
minted minted

Introduction to programming in Python

Ivan Marković Matko Orsag Damjan Miklić
(Srećko Jurić-Kavelj)

University of Zagreb, Faculty of Electrical Engineering and Computing,
Departement of Control and Computer Engineering

2019

University of Zagreb
Faculty of Electrical Engineering
and Computing

IM, MO, DM (FER–ZARI) Python Intro 1 / 40

What is Python?

Python
A powerful dynamic programming language, useful in a wide variety of
application domains.

• dynamic
• interpreted
• object-oriented
• extensive ecosystem of 3rd party libraries
• extensible, easily integrated with C
• portable
• developed by Guido van Rossum (a mathematician)

Bottom line
Faster code development, easier maintenance.

IM, MO, DM (FER–ZARI) Python Intro 2 / 40

Who uses Python and why?

Python users

• Google (Search, Gmail, YouTube,...)
• NASA (Integrated planning system)
• IBM
• Autodesk (Maya)

What is Python good for?

• Scripting, "Glue logic", prototyping
• Scientific and Numeric Computing (NumPy, SciPy)
• Machine learning and AI (scikit-learn, TensorFlow)
• Network and web programming (Django)
• Games (Sid Meyer’s Civilization IV, EVE Online)

IM, MO, DM (FER–ZARI) Python Intro 3 / 40

Why should I bother learning Python?

Source: Coding Dojo

IM, MO, DM (FER–ZARI) Python Intro 4 / 40

https://www.codingdojo.com/blog/7-most-in-demand-programming-languages-of-2018

Why should I bother learning Python?

Source: www.daxx.com

IM, MO, DM (FER–ZARI) Python Intro 5 / 40

https://www.daxx.com/blog/development-trends/javascript-market-trends-average-salaries

Installing Python

• On Linux, Python is already installed :)
• Binary installers exist for Windows

Python 2.7 or 3.x

• 3.x is actively developed (but still not supported by all libraries)
• 2.7 (EOL 2020, but still used in Ubuntu Bionic/ROS Melodic)

IM, MO, DM (FER–ZARI) Python Intro 6 / 40

Using Python interactively

Starting an interactive Python session:
user@host:~$ python
>>> 5+7
12
>>>

The interactive shell
Python is interpreted, so we can try things out interactively.

IM, MO, DM (FER–ZARI) Python Intro 7 / 40

Numbers and booleans

• numbers
>>> a = 3
>>> 3**a
>>> 3/2; 3.0/2
>>> b = (a+2)*7

• booleans
>>> b = -7
>>> a > b
>>> a | True
>>> not True

IM, MO, DM (FER–ZARI) Python Intro 8 / 40

Strings

Strings in Python are a fundamental data type.

>>> s1 = ’feeble ’; s2="humans"
>>> greeting = s1+s2
>>> len(greeting)
>>> s1*5
>>> greeting.replace(’a’,’HAHAHAHA’)
>>> greeting
>>> shout = greeting.upper()

IM, MO, DM (FER–ZARI) Python Intro 9 / 40

Useful information

• Everything in Python is an object
• Objects have functions1 that operate on their data

>>> shout.lower()
• Listing all functions belonging to an object

>>> dir(shout)
• Getting help on any function

>>> help(shout.lower)
• Objects can be mutable or immutable ("constant")

>>> shout[3] = ’c’

1functions belonging to objects are sometimes called methods
IM, MO, DM (FER–ZARI) Python Intro 10 / 40

String formatting

Formatting method calls (recommended):
>>> "Six by {0}. Fourty {1}".format(’nine’, 2)

Formatting expressions (legacy):
>>> "The %s of life is %d" % (’meaning’, 42)

Exercise
Create the variables name, surname, age, containing your respective
personal information, with all small letters. Using the variables name and
surname and appropriate functions, create a new variable full_name
which contains your full name, correctly capitalized. Using a formatting
method call and the variables full_name and age, create the string
hello with a sentence that introduces you, e.g. "Hello, I’m Arthur
Dent and I’m 42 years old".

