austria)

Abstract:

Kroz projekt SensorFusion uspostavlja se okruženje za integriranje ARM Cortex računalne platforme na nivou čipa s naglaskom na povezivanje ARM jezgre s okolnim senzorima i uz obradu informacija iz senzora te sigurno čuvanje informacija. Zasebno se razvija brzo digitalno sučelje za komunikaciju sa senzorima i integrira na nivou čipa zajedno s ARM jezgrom. Posebno se vodi računa o fizičkom mjerenju i verifikaciji digitalne platforme te o mjerenju i verifikaciji ispravnog rada analognih dijelova sustava s ciljem automatiziranje procesa verifikacije ispravnog rada cijelog analogno-digitalnog sustava na čipu.   

Brzi prekidački pretvornici zasnovani na GaN elementima i rezonantnim arhitekturama (IP-2019-04-8959)

- projekt FASCON (http://www.fer.unizg.hr/fascon) (2020 - 2024) 

- financirano od: Hrvatske zaklade za znanost

Sažetak:

Prekidački pretvornici vrlo su značajni u modernoj elektronici za prenosive uređaje i za automobilsku elektroniku zbog njihove visoke efikasnosti. Kroz ovaj projekt razvijaju se metode za smanjenje generiranih elektromagnetskih (EM) smetnji kod rezonantnih pretvornika dok se u isto vrijeme održava visoka efikasnost. Analizira se više pristupa. Korištenje tehnike raspršenog spektra poboljšava elektromagnetsku kompatibilnost (EMC), ali može narušiti druge karakteristike pretvornika, npr. efikasnost. Modulacija s raspršenim spektrom je u komercijalnim pretvornicima uobičajeno fiksirana i njeni parametri se ne mogu podešavati. Korištenjem konfigurabilne modulacije raspršenog spektra mogu se smanjiti EM emisije bez žrtvovanja ostalih karakteristika. Drugo, korištenje galij-nitrid (GaN) tranzistora u prekidačkim pretvornicima umjesto silicijskih tranzistora smanjuje gubitke i omogućava rad pretvornika na višim prekidačkim frekvencijama. Zatim se istražuje utjecaj omjera ulaznog i izlaznog napona na efikasnost i EM emisije kod pretvornika koji rad ne visokim prekidačkim frekvencijama i koji se sastoje od više stupnjeva. Mjerenja prekidačkih pretvornika vrlo su zahtjevna, prije svega zbog mjerenja tranzistora na gornjoj strani, a osim toga i mjerenja EM smetnji. U ovom projektu razvija se cjelovito elektro-optičko mjerno okruženje za karakterizaciju elektromagnetske kompatibilnosti i mjerenje prekidačkih tranzistora. Provodi se analiza elektro-optičkog sustava kroz procjenu karakteristika te korisnosti pri mogućem komercijalnom korištenju sustava. Predloženo istraživanje ispituje metode optimiranja efikasnosti prekidačkih pretvornika snage uz održavanje elektromagnetskih emisija unutar dozvoljenih granica korištenjem novih elektroničkih elemenata i arhitektura istosmjernih pretvornika snage.

Mjerenje velikih struja 

- project (2020 - 2021)

- main partner: AVL List GmbH, Graz (Austria)

Abstract:

The main goal is to measure high currents very precisely.   

ESD modelling (MUNJA)

- project (2018 - 2022)

- main partner: ON Semiconductor BVBA, Oudenaarde (Belgium)

Abstract:

The main goal is to model various aspects of ESD behaviour, including device level modelling and full-chip ESD modelling.  

ZAVRŠENI PROJEKTI:

 

Broadband probe and stress test chip

- IVPROBE project (2015 - 2018)

- partner: ON Semiconductor BVBA, Oudenaarde (Belgium)

Abstract:

The main goal is to design and test a broadband current-voltage probe applicable to measurements of large currents/voltages in electromagnetically-hostile environment. The probe is intended for on-wafer measurements of ICs.  

