Advanced Databases

Course Description

Fullt-text search in relational databases, advanced use of SQL, object and object relational databases, geospatial databases, temporal databases, NoSQL databases, semantic web and data streams.

Learning Outcomes

  1. design object-relational, temporal, spatial and NoSQL databases
  2. use object-relational, temporal, spatial, stream and NoSQL databases
  3. explain the concepts of different data models

Forms of Teaching

Lectures

Students are presented with theoretical settings of selected topics intertwined with a multitude of practical examples.

Partial e-learning

Students have access to online tutorials designed to learn and master practical tasks.

Independent assignments

We encourage students to learn continuously by solving homework through a customized online platform and by creating several smaller projects in which they apply the knowledge acquired in the course.

Laboratory

Students discuss their own solutions to project tasks with subject teachers.

Grading Method

Continuous Assessment Exam
Type Threshold Percent of Grade Threshold Percent of Grade
Homeworks 40 % 10 % 40 % 10 %
Seminar/Project 50 % 45 % 50 % 45 %
2. Mid Term Exam: Written 0 % 20 % 0 %
Final Exam: Written 30 % 25 %
Exam: Written 50 % 45 %

Week by Week Schedule

  1. Principles of data modeling, Window functions, recursion, pivoting
  2. Window functions, recursion, pivoting, Project
  3. text search in relational database management system
  4. Object-oriented models, Object and object-relational databases
  5. Modelling spatial and temporal data, Spatial, temportal and spatio-temporal database basics
  6. Modelling spatial and temporal data, Spatial, temportal and spatio-temporal database basics, Project
  7. Distributed DBMS
  8. Midterm exam
  9. Key value, graph, column family, document, Semi-structured data model (expressed using XML, XML Schema, JSON), NoSQL databases
  10. Graph databases, Data replication and consistency models, The impact of indices on query performance, In-memory databases
  11. NoSQL databases, Graph databases, Big data concepts, Project
  12. Systems supporting structured and/or stream content, Stream databases
  13. Data modeling for Semantic Web (RDF, OWL)
  14. Data warehouse
  15. Final exam

Study Programmes

University graduate
[FER3-HR] Audio Technologies and Electroacoustics - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Communication and Space Technologies - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Computational Modelling in Engineering - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Computer Engineering - profile
Elective Course of the Profile (1. semester)
Elective Courses (1. semester) (3. semester)
Elective Courses of the Profile (3. semester)
[FER3-HR] Computer Science - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Control Systems and Robotics - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Data Science - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Electrical Power Engineering - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Electric Machines, Drives and Automation - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Electronic and Computer Engineering - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Electronics - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Information and Communication Engineering - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Network Science - profile
Elective Courses (1. semester) (3. semester)
[FER3-HR] Software Engineering and Information Systems - profile
Core-elective courses 1 (1. semester)
[FER2-HR] Computer Engineering - profile
Specialization Course (1. semester) (3. semester)
[FER2-HR] Computer Science - profile
Specialization Course (1. semester) (3. semester)
[FER2-HR] Software Engineering and Information Systems - profile
Theoretical Course (1. semester)

Literature

(.), Pramod J. Sadalage, Martin Fowler: NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence,
(.), Tyler Akidau, Slava Chernyak, Reuven Lax: Streaming Systems,

Laboratory exercises

For students

General

ID 222491
  Winter semester
5 ECTS
L2 English Level
L2 e-Learning
45 Lectures
0 Seminar
0 Exercises
15 Laboratory exercises
0 Project laboratory

Grading System

87.5 Excellent
75 Very Good
62.5 Good
50 Acceptable