IM, MO, DM (FER–ZARI) Python Intro 11 / 40

Dynamic typing and references (Part I)
Variables are only named references to objects!

>>> a = 3
>>> b = a
>>> a = ’spam’

Variables References Objects

b

a
3

’spam’

Note

• Variable types are never declared
• Different datatypes can be assigned to the same variable!
• Integers, floats, booleans and strings are immutable types

IM, MO, DM (FER–ZARI) Python Intro 12 / 40

Dynamic typing and references (Part I)
Variables are only named references to objects!

>>> a = 3
>>> b = a
>>> a = ’spam’

Variables References Objects

b

a
3

’spam’

Note

• Variable types are never declared
• Different datatypes can be assigned to the same variable!
• Integers, floats, booleans and strings are immutable types

IM, MO, DM (FER–ZARI) Python Intro 12 / 40

Dynamic typing and references (Part I)
Variables are only named references to objects!

>>> a = 3
>>> b = a
>>> a = ’spam’

Variables References Objects

b

a
3

’spam’

Note

• Variable types are never declared
• Different datatypes can be assigned to the same variable!
• Integers, floats, booleans and strings are immutable types

IM, MO, DM (FER–ZARI) Python Intro 12 / 40

Dynamic typing and references (Part I)
Variables are only named references to objects!

>>> a = 3
>>> b = a
>>> a = ’spam’

Variables References Objects

b

a
3

’spam’

Note

• Variable types are never declared
• Different datatypes can be assigned to the same variable!
• Integers, floats, booleans and strings are immutable types

IM, MO, DM (FER–ZARI) Python Intro 12 / 40

Dynamic typing and references (Part I)
Variables are only named references to objects!

>>> a = 3
>>> b = a
>>> a = ’spam’

Variables References Objects

b

a
3

’spam’

Note

• Variable types are never declared
• Different datatypes can be assigned to the same variable!
• Integers, floats, booleans and strings are immutable types

IM, MO, DM (FER–ZARI) Python Intro 12 / 40

Dynamic typing and references (Part I)
Variables are only named references to objects!

>>> a = 3
>>> b = a
>>> a = ’spam’

Variables References Objects

b

a
3

’spam’

Note

• Variable types are never declared
• Different datatypes can be assigned to the same variable!
• Integers, floats, booleans and strings are immutable types

IM, MO, DM (FER–ZARI) Python Intro 12 / 40

Dynamic typing and references (Part I)
Variables are only named references to objects!

>>> a = 3
>>> b = a
>>> a = ’spam’

Variables References Objects

b

a
3

’spam’

Note

• Variable types are never declared
• Different datatypes can be assigned to the same variable!
• Integers, floats, booleans and strings are immutable types

IM, MO, DM (FER–ZARI) Python Intro 12 / 40

Lists

• Ordered collections of arbitrary objects, accessed by offset (index)

L = [7,’ab’,[1,2]]
L[1]; L[-1][0];
L[1:-1]; L[1:] # Slicing!

L[1] = 3.14
len(L)
L.remove(2)
L.extend([-3,22,-0.1])
L.sort()

L =

0

-3

7

1

-2

ab

2

-1

1 2

Exericses

1 What effect do arithmetic operators like ’+’ and ’*’ have on lists?
2 Try different slicing options, e.g., [:5], [-1:3], ...
3 Insert [0.17, ’c’, 12] into L as individual elements.

IM, MO, DM (FER–ZARI) Python Intro 13 / 40

Dynamic tpying and references (Part II)

Lists are mutable. This, combined with the "variables are references"
semantics has non-obvious side-effects.

A quick experiment:
>>> L1 = [’a’,’b’,’c’]
>>> L2 = L1
>>> L2[1] = 17
>>> print(L1)

Variables References Objects

L2

L1 ’a’ ’c’’b’17

Notes

• Lists are mutable!
• Objects in Python are garbage collected!

