Popis predmeta

Course Description

Introduction to machine vision. Image acquisition and processing chain. Illumination. Interaction between light and object's surface. Bidirectional reflectance distribution function. Lambertian reflectance. Light sources. Spatial arrangement of illumination. Lightfield and darkfield. Background illumination. Diffuse illumination. Lenses. Focal length. Focal plane. Aperture. Field of view. Depth of field. F-number. Mounts. Lens types. Optical sensor types. Mechanical and electronic shutter. Integration time. Global and rolling shutter. Progressive and interlaced scanning. Optical transfer function. Modulation transfer function. Resolution of lens-sensor pair. Paring a lens with a sensor. Image formation model. Radial distortion (pincushion and barrel). Perspective and orthographic projection. Geometric camera calibration. Camera to computer interfaces. Industrial standards: GenCam, GigEVision, USB3Vision, CameraLink. Color. Optical filters. Bayer filter. Demosaicing. RGB and YUV images. Processing paradigm: acquire-register-analyze. Image registration. Geometrical transformations. Homography. Software tools: OpenCV.

Learning Outcomes

  1. define the basic concepts of machine vision
  2. list standards and technologies which are used in machine vision
  3. select which illumination to use depending on the application
  4. select which camera to use depending on the application
  5. compute parameters of illumination and of lens for good image acquisition
  6. develop a machine vision system for visual quality control

Forms of Teaching

Lectures

Lectures present theoretical concepts that are illustrated using concrete examples.

Laboratory

Laboratory exercises introduce the student to the standard machine vision hardware.

Grading Method

Continuous Assessment Exam
Type Threshold Percent of Grade Threshold Percent of Grade
Laboratory Exercises 50 % 20 % 50 % 20 %
Seminar/Project 20 % 20 % 20 % 20 %
Mid Term Exam: Written 20 % 30 % 0 %
Final Exam: Written 20 % 30 %
Exam: Written 50 % 60 %
Comment:

The threshold on the combined midterm and final exam score is 50%.

Week by Week Schedule

  1. Introduction to machine vision. Image acquisition and processing chain.
  2. Illumination. Interaction between light and object's surface. Bidirectional reflectance distribution function. Lambertian reflectance.
  3. Light sources. Spatial arrangement of illumination. Lightfield and darkfield. Background illumination. Diffuse illumination.
  4. Lenses. Focal length. Focal plane. Aperture. Field of view. Depth of field. F-number. Mounts. Lens types.
  5. Optical sensor types. Mechanical and electronic shutter. Integration time. Global and rolling shutter. Progressive and interlaced scanning.
  6. Optical transfer function. Modulation transfer function. Resolution of lens-sensor pair. Paring a lens with a sensor.
  7. Image formation model. Radial distortion (pincushion and barrel). Perspective and orthographic projection.
  8. Midterm exam
  9. Geometric camera calibration.
  10. Camera to computer interfaces. Industrial standards: GenICam, GigEVision, USB3Vision, CameraLink.
  11. Color. Optical filters. Bayer filter. Demosaicing. RGB and YUV images.
  12. Image registration. Geometrical transformations. Homography.
  13. Processing paradigm: acquire-register-analyze. Examples from industry: visual quality control.
  14. Presentation of students' projects
  15. Final exam

Study Programmes

University graduate
Audio Technologies and Electroacoustics (profile)
Free Elective Courses (1. semester) (3. semester)
Communication and Space Technologies (profile)
Free Elective Courses (1. semester) (3. semester)
Computational Modelling in Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Computer Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Computer Science (profile)
Free Elective Courses (1. semester) (3. semester)
Control Systems and Robotics (profile)
Free Elective Courses (1. semester) (3. semester)
Data Science (profile)
Free Elective Courses (1. semester) (3. semester)
Electrical Power Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Electric Machines, Drives and Automation (profile)
Free Elective Courses (1. semester) (3. semester)
Electronic and Computer Engineering (profile)
Elective Courses of the Profile (1. semester) (3. semester)
Electronics (profile)
Free Elective Courses (1. semester) (3. semester)
Information and Communication Engineering (profile)
Elective Courses of the Profile (1. semester) Elective Coursesof the Profile (3. semester)
Network Science (profile)
Free Elective Courses (1. semester) (3. semester)
Software Engineering and Information Systems (profile)
Free Elective Courses (1. semester) (3. semester)

