prof. dr. sc. Vladimir Ćepulić

Retired, Department of Applied Mathematics

Location:
Public phone number:
6129-904
Internal phone number:
404

Volume of Pyramids and Cones

Ćepulić, Vladimir ; Greblički, Marijana
2017.
Poučak

Mathematics 2

Andrea Aglić Aljinović, Vladimir Ćepulić, Neven Elezović, Lana Horvat Dmitrović, Ljubo Marangunić, Tomislav Šikić, Ana Žgaljić Keko, Darko Žubrinić, Vesna Županović
2015.

Mathematics 1

Andrea Aglić Aljinović, Ilko Brnetić, Vladimir Ćepulić, Neven Elezović, Ljubo Marangunić, Mervan Pašić, Darko Žubrinić, Vesna Županović
2014.

Finite 2-groups all of whose proper subgroups have commutator groups of order ≤ 2.

Ćepulić, Vladimir ; Pyliavska, Olga Stepanivna
2009.
Glasnik Matematički

On finite 2-groups all of whose subgroups are mutually isomorphic

Ćepulić, Vladimir
2009.
Science in China Series A: Mathematics

On finite 2-groups all of whose maximal subgroups are mutually isomorphic

Ćepulić, Vladimir
2008.
The International Conference on Group Theory and Related Topics

Finite 2-groups all of whose proper subgroups have commutator groups of order ≤ 2.

Ćepulić, Vladimir ; Pyliavska, Olga S.
2007.
Second International Congress in Algebra and Combinatorics

A class of nonabelian nonmetacyclic finite 2-groups

Ćepulić, Vladimir ; Pyliavska, Olga ;
2006.
Glasnik matematički

Second-metacyclic p-groups for odd primes

Ćepulić, Vladimir ; Kovač Striko, Elizabeta ; Pyliavska, Olga
2006.
Glasnik Matematički

Second-metacyclic finite 2-groups

Ćepulić, Vladimir ; Ivanković, Marijana ; Kovač Striko, Elizabeta
2005.
Glasnik matematički

A lines-points relation formula for symmetric block design

Ćepulić, Vladimir ; Slamić, Pajo
2004.
Combinatorics, Special functions and Physics, In honor of 75th birthday of James D. Louck

Group theory and Polya-Redfield theorem

Ćepulić, Vladimir
2003.

A classification of finite 2-groups with some non-metacylic subgroups and with all second maximal subgroups being metacyclic

Ćepulić, Vladimir ; Ivanković, Marijana ; Kovač Striko, Elizabeta
2003.
IV international Algebraic conference in Ukraine

Symmetric block designs (61,16,4) admitting an automorphism of order 15

Ćepulić, Vladimir
2000.
Glasnik matematički

The unique symmetric block design (61,16,4) admitting an automorphism of order 15 operating standardly

Ćepulić, Vladimir
1997.
Discrete Mathematics

The unique symmetric block design (61,16,4) admitting an automorphism of order 15 operating standardly

Ćepulić, Vladimir
1997.
Discrete mathematics

On symmetric block designs (40, 13, 4) with automorphisms of order 13

Ćepulić, Vladimir
1996.
Glasnik matematički

Biplanes (56, 11, 2) with involutory automorphism fixing 14 points

Ćepulić, Vladimir ; Essert, Mario
1996.
Glasnik matematički

On biplanes (56, 11, 2) with automorphism groups of order four

Ćepulić, Vladimir
1996.
Glasnik matematički

BIPLANES AND THEIR AUTOMORPHISMS

Ćepulić, Vladimir ; Essert, Mario
1989.
Studia scientiarum mathematicarum Hungarica

BIPLANES (56, 11, 2) WITH AUTOMORPHISMS OF ORDER 4 FIXING SOME POINT

Ćepulić, Vladimir ; Essert, Mario
1988.
SIAM journal on discrete mathematics

Biplanes (56, 11, 2) with Automorphism Group Z2xZ2 Fixing Some Point

Ćepulić, Vladimir ; Essert, Mario
1988.
Journal of combinatorial theory. Series A

Teaching duties

University graduate