Laser Physics

Learning Outcomes

  1. Describe the interaction of light with matter using classical and semi-classical theories.
  2. Explain the operation of laser resonator and laser theshold
  3. Explain the special properties of laser radiation compared to more conventional sources.
  4. Explain the meaning of Q-switching and mode-locking in puls lasers.
  5. Explain how the choice and characteristics of laser materials and resonator determine the ultimate behaviour of a laser.
  6. Analyze the properties of laser and determine possible applications.
  7. Evaluate the multi-disciplinary nature of engineering systems.

Forms of Teaching


The examples are solved during the lectures.

Seminars and workshops

Seminar is mandatory.


Laboratory experiments are on Department of applied physics. Laboratory is mandatory.

Grading Method

By decision of the Faculty Council, in the academic year 2019/2020. the midterm exams are cancelled and the points assigned to that component are transferred to the final exam, unless the teachers have reassigned the points and the grading components differently. See the news for each course for information on knowledge rating.
Continuous Assessment Exam
Type Threshold Percent of Grade Threshold Percent of Grade
Laboratory Exercises 0 % 24 % 0 % 24 %
Seminar/Project 0 % 15 % 0 % 15 %
Attendance 0 % 5 % 0 % 5 %
Mid Term Exam: Written 0 % 28 % 0 %
Final Exam: Written 0 % 28 %
Exam: Written 0 % 56 %

Week by Week Schedule

  1. Light absorption and emission; Einstein coefficients; Selection rules for absorption and emission.
  2. Absorption coefficient; Population inversion.
  3. Line profile and half-width of spectral lines; Lorentz model; Doppler broadening of spectral lines.
  4. Electromagnetic waves in resonator; Density of modes; Modes of open resonators.
  5. Different types of resonators; Fabry-Perot resonator; Fundamental Gauss mode.
  6. Threshold condition; Amplification and losses in resonators; The quality factor of resonators Q; Feedback amplification in lasers.
  7. Single mode and multimode lasers; Selection of single modes by optical prism; Grating and Fabry-Perot etalon; Spectral resolution of optical elements; Characteristic of laser light (directionalit, space and time coherence).
  8. Midterm exam.
  9. Pulse lasers (Q switching, mode-locking, gain switching).
  10. Gas lasers; Physical principles of atomic (He-Ne), ionic (Ar+ ion), molecular (CO2, N2), chemical and excimer lasers.
  11. Solid state lasers; Physical principles of crystal and glass lasers (ruby, Nd-Yag).
  12. Physical principles of fiber lasers; Resonators in fiber lasers.
  13. Physical principles of fiber lasers; Resonators in fiber lasers; Physical principles of semiconductor lasers; Physical principles of free electron and x-ray lasers.
  14. Holography; Applications of holography.
  15. Final exam.

Study Programmes

University undergraduate
Computing (study)
Elective Courses (6. semester)
Electrical Engineering and Information Technology (study)
Elective Courses (6. semester)
University graduate
Computer Engineering (profile)
Mathematics and Science (2. semester)
Computer Science (profile)
Mathematics and Science (2. semester)
Control Engineering and Automation (profile)
Mathematics and Science (2. semester)
Electrical Engineering Systems and Technologies (profile)
Mathematics and Science (2. semester)
Electrical Power Engineering (profile)
Mathematics and Science (2. semester)
Electronic and Computer Engineering (profile)
Mathematics and Science (2. semester)
Electronics (profile)
Mathematics and Science (2. semester)
Information Processing (profile)
Mathematics and Science (2. semester)
Software Engineering and Information Systems (profile)
Mathematics and Science (2. semester)
Telecommunication and Informatics (profile)
Mathematics and Science (2. semester)
Wireless Technologies (profile)
Mathematics and Science (2. semester)


V. Henč-Bartolić, L. Bistričić (2001.), Predavanja i auditorne vježbe iz fizike lasera, Element
Karl F. Renk (2012.), Basics of Laser Physics For Students of Science and Engineering, Springer-Verlag Berlin Heidelberg 2012., Springer Berlin Heidelberg
Wolfgang Demtröder (2010.), Atoms,Molecules and Photons, Springer Berlin Heidelberg

Associate Lecturers


ID 183496
  Summer semester
L3 English Level
L1 e-Learning
45 Lectures
0 Exercises
12 Laboratory exercises
0 Project laboratory

Grading System

85 Excellent
70 Very Good
60 Good
50 Acceptable