Micro and Nano Electron Devices

Course Description

Modern micro and nano electron devices. Components of digital integrated circuits. Scaled MOS transistors. Short channel effects. Effect of parasitic regions. Velocity saturation effect. Speed limitations of transistors. Memory cells. Image sensors. MOS capacitance. Charge coupled devices (CCD). Active pixel CMOS sensors. Image sensor technology. Active matrix display devices. Devices for communication circuits. Devices for low-power circuits. Silicon on insulator (SOI) technology and devices. Process integration techniques. Future nanoelectronic components and materials.

Learning Outcomes

  1. define the rules of semiconductor technology development
  2. explain the physical principles of advanced transistors
  3. explain the scaling of MOS structures
  4. analyze short channel effects
  5. identify the limitations of advanced transistors
  6. explain the effect of technological parameters on electrical characteristics of electron devices
  7. compare the advanced materials for future transistors
  8. analyze semiconductor image sensors and acquisition systems

Forms of Teaching

Lectures

Lectures

Exercises

Tutorials

Independent assignments

Seminar

Laboratory

Laboratory exercise

Grading Method

Continuous Assessment Exam
Type Threshold Percent of Grade Threshold Percent of Grade
Seminar/Project 0 % 15 % 0 % 15 %
Mid Term Exam: Written 0 % 30 % 0 %
Final Exam: Written 0 % 30 %
Final Exam: Oral 25 %
Exam: Written 0 % 50 %
Exam: Oral 35 %

Week by Week Schedule

  1. Energy band diagram
  2. Capacitance-voltage characteristics
  3. Oxide charges, Body effect
  4. Charged Coupled Devices (CCD), Image sensor technologies
  5. CMOS Active Pixel Sensors (APS)
  6. Data read-out and system integration
  7. Velocity saturation, Threshold voltage
  8. Midterm exam
  9. Drain Induced Barrier Lowering (DIBL), Punchthrough
  10. Moore's law; Scaling rules
  11. Electrostatic limitations, Physical limitations
  12. Advanced CMOS devices (FinFET, Ultra-thin body Double-gate)
  13. High-k, metal gate, Carrier transport
  14. Advanced materials (III-V CMOS, nano-tubes, graphene, Ge)
  15. Final exam

Study Programmes

University undergraduate
[FER3-EN] Computing - study
Elective Courses (5. semester)
[FER3-EN] Electrical Engineering and Information Technology - study
Elective Courses (5. semester)

Literature

Yuan Taur, Tak H. Ning (2013.), Fundamentals of Modern VLSI Devices, Cambridge University Press
Sima Dimitrijev (2006.), Principles of Semiconductor Devices, Oxford University Press, USA
(.), P. Biljanović. Poluvodički elektronički elementi. Školska knjiga,
(.), S. Sze, K. K. Ng, Physics of Semiconductor Devices, John Wiley & Sons,

For students

General

ID 223357
  Winter semester
5 ECTS
L3 English Level
L1 e-Learning
45 Lectures
0 Seminar
15 Exercises
4 Laboratory exercises
0 Project laboratory

Grading System

87 Excellent
75 Very Good
62 Good
50 Acceptable