 

 

Napredna metodologija projektiranja prekidačkih istosmjernih pretvornika (IP-2014-09-6405)

- projekt AdvaDCDC (http://www.fer.unizg.hr/advadcdc) (2015 - 2019) 

- financirano od: Hrvatske zaklade za znanost

Sažetak:

U ovom projektu razvija se napredna metodologija projektiranja prekidačkih istosmjernih pretvornika.

Gornja sklopka, donja sklopka, pobudni i upravljački sklopovi integrirani su u jednom pakiranju, što minimizira utjecaj parazitnih elemenata i omogućava prekapčanja do 10 MHz. Razvit će se pobudni sklop s visokopreciznom kontrolom signala gornje i donje sklopke, što će omogućiti optimiranje mrtvog vremena s obzirom na efikasnost pretvaranja i smanjenje gubitaka za bilo koju kombinaciju parametara pakiranja integriranog sklopa, vanjskih komponenata i tiskane pločice.

Posebna je pažnja posvećena projektiranju sklopa za pomak istosmjernog nivoa gornje sklopke. Osim što služi kao pobudni sklop za sklopke velike struje koje se nalaze na čipu, razvijeni pobudni sklop pobuđuje i vanjske pinove integriranog sklopa kako bi omogućio korištenje vanjskih sklopki.

Galij-nitrid (GaN) i silicij-karbid (SiC) poluvodički elementi predstavljaju obećavajuće rješenje za visokonaponske i visokoefikasne pretvornike. Istosmjerni pretvornici koji koriste GaN/SiC tranzistore mogu se optimirati korištenjem prethodno razvijenog pobudnog sklopa. Razvijena metodologija omogućit će evaluaciju efikasnosti GaN i SiC elemenata u visokonaponskim prekidačkim primjenama kao i projektiranje kvalitetno optimiranih pretvornika. Tiskana pločica na koju je zalemljen čip pretvornika predstavlja sljedeći ključni dio dizajna pretvornika i ima dominantni utjecaj na određivanje elektromagnetske kompatibilnosti i termičkih svojstava pretvornika.

Razvit će se simulacijsko okruženje koje omogućava elektromagnetsko-termičku kosimulaciju istosmjernih pretvornika. Provest će se statistička analiza parametara tiskane pločice i pakiranja integriranog sklopa kako bi se osiguralo da varijacije u proizvodnji ne narušavaju pouzdanost i efikasnost projektiranih pretvornika.

 

On-chip EMC sensor 

- project (2017 - 2018)

- main partner: ams AG, Premstaetten (Austria)

Abstract:

The main goal is to design an on-chip electromagnetic compatibility sensor.  

Electromagnetic Compatibility Simulation Environment 

- partner: ams AG (Austria) (1 Sept 2014 - 31 Aug 2017)

Abstract:

The main goal is behavioural modelling of analogue electronic circuits in the time domain for functional modelling as well as for modelling of electromagnetic compatibility of electronic circuits.  

Next Generation Highly Integrated RF Gate Drive Circuit for High Switching Speed Semiconductors

- project (2016 - 2017)

- main partner: UTRC, Cork (Ireland)

Abstract:

The main goal is to design an isolated driver of high-voltage high-current switching devices (MOSFET, GaN HEMT). 

Bežično napajani mikroelektronički sklop za distribuirane senzorske mreže

- Strukturnih fondova EU u sklopu programa 2007.-2013., Ministarstvo znanosti, obrazovanje i sporta, Hrvatska (21 Oct2014 - 20 Feb 2016), MIS kod RC.2.2.08-16

Kratki opis projekta:

Tipičan pristup napajanju ovakvih uređaja je baterijsko napajanje. Glavni nedostaci takvog pristupa su dimenzije uređaja, te trajanje i cijena baterije. U novije vrijeme teži se integraciji sklopova za obradu podataka u jedan čip koji prikuplja energiju potrebnu za rad iz okoline (pasivni uređaji). Jedna od najpopularnijih metoda je prikupljanje energije iz elektromagnetskih valova. U ovom projektu procesirat (proizvest) će se bežično napajani čip koji uljučuje sklopove za bežično napajanje, analogno-digitalni pretvornik, oscilator i komunikacijski kanal.

