Mathematics of Codes

Course Description

Finite fields. Vector spaces over finite fields. Linear codes. Geometry of vector spaces. Standard geometric codes. Hadamard codes and generalizations. Cyclic codes. BCH-codes. Reed-Muller codes. Perfect codes. Permutation groups. Permutation Decoding.

Study Programmes

Postgraduate doctoral study programme

Literature

(.), R. Hill, A first course in coding theory, Clarendon Press, 2003.,
(.), J. H. van Lint, Introduction to Coding Theory, Springer, 1999.,
(.), F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North Holland, 1983.,
(.), W. C. Huffman, Codes and Groups, in Handbook of Coding Theory (eds V. S. Pless and W. C. Huffman), Elsevier, 1998., pp. 1345-1440.,
(.), E. F. Assmus and J. D. Key, Designs and their codes, Cambridge University Press, 1992.,

General

ID 154884
  Summer semester
6 ECTS