Literature

Alexander Hornberg, editor (2006.), Handbook of Machine Vision, Willey-VCH
Sidney F. Ray (2002.), Applied Photographic Optics, Focal Press
E. R. Davies (2004.), Machine Vision: Theory, Algorithms, Practicalities, Morgan Kaufmann

For students

General

ID 222790
  Winter semester
5 ECTS
L0 English Level
L1 e-Learning
30 Lectures
15 Laboratory exercises

Grading System

87 Excellent
75 Very Good
63 Good
51 Acceptable

Similar Courses

Learning Outcomes

  1. define the basic concepts of machine vision
  2. list standards and technologies which are used in machine vision
  3. select which illumination to use depending on the application
  4. select which camera to use depending on the application
  5. compute parameters of illumination and of lens for good image acquisition
  6. develop a machine vision system for visual quality control

Forms of Teaching

Lectures

Lectures present theoretical concepts that are illustrated using concrete examples.

Laboratory

Laboratory exercises introduce the student to the standard machine vision hardware.

Grading Method

Continuous Assessment Exam
Type Threshold Percent of Grade Threshold Percent of Grade
Laboratory Exercises 50 % 20 % 50 % 20 %
Seminar/Project 20 % 20 % 20 % 20 %
Mid Term Exam: Written 20 % 30 % 0 %
Final Exam: Written 20 % 30 %
Exam: Written 50 % 60 %
Comment:

The threshold on the combined midterm and final exam score is 50%.

Week by Week Schedule

  1. Introduction to machine vision. Image acquisition and processing chain.
  2. Illumination. Interaction between light and object's surface. Bidirectional reflectance distribution function. Lambertian reflectance.
  3. Light sources. Spatial arrangement of illumination. Lightfield and darkfield. Background illumination. Diffuse illumination.
  4. Lenses. Focal length. Focal plane. Aperture. Field of view. Depth of field. F-number. Mounts. Lens types.
  5. Optical sensor types. Mechanical and electronic shutter. Integration time. Global and rolling shutter. Progressive and interlaced scanning.
  6. Optical transfer function. Modulation transfer function. Resolution of lens-sensor pair. Paring a lens with a sensor.
  7. Image formation model. Radial distortion (pincushion and barrel). Perspective and orthographic projection.
  8. Midterm exam
  9. Geometric camera calibration.
  10. Camera to computer interfaces. Industrial standards: GenICam, GigEVision, USB3Vision, CameraLink.
  11. Color. Optical filters. Bayer filter. Demosaicing. RGB and YUV images.
  12. Image registration. Geometrical transformations. Homography.
  13. Processing paradigm: acquire-register-analyze. Examples from industry: visual quality control.
  14. Presentation of students' projects
  15. Final exam

Study Programmes

University graduate
Audio Technologies and Electroacoustics (profile)
Free Elective Courses (1. semester) (3. semester)
Communication and Space Technologies (profile)
Free Elective Courses (1. semester) (3. semester)
Computational Modelling in Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Computer Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Computer Science (profile)
Free Elective Courses (1. semester) (3. semester)
Control Systems and Robotics (profile)
Free Elective Courses (1. semester) (3. semester)
Data Science (profile)
Free Elective Courses (1. semester) (3. semester)
Electrical Power Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Electric Machines, Drives and Automation (profile)
Free Elective Courses (1. semester) (3. semester)
Electronic and Computer Engineering (profile)
Elective Courses of the Profile (1. semester) (3. semester)
Electronics (profile)
Free Elective Courses (1. semester) (3. semester)
Information and Communication Engineering (profile)
Elective Courses of the Profile (1. semester) Elective Coursesof the Profile (3. semester)
Network Science (profile)
Free Elective Courses (1. semester) (3. semester)
Software Engineering and Information Systems (profile)
Free Elective Courses (1. semester) (3. semester)

Literature

Alexander Hornberg, editor (2006.), Handbook of Machine Vision, Willey-VCH
Sidney F. Ray (2002.), Applied Photographic Optics, Focal Press
E. R. Davies (2004.), Machine Vision: Theory, Algorithms, Practicalities, Morgan Kaufmann

For students

General

ID 222790
  Winter semester
5 ECTS
L0 English Level
L1 e-Learning
30 Lectures
15 Laboratory exercises

Grading System

87 Excellent
75 Very Good
63 Good
51 Acceptable

Similar Courses