IM, MO, DM (FER–ZARI) Python Intro 14 / 40

Dynamic tpying and references (Part II)

Lists are mutable. This, combined with the "variables are references"
semantics has non-obvious side-effects.

A quick experiment:
>>> L1 = [’a’,’b’,’c’]
>>> L2 = L1
>>> L2[1] = 17
>>> print(L1)

Variables References Objects

L2

L1 ’a’ ’c’’b’

17

Notes

• Lists are mutable!
• Objects in Python are garbage collected!

IM, MO, DM (FER–ZARI) Python Intro 14 / 40

Dynamic tpying and references (Part II)

Lists are mutable. This, combined with the "variables are references"
semantics has non-obvious side-effects.

A quick experiment:
>>> L1 = [’a’,’b’,’c’]
>>> L2 = L1
>>> L2[1] = 17
>>> print(L1)

Variables References Objects

L2

L1 ’a’ ’c’’b’

17

Notes

• Lists are mutable!
• Objects in Python are garbage collected!

IM, MO, DM (FER–ZARI) Python Intro 14 / 40

Dynamic tpying and references (Part II)

Lists are mutable. This, combined with the "variables are references"
semantics has non-obvious side-effects.

A quick experiment:
>>> L1 = [’a’,’b’,’c’]
>>> L2 = L1
>>> L2[1] = 17
>>> print(L1)

Variables References Objects

L2

L1 ’a’ ’c’

’b’

17

Notes

• Lists are mutable!
• Objects in Python are garbage collected!

IM, MO, DM (FER–ZARI) Python Intro 14 / 40

Dynamic tpying and references (Part II)

Lists are mutable. This, combined with the "variables are references"
semantics has non-obvious side-effects.

A quick experiment:
>>> L1 = [’a’,’b’,’c’]
>>> L2 = L1
>>> L2[1] = 17
>>> print(L1)

Variables References Objects

L2

L1 ’a’ ’c’

’b’

17

Notes

• Lists are mutable!
• Objects in Python are garbage collected!

IM, MO, DM (FER–ZARI) Python Intro 14 / 40

Safely copying mutable objects

>>> L2 = L1[:]
>>> L2 = L1.copy() # Python >= 3.3
>>> import copy
>>> L2 = copy.copy(L1)
>>> L2 = copy.deepcopy(L1)

Safe copying
The slicing operator [:] and copy.copy() are safe only for "flat" objects.
For nested objects (e.g. lists containing lists), use copy.deepcopy().

Quitting the shell:
$ exit()
or press Ctrl-D (EOF)

IM, MO, DM (FER–ZARI) Python Intro 15 / 40

List exercies

Exercise: List indexing
Using the list L=[1,2,5,6,9,10]

1 Create a new list, L2, containing all the numbers from 1 to 10, in
sequential order, using the list.insert method

2 Same as the above, but using list arithmetic (slicing and the +
operator)

3 Same as the above, but using list.append and list.sort methods
4 Demonstrate three ways of creating a new list L3, containing the first

three elements of L2

IM, MO, DM (FER–ZARI) Python Intro 16 / 40

How to run Python programs?

Our first Python program:
$ mkdir -p ~/pzros/python
$ cd ~/pzros/python
$ gedit helloworld.py &

print("I’ll be back!")
$ python helloworld.py

IM, MO, DM (FER–ZARI) Python Intro 17 / 40

Modules

• A text file, with extension .py, containing Python code
"""
This is a docstring.
Python can automatically generate documentation from it.
"""

print(’Hello beautiful world!’)

This is a block comment. Use comments in your code!
Below, we will do some vector arithmetic.
v1 = [1,2,3]
v1x2 = 2*v1

print(’2*{0}={1}’.format(v1,v1x2)) # Inline comment.

IM, MO, DM (FER–ZARI) Python Intro 18 / 40

for loops

Tip
Set up your editor options to insert spaces instead of tabs!

