Stochastic Processes

Learning Outcomes

  1. Understand the basic principles of stochastic processes
  2. Learn to distinguish between stochastic processes according to their properties.
  3. Understand the characteristic lack of memory in different cases
  4. To interpret the behavior of the process in accordance with the theoretical laws.
  5. Determine the probability of prominent events related to stochastic processes.
  6. Learn to model simple problems using stochastic techniques.
  7. Apply stochastic techniques in the analysis of various systems.

Forms of Teaching


4 hours per week

Partial e-learning

Online materials.

Independent assignments

Each student must solve some problems on his own.

Grading Method

Continuous Assessment Exam
Type Threshold Percent of Grade Threshold Percent of Grade
Quizzes 0 % 20 % 0 % 0 %
Seminar/Project 0 % 15 % 0 % 0 %
Mid Term Exam: Written 0 % 40 % 0 %
Final Exam: Written 0 % 40 %
Exam: Written 0 % 100 %

Week by Week Schedule

  1. Conditioning on a random variable; Conditioning on a sigma-field; Conditional expectation and distributions.
  2. Sums of independent random variables; Stoping times Wald identities; Generating functions.
  3. Random walks; Probability of ruin; Recurrent events.
  4. Foundations and examples; construction of Markov chains; Transition probabilities and the Chapman-Kolmogorov equation; Stopping times and strong Markov property; Absorbing states; transient and recurrent states; Branching processes.
  5. Limit theorems and stationary distributions; State classifications; Ergodic theorems; Finite-dimensional distributions of processes; Moments; correlation and covariation functions; Classes of processes: Markov, homogenous Markov, weak/strong stationary, independent increment processes; Transition and density matrix and Chapman-Kolmogorov equation for Markov processes.
  6. Homogeneous Poisson processes; Memoryless property.
  7. Poisson processes and uniform, exponential and binomial distributions; Nonhomogeneous Poisson processes; Mixed and Compound Poisson Processes; Poisson arrivals.
  8. Midterm exam.
  9. Basic concepts and examples; Transition probabilities and rates; Birth and death processes; Kolmogorov differential equations; Stationary state probabilities; Ergodic theorems.
  10. Renewal Functions; Excess life, current life and total life; Strong laws of large numbers; Recurrence times; Terminating renewal processes; Stationary renewal processes; Alternating Renewal Processes.
  11. Basic concepts; The Erlang model, M/M/1 and M/M/c queue.
  12. Loss systems: M/M systems; Waiting systems: M/G and G/M models; Network of queueing systems.
  13. Introduction; Properties of Brownian motion; Multidimensional and conditional distributions; First passage times.
  14. Transfornmations of the Brownian motion; Brownian motion with drift; White noise; Diffusion processes.
  15. Final exam.

Study Programmes

University undergraduate
Computing (study)
Elective Courses (6. semester)
Electrical Engineering and Information Technology (study)
Elective Courses (6. semester)
University graduate
Audio Technologies and Electroacoustics (profile)
Elective Courses (2. semester)
Communication and Space Technologies (profile)
Elective Courses (2. semester)
Computational Modelling in Engineering (profile)
Elective Courses (2. semester)
Computer Engineering (profile)
Elective Courses (2. semester) Mathematics and Science (2. semester)
Computer Science (profile)
Elective Courses (2. semester) Mathematics and Science (2. semester)
Control Engineering and Automation (profile)
Mathematics and Science (2. semester)
Control Systems and Robotics (profile)
Elective Courses (2. semester)
Data Science (profile)
Elective Courses (2. semester)
Electrical Engineering Systems and Technologies (profile)
Mathematics and Science (2. semester)
Electrical Power Engineering (profile)
Elective course (2. semester) Mathematics and Science (2. semester)
Electric Machines, Drives and Automation (profile)
Elective Courses (2. semester)
Electronic and Computer Engineering (profile)
Elective Courses (2. semester) Mathematics and Science (2. semester)
Electronics (profile)
Elective Courses (2. semester) Mathematics and Science (2. semester)
Information and Communication Engineering (profile)
Elective courses (2. semester)
Information Processing (profile)
Mathematics and Science (2. semester)
Network Science (profile)
Elective Courses (2. semester)
Software Engineering and Information Systems (profile)
Elective Courses (2. semester) Mathematics and Science (2. semester)
Telecommunication and Informatics (profile)
Mathematics and Science (2. semester)
Wireless Technologies (profile)
Mathematics and Science (2. semester)


(.), Neven Elezović, Stohastički procesi,
Frank Beichelt (2006.), Stochastic Processes in Science, Engineering and Finance, Chapman & Hall/CRC


ID 183365
  Summer semester
L3 English Level
L3 e-Learning
60 Lectures
0 Exercises
0 Laboratory exercises
0 Project laboratory

Grading System

85 Excellent
70 Very Good
55 Good
45 Acceptable