

Research, Education, and Innovation in Software Engineering at University of Paderborn: S-lab as transfer platform Topics for international cooperation

Prof. Dr. Wilhelm Schäfer, <u>wilhelm@upb.de</u> Stefan Henkler, <u>shenkler@upb.de</u> Ahmet Mehic, <u>amehic@upb.de</u>

The Software Quality Lab (s-lab) is an institute for knowledge and technology transfer and a competence center for software engineering. In s-lab, partners from industrial software development closely cooperate with research groups of the University of Paderborn.

Work in s-lab is centered upon development and evaluation of constructive and analytical **methods and tools of software engineering** for obtaining **high-quality software**.

High relevance for industrial software development and the need for **employing scientific methods** characterize the problems that are dealt with in s-lab.

Organisation

- Open Multi Private Public Partnership (Multi-PPP) institute
- Five research groups
- 7 associated partners from industry
- Additional project partners from research and industry
- Application-driven projects with industrial partners

Transfer Cycle

UNIVERSITÄT PADE RBORN Die Universität der Informationsgesellschaft Software Engineering Group Prof. Dr. Wilhelm Schäfer

Prof. Dr. Gregor Engels Database & Information Systems

Prof. Dr. Uwe Kastens Programming Languages & Compilers

Prof. Dr. Hans Kleine Büning Knowledge-based Systems

Prof. Dr. Franz J. Rammig Design of Parallel Systems

Prof. Dr. Wilhelm Schäfer Software Engineering

dSPACE

S&n netBank solutions

Sonderforschungsbereich 614 Selbstoptimierende Systeme des Maschinenbaus

Transfer Cvcle

Sonderforschungsbereich61443Selbstoptimierende Systeme44des Maschinenbaus45

[9]	Score	Institution
	25.29	Massachusetts Institute of Technology
3	23.90	Carnegie Mellon University
7	20.50	Georgia Institute of Technology
	17.60	University of Maryland, College Park
	15.89	Oregon State University
	14.89	University of California, Irvine
	14.19	University of British Columbia, Canada
	13.80	Politecnico di Milano, Italy
	13.70	University of Texas, Austin
	13.59	IBM Thomas J. Watson Research Center
	11.90	University of Waterloo, Canada
	11.70	University of Massachusetts, Amherst
	11.50	Imperial College London, UK
	10.80	University College London, UK
	10.70	Carleton University Canada
	9.60	University of Paderborn
	9.39	Purdue University
	9.27	Stanford University
	9.19	Kansas State University
	9.19	Katholieke Universiteit Leuven, Belgium
	9.19	Michigan State University
	9.00	University of Pittsburgh
	8.30	University of Colorado, Boulder
	8.19	University of Texas, Dallas
	7.69	University of Washington, Seattle
	7.60	University of Toronto, Canada
	6.90	Ohio State University
	6.80	University of Southern California
	6.60	University of Karlsruhe, Germany
	6.50	Osaka University, Japan
	6.50	University of California, Davis
5	6.30	Fraunhofer-IESE, Germany
	6.29	University of Virginia
14	6.20	Simula Research Lab, Norway
	6.20	Washington University in St. Louis
	6.10	Hong Kong Polytechnic University, China
	5.90	Brown University
	5.80	University of Illinois, Urbana-Champaign
	5.80	University of Strathclyde, UK
	5.50	NASA Ames Research Center
	5.40	University of Bologna, Italy
	5.30	University of California, San Diego
	5.20	Avaya Labs Research
	5.19	Northeastern University
	5.19	West Virginia University

Ŋ

UNIVERSITÄT PADE RBORN Die Universität der Informationsgesellschaft Software Engineering Group Prof. Dr. Wilhelm Schäfer

Orga Systems.

What do we require?

o National- / International projects

- Tempus SM knowledge triangle: competence center as platform for education – innovation – research transfer
 - Network of competence
 - Many to many associations

Networked mechatronic systems

Example: Convoy of shuttles SFB 614 "Self-optimizing concepts and structures in mechanical engineering" [Neue Bahntechnik Paderborn - railcab]

- o Shuttle convoy
 - Autonomous vehicle
 - Build convoy to reduce energy consumption
- Complex coordination is required to build convoy/drive in convoy mode
 - Need software engineers
 - Beside the common engineers disciplines
- o Hard real-time requirements and distributed
- How can we achieve that these systems are safe w.r.t given properties
 - Adequate modeling approach
 - Analysis

Sonderforschungsbereich 614 Selbstoptimierende Systeme des Maschinenbaus

Sonderforschungsbereich 614 Selbstoptimierende Systeme des Maschinenbaus

Model-based Software Engineering

Integrating Legacy Components

- o Manual integration
 - Error prone
 - Time intensive
- o Automatic integration reverse engineering
 - Use known context
 - Use techniques
 - Model checking
 - Model testing
 - Automata learning

- I. Model-based development
 - Which models are required to represent the required information?
- II. Reengineering
 - I. Reverse Engineering
 - Learning the behavior of a legacy component
 - Automatic behavior synthesis
 - Probe effect free information gathering
 - » How to monitor the legacy component
 - Extracting platform specific information?
 - Static analysis of legacy system
 - Existing work only for documentation purpose [NSW+02]
 - Do we have a component like legacy system?

II. Restructuring

III.Correctness by construction

- Use learned behavior of collaborations
- Generate internal behavior of component

- o Short-term projects (surveys, consulting, development)
- o Long-term projects (research & development, PhD projects)
- o Joint projects with public funding (European, national, etc.)
- o Bachelor and Master theses
- o Project groups
- o Guest presentations (in lectures)
- o Training courses and workshops
- o Joint marketing events (exhibitions, etc.)
- o Joint publications

o Bilateral and multilateral projects

Between Universities and Industry (SMEs)