• Looping over a sequence
v1x2 = []
for x in v1:

v1x2.append(2*x)
• Indentation delimits blocks of code (no {})
• Iterator pattern: no need to generate indexes explicitly!
• If we really need indexes2, there’s the range() function

for i in range(len(v1)):
v1[i] += 1

2The only time we really need indexes is when we’re modifying the list in-place
IM, MO, DM (FER–ZARI) Python Intro 19 / 40

List Comprehensions

• Powerful combination of lists and for loops
• List comprehensions are used for generating lists quickly

v1pow2 = [x**2 for x in v1]
• Much faster than for loops!
• Lists can be combined using the zip command

v2 = [x+y for (x,y) in zip(v1,v1x2)]
• The (x,y) object is a tuple, which is an immutable list

Exercise
Implement the dot product of two lists: x · y =

∑n
i=1 xiyi

IM, MO, DM (FER–ZARI) Python Intro 20 / 40

Files, iterators and for loops

$ gedit fileio.py &

• Files are elementary data types in Python
• Writing to a text file

output = open(’myfile.txt’, ’w’)
output.write(’A nice, blank file!\n’)
output.write(str(42))
output.close()

• Reading from a text file (iterator pattern, again)
for line in open(’myfile.txt’, ’r’):

print(2*line)
• Read and write methods always work on strings!
• There are safer ways of accessing files using with/as context

managers

IM, MO, DM (FER–ZARI) Python Intro 21 / 40

while loops, if tests and user input

$ gedit volume.py &

• Looping over an unknown number of iterations
num = 1
while num != 0:

num = input(’Enter the side length: ’)
if num > 1000:

print(’{0} is Too big for me!’.format(num))
else:

print(’{0}^3 = {1}’.format(num,num**3))
• Don’t forget the semicolons :)

IM, MO, DM (FER–ZARI) Python Intro 22 / 40

Exercises: loops and file I/O

Exercise: User input and writing to a file
Create a script which lets the user input a sequence of numbers, one by
one, until the number 0 is entered. Store the numbers in a list. After user
input has been finished, compute the sum of the sequence (you can use the
built-in sum function). Open the file sequence.txt for writing and write
the original sequence of numbers on the first line, separated by a single
space. Write the computed sum on the second line and close the file.

Exercise: Reading from a file and list comprehensions
Open the file sequence.txt for reading and read the first two lines.
Convert the first line to a list of floating point numbers using the split
method, float function and a list comprehension. Convert the second line
to a floating point number. Check if the number on the second line
corresponds to the sum of numbers on the first line. Print the result.

IM, MO, DM (FER–ZARI) Python Intro 23 / 40

Functions

$ gedit func.py &

• The basic tool for code reuse
• Defined with a def statement

def add(x, y):
""" Returns x+y """
return x+y

print(add(5,3))
• Inherent polymorphism!

add(’Py’, ’thon’)

IM, MO, DM (FER–ZARI) Python Intro 24 / 40

Arrays as function arguments
$ gedit plusone.py &

def plusone(vin):
""" Increments the input vector by one """
for (i,x) in enumerate(vin):

vin[i] = x+1
return vin

if __name__ == ’__main__’:
v = [1,2,3]
v1 = plusone(v)
dv = [y-x for (x,y) in zip(v,v1)]
print(dv)

Passing arrays to functions
Remember, in Python, all objects are passed by reference!

IM, MO, DM (FER–ZARI) Python Intro 25 / 40

Arrays as function arguments
$ gedit plusone.py &

def plusone(vin):
""" Increments the input vector by one """
for (i,x) in enumerate(vin):

vin[i] = x+1
return vin

if __name__ == ’__main__’:
v = [1,2,3]
v1 = plusone(v)
dv = [y-x for (x,y) in zip(v,v1)]
print(dv)

Passing arrays to functions
Remember, in Python, all objects are passed by reference!

