
Experimental Evaluation of Deep Reinforcement
Learning Algorithms

Nikola Mrzljak, Tomislav Hrkać
Department of Electronics, Microelectronics, Computer and Intelligent Systems

University of Zagreb Faculty of Electrical Engineering and Computing
Zagreb, Croatia

nikolamrzljak@yahoo.com, tomislav.hrkac@fer.hr

Abstract—Reinforcement learning is an interesting field with
regards to its applicability. As such, it has been studied for use in
computer vision where it has just recently found its place. The
problem it encountered was the high dimensionality of input
data in computer vision. The aim of this paper is to provide an
overview of the reinforcement learning algorithms for solving the
task of reinforcement learning with raw pixels of an image as
an input to the algorithm and test their performance on Atari
Breakout video game. The comparison of different algorithms
will be given and discussed.

I. INTRODUCTION

Reinforcement learning is an important branch of machine
learning with many potential applications, such as robot nav-
igation and control, autonomous driving, operations research,
human-computer interaction, automated game playing and
many more [1]–[3].

In reinforcement learning setting, an agent is placed in an
environment and has to take a sequence of actions in order
to achieve a goal and/or to avoid undesired results. More
generally, for each transition from one state to another by a
given action, a numerical reward is specified (which can also
be negative if a certain state is undesired, or zero - in this
case, it is usual to say that there is no reward) and the task of
the agent is to maximize the sum of the received rewards by
taking appropriate actions. In each step, the agent observes the
state of the environment and outputs a decision which action
to take.

In recent years, deep learning has enabled an unprecedented
progress in many areas of machine learning, especially in com-
puter vision, enabling significant progress in image classifica-
tion [5]–[8], object detection [9]–[11], semantic segmentation
[12]–[14], etc. More recently, starting with DeepMind [15],
this success has been carried over to reinforcement learning,
resulting in several successful deep reinforcement learning
(DRL) algorithms that can learn to map raw input images to
actions, thus connecting reinforcement learning with computer
vision. Good overviews of recent deep reinforcement learning
algorithms from a theoretical point of view can be found in
[16], [17].

In contrast with the above survey papers, the focus of this
paper is an experimental evaluation of several state-of-the-art
deep reinforcement learning algorithms, as well as exploration
strategies and techniques for storing and selecting past experi-
ences. A common testbed for performance evaluation of deep

reinforcement learning algorithms is automatic video-game
playing; therefore, for our experimental evaluation, we use one
of the most commonly used games for such purposes, namely
the Atari Breakout game. The inputs to the tested algorithms
are only the frames of the game screen and the information
about the current game score. As a metrics for comparing
the performance of the algorithms we use the achieved game
score and the episode length as functions of the number of
episodes played during the learning. Compared to the other
real world problems, the Atari Breakout game is really well
structured with no random noise affecting the input space
(game screen). E.g. in autonomous car driving partial blockage
of the image can be present, greatly affecting the performance
and significantly increasing the problem complexity.

In section II, after a brief overview of general deep learning
principles, we briefly describe the evaluated algorithms and
their variations. In section III, the experimental setup and
results of the testing are presented. Conclusions and possible
directions for future work are given in section IV.

II. DEEP REINFORCEMENT LEARNING

A. Background
The task of reinforcement learning can be modeled by

means of Markov decision process (MDP), formally defined
as a tuple:

MDP = (S,A, P (st+1|st, at), R(st+1|st, at), γ),
where S is a set of states, A is a set of actions, P (st+1|st, at)
models the probability of transition to future state st+1 from
current state st, R(st+1|st, at) (also commonly denoted by
rt+1) are the rewards for the given transition and γ is a
discount factor for a given environment. The discount factor γ
models the delayed reward mechanism that enables an agent to
give more weight to the future rewards instead to the rewards
closer to the present.

In MDP, at time step t, the agent is in the state st, chooses to
do action at and, as a consequence of this action, it transitions
to the state st+1 with probability P (st+1|st, at) for which it
is rewarded with reward rt+1 = R(st+1|st, at).

The problem at hand is to maximize the cumulative dis-
counted reward for a given state s defined as:

R(s) =
n∑

t=1

γtrt+1.