Predloženi projekt poklapa se sa svim glavnim prioritetima Obzora 2020 kao što su jačanje istraživačke infrastrukture kupnjom opreme - prioritet Izvrsna znanost (eng. Excellent Science), briga za zdravlje, demografske promjene i kvaliteta života - prioritet Društveni izazovi (Societal Challanges) te održivi informatički razvoj razvojem softverske podrške za čip - prioritet Industrijsko vodstvo (Industrial Leadership).

Uložena EU sredstva rezultirat će nabavom opreme te će se time poboljšat istraživačka infrastruktura Prijavitelja projekta (Fakultet elektrotehnike i računarstva) te proizvodnjom čipova koji bi se mogli koristiti npr. u uređajima za praćenje zdravlja pacijenata. Industrijski partner na ovom projektu je tvrtka Locus d.o.o. koja se ističe širokom ekspertizom, od projektiranja čipova do razvoja složenih softverskih aplikacija. Ciljane skupine su proizvođači složenih elektroničkih uređaja koji će integracijom čipa i senzora ostvarivati potrebnu funkcionalnost svojeg uređaja. 

 

Elektro-optički detektor za mjerenje širokopojasnih strujnih izboja na čipovima

- BICRO PoC projekt (1 Jan 2014 - 31 May 2015)

Project objectives:

This project proposes to develop a probe to measure the characteristics of the circuits that are used as protection from electrostatic discharge. The basic concept is the usage of electro-optical converter to avoid the influence of electromagnetic noise on the measurement results. This electromagnetic noise originates from the physucal effect that is being measured and it is not possible to avoid it by shielding. By using the electro-optical converter near the point where the measurement is taken, it is possible to avoid the coupling of the electromagnetic noise to long interconnect or measurement cables. The side of the measurement set-up which receives the optical signal is several meteres apart form the point where the measurement is taken and the influence of the electromagnetic noise is minimised because the receiving side is connected to the measurement point only by an optical cable. 

 

Intelligent light Management for OLED on foil Applications

- IMOLA, FP7 project (http://www.imola-project.eu/) (1 Oct 2011 - 31 Mar 2015)

- partners: imec (Belgium), TNO (Netherlands), Philips Technologie GmbH (Germany), Fundico (Belgium), Hanita Coatings RCA Ltd (Israel), Henkel Electronic Materials (Belgium), Centro Ricerche Plast-optica SpA (Italy)  

Project Objectives: 

The main objective of the IMOLA project is the realization of a large-area OLED-based lighting module with built-in intelligent light management. Interesting applications are wall, ceiling and car dome lighting, where the light intensity can be adjusted uniformly or locally according to the time of the day or the position of a person, or even road lighting, where the light can follow a car.

The front side of the module consists of OLED tiles attached and interconnected to a flexible backplane foil. In an early stage of the project, individual tiles (on glass as well as on foil) will be used, but in a later stage OLED tiles on the roll will be laminated and interconnected to the backplane.

The backplane of the module contains the integrated driver electronics for the brightness control of the individual OLED tiles. A very thin and efficient smart-power chip converts a single 40V supply voltage into a controllable DC current for each OLED tile. This power converter chip employs an external passive component (inductor) that will preferably be embedded into the backplane foil. As the smart-power chip also allows the integration of dense CMOS circuitry, extra functionality and intelligence can be implemented on the chip. This includes optical feedback to eliminate non-uniformities between the tiles or to compensate OLED degradation effects. Other sensor functions can provide maximum interaction with the environment. Furthermore, advanced communication features, e.g. by means of PLC techniques across the power supply lines, can enable intelligent brightness control from a central unit.