IM, MO, DM (FER–ZARI) Python Intro 25 / 40

Function scoping rules

Scoping rules
Local – Enclosing – Global – Builtin

• Global scope is visible everywhere
• Local scope overrides global scope

X = 7; Y = 17 #Global scope
def printer():

X = 0 #Local scope
print(X,Y)

• Builtin names can be overriden3

def override(L):
len = 7
print(len(L))
override([1,2,3])

3Which is almost never what you intended to do :)
IM, MO, DM (FER–ZARI) Python Intro 26 / 40

Advanced function concepts

• Arguments can be passed by name and have defaults
def power(x, y = 0):

"""Returns x^y"""
return x**y

power(y = 3, x = 2)
• In Python, everything is an object, including functions
• Like all objects, functions can be assigned (=> Function pointer!)

g = power
print(g(2,3))

IM, MO, DM (FER–ZARI) Python Intro 27 / 40

Function "pointer" exercise

Exercise: Function "pointer"
Write a function that performs simple numerical integration of a
single-variable function, using constant function approximation. The
function prototype should be def integral(f,xl,xr,dx). To test the
correctness of your code, use it to compute

∫ 4
2 x2dx and

∫ 3.14
0 sin(x)dx

with integration step 0.001; the results should be close to 18.667 and 2
respectively. (Hint: You will also need from math import sin and def
sq(x).)

IM, MO, DM (FER–ZARI) Python Intro 28 / 40

Function design concepts

• Use functions :)
• Keep functions as simple as possible (one function, one purpose)
• Don’t use global variables
• Use arguments for inputs and return values for outputs
• Watch out for mutable arguments!
• "Black box design"
• Write docstrings!

IM, MO, DM (FER–ZARI) Python Intro 29 / 40

Module organization

Modules have two use-cases:
• "Direct execution" of code
• Importing of code (like including header files in C)

Class and function definitions
That can be imported by other modules
def add(x,y):

""" Returns x+y """
return x+y

if __name__ == ’__main__’:
This code is not executed
When the module is imported
print(add(5,7))

IM, MO, DM (FER–ZARI) Python Intro 30 / 40

Importing code from modules

• Importing executes the module4

• Objects defined within the module become available in the current
context

• We can import all objects from a module
>>> import func
>>> func.add(12,-3)

• Or a specific object
>>> from func import add
>>> add(3,4)

• Imported modules are not updated automatically when the source
changes!

• The help function shows the docstring
>>> help(add)

4Remember, Python is interpreded!
IM, MO, DM (FER–ZARI) Python Intro 31 / 40

Making python scripts executable

Allows us to execute Python programs as shell scripts.
1 Add the shebang5 line

#!/usr/bin/env python
-*- coding: utf-8 -*-
(the second line allows us to use non-ascii characters)

2 Make the script executable
$ chmod +x func.py
$./func.py

5shebang = hash(#) + bang(!)
IM, MO, DM (FER–ZARI) Python Intro 32 / 40

Python libraries

Standard library modules
• Mathematical modules: math, cmath, fractions
• Time and date representations: datetime, calendar
• Operating system interface: os, sys
• Interprocess communication: socket, ssl, asyncore
• Dozens of others...

Third party modules
• Scientific computing tools: NumPy, Matplotlib, SciPy
• Graphics, UI, multimedia: PyGame
• Interprocess communication: ZeroMQ
• Thousands of others...