Proceedings of the Croatian Computer Vision Workshop, Year 6 October 24, 2018, Zagreb, Croatia

https://doi.org/10.20532/ccvw.2018.0003
CCVW 2018, Oral Session 7

https://doi.org/10.20532/ccvw.2018.0003

In the previous equation when t is equal to n the process is
terminated (since we are interested in the finite process). To
solve this problem, various algorithms are available, which
can be classified in two main categories: value-based (e.g.
Q-learning) and policy-based (e.g. policy gradient). A policy
is a sequence of actions an agent takes when transitioning
from one state to another. Policy can be implicit or explicit.
Explicit policy can be represented by a probability distribution,
in which case for a given state st the probability of choosing
action a is given, which constitutes policy π(a|st). Implicit
policy can be defined as choosing the action a that gives the
highest value of Q function.

Action-value function Qπ(st, at) is a function that models
how well it is to be in a state st and perform action at in it
and afterwards behave according to policy π.

Q-learning is an algorithm that is based on approximating
Q(st, at). Q(st, at) can be easily calculated by using the well-
known Bellman equation that can be applied to the optimal
action-value function Q∗(st, at) = maxπ Q

π(st, at).
Bellman equation has been shown to converge to the optimal

value Q∗(st, at) as the number of iterations approaches the
infinity [4]. The Q function can be parametrized by a model
with parameters θ. This can be denoted as Q(st, at|θ). In this
case, target value y of Q(st, at|θ) for a given pair (st, at) is
defined as:

y =

rt+1, if st+1 is terminal
rt+1 + γmax

at+1

Q(st+1, at+1|θ) otherwise

With respect to this, the loss for a given experience
(st, at, rt+1, st+1) is defined as:

L =
1

2
(y −Q(st, at|θ))2.

Parameters of a model defined like this can be updated by the
following rule:

θt+1 = θt − α(yt −Q(st, at|θt)),
where α represents the learning rate. In this case, the expec-
tation has been approximated by its estimate.

Q-learning algorithm is a greedy algorithm with respect
to choosing actions that it will perform since the policy is
greedy. In practice, ε-greedy state exploration approach is
used in order to enable better state exploration. ε-greedy
strategy selects random action with probability ε and the best
one with probability 1-ε. Another state exploration strategy
is Boltzmann’s strategy, which, being probabilistic, provides
better state exploration since it takes into consideration every
action in every time step. The probability of taking action a
in state s is, therefore:

p(a) =
exp(Q(s, a))∑
i exp(Q(s, ai))

.

Policy gradient is a method that optimizes policy π(a|s, θ).
To perform the policy optimization, some optimization func-
tion must be defined. In this case, the optimization func-
tion is the expectation of the delayed reward which is

done over all of the trajectories τ . Trajectory τ is defined
as (s0, a0, r1, s1, ..., sT−1, aT−1, rT , sT). Formal definition of
the function that is subject to optimization is given by:

Eτ [Rτ |π, θ] =
∫

τ

P (τ |π, θ)Rτdτ.

Rτ is the sum of rewards gained throughout the trajectory
τ . Since the goal is to get the greatest possible amount of
reward, to optimize the goal function means to maximize the
given function. In order to maximize the function, gradient
must be calculated. The value of the gradient is:

∇θEτ [Rτ |π, θ] = Eτ [Rτ∇θ logP (τ |π, θ)].

From that follows that the estimator of the gradient g
is: ĝ(τ) = Rτ∇θ logP (τ |π, θ) Estimator can be used for
estimating ∇θEτ [Rτ |π, θ]. Since P (τ |π, θ) depends on the
model of the environment, ∇θEτ [Rτ |π, θ] can’t be used for
calculating the gradient. Before using the aforementioned esti-
mator, P (τ |π, θ) has to be parsed with respect to the definition
of MDP. After the parsing, and noting that P (ai|si, π, θ) =
π(ai|si, θ), the resulting estimator is:

ĝ(τ) = Rτ∇θ logP (τ |π, θ) = Rτ∇θ
T−1∑

t=0

log π(at|st, θ).

(1)
With the given model definition, parameters are updated by

using the following expression:

θ = θ + α · ĝ(τ).

