Geospatial Databases

Course Description

Database management systems. Geospatial databases. Geospatial abstract data types. Geospatial data modeling. Topological concepts. 9-IM. DE9-IM. Metric space. Euclidiean space. Algebraic specification of abstract data types. Spatial reference systems: geoid, reference ellipsoid, map projections. Object-relational data model. User-defined data types. Object relations. ISO/IEC SQL/Spatial. Recursive queries. Semistructured data model. GML. XQuery. Geometrical and topological queries. Spatial index structures: quadtree, 2D tree, R-tree, R+ tree. Big data paradigm and MapReduce programming model. HiveQL: data definition, data manipulation, queries, spatial user-defined functions (UDF).

Learning Outcomes

  1. define abstract geospatial data types
  2. define and apply relevant topological, geometry and set operators
  3. model and implement geospatial data within a object-relational or semi-structured data model
  4. design and generate GML schema and GML document for a given data SET
  5. model and implement geospatial data within a big data management paradigm
  6. write efficient queries ove geospatial data
  7. apply and understand methods of indexing geospatial data
  8. design and implement spatial data within a big data context

Forms of Teaching

Lectures

Independent assignments

Week by Week Schedule

  1. Fundamental spatial concepts
  2. Spatial reference systems
  3. Spatio-temporal conceptual modeling
  4. Indexing spatial data
  5. Computational geometry
  6. Spatial algorithms
  7. Multidimensional and metric data structures
  8. Midterm exam
  9. Spatial data analysis
  10. Spatial data analysis, Spatial and spatio-temporal visualization
  11. Spatial and spatio-temporal visualization
  12. Web mapping
  13. Web Map and Web Feature services
  14. GeoSPARQL
  15. Final exam

Study Programmes

University graduate
Audio Technologies and Electroacoustics (profile)
Free Elective Courses (1. semester) (3. semester)
Communication and Space Technologies (profile)
Free Elective Courses (1. semester) (3. semester)
Computational Modelling in Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Computer Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Computer Science (profile)
Free Elective Courses (1. semester) (3. semester)
Control Systems and Robotics (profile)
Free Elective Courses (1. semester) (3. semester)
Data Science (profile)
Free Elective Courses (1. semester) (3. semester)
Electrical Power Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Electric Machines, Drives and Automation (profile)
Free Elective Courses (1. semester) (3. semester)
Electronic and Computer Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Electronics (profile)
Free Elective Courses (1. semester) (3. semester)
Information and Communication Engineering (profile)
Free Elective Courses (1. semester) (3. semester)
Network Science (profile)
Free Elective Courses (1. semester) (3. semester)
Software Engineering and Information Systems (profile)
Elective Course of the Profile (1. semester)

Literature

(.), Zdravko Galić (2006.), Geprostorne baze podataka, Golden Marketing - Tehnička knjiga,
(.), M. Worboys, M. Duckham (2004.), GIS: A Computing Perspective, CRC Press,
(.), E. Capriolo, D. Wampler and J. Rutherglen (2012.), Programming Hive, O'Reilly,

For students

General

ID 222525
  Winter semester
5 ECTS
L3 English Level
L1 e-Learning
30 Lectures
15 Laboratory exercises