IM, MO, DM (FER–ZARI) Python Intro 33 / 40

IPython: a user-friendly shell (and more)

• install IPython
$ sudo apt install ipython

• start IPython (a Matlab-like shell)
$ ipython
In[1]:

• getting help
In[2]: ?len

• supports tab completion, command history and much more
• For a Matlab like experince, invoke with the –pylab option

$ ipython --pylab
• for more info, check out the tutorial

IM, MO, DM (FER–ZARI) Python Intro 34 / 40

http://ipython.org/ipython-doc/2/interactive/tutorial.html

IPython basics

• Running python code
In[3]: run func

• All objects from global scope are available in the workspace
In[4]: add(4,-3)

• Start debugging on error
In[5]: pdb on
In[6]: run scoping.py

• Reloads modules automatically
• Behavior is configurable through scripts in /.ipython

IM, MO, DM (FER–ZARI) Python Intro 35 / 40

Troubleshooting whitespace issues

Whitespace issues
Python is picky about whitespace. The Draw Spaces plugin for the gedit
editor can help you troubleshoot whitespace issues e.g. when you get some
code which has tabs and spaces mixed together.

$ sudo apt install gedit-plugins

Activatig the Draw Spaces plugin
In gedit go to Edit->Preferences->Plugins check the box next to
Draw Spaces and click Close. Spaces will be indicated by dots and tabs
by arrows.

IM, MO, DM (FER–ZARI) Python Intro 36 / 40

Useful links and further reading

Tutorials:
• Google’s Python tutorial
• A Byte of Python
• Non-Programmer’s Tutorial for Python 2.6 (Wikibook)

Libraries:
• Official website of the Python programming language
• A Matlab-like Python shell
• Scientific computing tools for Python
• A Python game engine

Books on Python:
• M. Lutz, Learning Pyhton 5th Ed., O’Reilly 2013
• M. Lutz, Programming Pyhton 4th Ed., O’Reilly 2010
• Think Python (free online book)

IM, MO, DM (FER–ZARI) Python Intro 37 / 40

https://developers.google.com/edu/python/
http://www.swaroopch.com/notes/python/
http://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_2.6
http://www.python.org
http://ipython.org
http://scipy.org/
http://www.pygame.org
http://www.greenteapress.com/thinkpython/thinkpython.html

Homework assignments: Tic-tac-toe

Assignment 1: The Tic-tac-toe game
Write a simple version of the Tic-tac-toe game for two human players.
Here are some hints:

• Use a list of lists for keeping track of the game state
• A handy way for initializing a 3x3 list of lists is the following

comprehension [[-1 for j in range(3)] for i in range(3)]
• Take care in structuring your code: use functions
• Display the playing field after each move
• You have to validate every move
• Use docstrings and comments!
• (Optional) Implement an "AI" strategy to enable human players to

play against the computer

IM, MO, DM (FER–ZARI) Python Intro 38 / 40

https://en.wikipedia.org/wiki/Tic-tac-toe

Homework assignments: Connect four

Assignment 2: The Connect four game
Write a simple version of the Connect four game for two human players.
Here are some hints:

• Use a list of lists for keeping track of the game state
• A handy way for initializing a 6x7 list of lists is the following

comprehension [[-1 for j in range(7)] for i in range(6)]
• Take care in structuring your code: use functions
• Display the playing field after each move
• You have to validate every move
• Use docstrings and comments!
• (Optional) Implement an "AI" strategy to enable human players to

play against the computer

IM, MO, DM (FER–ZARI) Python Intro 39 / 40

https://en.wikipedia.org/wiki/Connect_Four

Homework assignments: Memory

Assignment 3: The Memory game
Write a simple version of the Memory game for two human players. Here
are some hints:

• Use a list of lists for keeping track of the score
• Take care in structuring your code: use functions
• On Linux, you can use the os.system(’clear’) call to clear the

screen, hiding the previously revealed fields
• You can use numbers and letters as "images"; For a fancier version,

you can use "unicode icons", e.g., print(unichr(0x263a)) prints a
smiley

• You have to validate every user selection
• Use docstrings and comments!
• (Optional) Implement an "AI" strategy to enable human players to

play against the computer

IM, MO, DM (FER–ZARI) Python Intro 40 / 40

https://en.wikipedia.org/wiki/Concentration_(game)
https://tutorialzine.com/2014/12/you-dont-need-icons-here-are-100-unicode-symbols-that-you-can-use

	About Python
	Basic datatypes and operations