Within the consortium, all necessary expertise is available to ensure perfect coverage of all technological aspects (such as OLED and backplane foil development, chip placement, electrical interconnect, component embedding and lamination) as well as all design aspects (driver chip design, inductor design and EMC) in this challenging project.

 

Integrated voltage regulator using novel topologies and devices

- INVENT, IWT project (1 July 2011 - 31 Mar 2015)

- partners: ON Semiconductor (Belgium), KU Leuven (Belgium)  

Abstract:

By combining the unique skills and experiences of the partners in the consortium, the high level objective of this project is to investigate integrated high power DC-DC converters using novel topologies and devices. More specific, the objectives are to research and develop novel device architectures with optimal performance, investigate manufacturing of these devices on SOI substrate, research integrated DC-DC converter topologies and the various levels of integration, and investigate the EMC robustness of the DC-DC converter topologies proposed in the project. 

 

Improvement of Electromagnetic Reliability System Performance by applying Electromagnetic Synergy

- GoldenGates, IWT project (2009 - 2012)

- partners: ON Semiconductor (Belgium), KU Leuven (Belgium)  

Abstract:

The main goal is to provide the IC designer with a modeling and simulation environment that takes into account the IC, the PCB and the system level and enables a significant improvement of the first-time-right EMC target success rate. The new models and simulation flow will be created and validated in the project and design guidelines will be provided.

 

Automotive IC design for large EMC

- Parachute, MEDEA project (2007 - 2009)

- partners: AMI Semiconductor (Belgium), KU Leuven (Belgium)  

Abstract:

EMC is a major issue with respect to the design of electronic products and a very costly problem if the EMC requirements are not satisfied. In order to accurately model and predict the performance of integrated circuits, printed circuit boards and whole systems it is necessary to use accurate models of the whole path going from the chip (silicon) up to the system level. University of Zagreb focuses on modelling TEM cell, transmission lines inserted into the TEM cell, coupling between the EM fields in the TEM cell and transmission lines, modelling of SMD components and chip packaging.

 

ROBUst mixed signal design methodologies for Smart Power ICs

- ROBUSPIC, FP6 project (http://www-g.eng.cam.ac.uk/robuspic/) (1 Dec 2003 - 31 Mar 2007)

- partners: AMI Semiconductor (Belgium), Robert Bosch (Gerany), Cadence Design Systems (France), Cambridge Semiconductor - CamSemi (UK), EPFL (Switzerland), imec (Belgium), KU Leuven - ESAT - TELEMIC (Belgium), University of Cambridge (UK)   

Abstract:

Smart power circuits and technologies contribute in a unique way to the realization of the system-on-chip concept by combining digital logic with analogue signal processing and power and high voltage switching. The main objective of this project is to enable a robust design of smart power circuits leading to a first-time-right design with built-in reliability and thus avoiding very costly over-dimensioning. To achieve this ambitious goal, compact models will be built that accurately describe power device operation including extensions to verify safe-operating area conditions. The devices to be modelled include the lateral DMOS, vertical DMOS and LIGBT fabricated in bulk silicon and power devices realized in advanced SOI technology.Model extensions are planned for device ageing due to hot-carrier injection, statistics due process variations, device matching and layout effects such as large area closed-cell matrices. An important feature will be an accurate description of the internal device temperature plus a coupling to package thermal models and EMC modelling. The final goal is to achieve a system level design flow for smart-power SoC using complex transistor level simulations or generated black-box models. Full smart power circuits will be simulated with the new design flow and models will be assessed and calibrated against experimental measurements. The gain in performance and robustness will be quantified. The project therefore aims at providing the EC "power" industrial community with new, highly robust tools to design and characterize smart power devices and circuits. This will strengthen and significantly advance ECs position as a fast growing, world supplier of smart power technologies. Design and fabrication of highly reliable and efficient Smart Power circuits is one of the most important strategic ways to reduce drastically energy losses in power systems by ensuring optimal energy conversion at all times.