B. Deep reinforcement learning algorithms

The goal of deep reinforcement learning is to learn a model
with parameters θ to behave optimally in an environment
where the only input is an image. A number of algorithms have
been designed to solve this problem. In this paper we consider
the following algorithms: Deep Q Network (section II-B1),
Double Deep Q Network (section II-B2), Dueling Double
Deep Q Network (section II-B3) and Asynchronous advantage
actor-critic (section II-B4). The first three algorithms are
value-based, while the last one is policy-based.

In most of the deep learning tasks the data is independent,
whereas in the reinforcement learning the problem of highly
correlated samples is present. In order to solve this problem,
experience replay mechanism is introduced as stated in [15].
In this paper, the following modification of this approach was
used: whenever the experience is going to be removed from
the buffer, it is checked whether it has a non-zero reward. If
it has positive reward it is again added to the buffer with
a probability α whereas if it has a negative reward it is
added to the buffer with a probability β. The reason for
introducing this modification is that when the inspection of
the experiences presented to the agent was done it has been
noticed that the number of rewarded experiences was very low.
This mechanism, called prioritized forgetting, was introduced
to prevent the removal of such, already rare experiences, and
it showed very good results.

Proceedings of the Croatian Computer Vision Workshop, Year 6 October 24, 2018, Zagreb, Croatia

CCVW 2018
Oral Session 8

1) Deep Q Network (DQN): Deep Q network is the sim-
plest successful algorithm based on Q-learning. This algorithm
has been used with ε-greedy exploration strategy in the original
work but can be easily combined with other exploration strate-
gies such as Boltzmann’s. Detailed description and pseudo-
code for this algorithm can be found in [15].

2) Double Deep Q Network (DDQN): This algorithm is an
upgrade to the aforementioned DQN algorithm.

It has been shown that DQN is overoptimistic in its approx-
imation of the value of Q function. This problem is present
in every model that estimates the value of the best option, as
shown in [18]. This is exactly what DQN algorithm does ac-
cording to equation Q(st, at) = rt+γmaxat+1 Q(st+1, at+1).
Over-optimism has also been shown to be a good exploration
strategy when facing unknown situations. Over-optimism
wouldn’t present a problem if the estimates were uniformly
distributed over all of the states. However, if overoptimistic
estimates are concentrated around poor states, it can lead to
suboptimal policies.

This algorithm has empirically shown that DQN’s poor
policies are due to the fact it overestimates the Q function.

One of the possible reasons for overestimating the value of
Q function in the DQN algorithm is using the same model
for both estimating Q function value of the following state
and selecting an action [19]. The way the DDQN deals with
the aforementioned problem is by introducing another, target
model, with parameters θ′, that is used for estimating the value
of Q function while the primary model with parameters θ is
used for action selection. In this way, function estimation is
decoupled from action selection and this eliminates coupling
as a reason of overestimation. Function approximation is done
by using the following equation:

Q(st, at|θ) = R(st+1|st, at)+
γQ(st+1, argmaxat+1

Q(st+1, at+1|θ)|θ
′
).

The target network needs to be updated too. It can be
updated using some of the following strategies: periodic model
swapping, periodic update of target network to the values of
the primary network and linear interpolation of parameters of
target model towards the parameters of the primary network
(θ

′
= θ

′
+α(θ−θ′

)). There is no optimal choice with respect to
how to update the target network. However, it has been shown
by [20] that periodic update improves algorithm stability.

According to [21], it has been empirically proved that
double Q-learning is unbiased while basic Q-learning is biased.
It has also been shown that correcting the overestimation error
resulted in better policies.

3) Dueling Double Deep Q Network (Dueling DDQN):
Dueling Double Deep Q Network is an upgrade to the above
described Double Deep Q Network. This algorithm doesn’t
bring any novelties with respect to the algorithm but rather
changes the representation of the Q function. The Q function
can be written as a combination of two functions: the advan-

tage function and the value function. The advantage function
is defined as:

Aπ(st, at) = Qπ(st, at)− V π(st) (2)

Simply put, the value function measures how good is it to
be in a given state st, while the advantage function measures
how good it is to perform action at while in state st. The
advantage function can, therefore, prioritize some action over
other actions in a given state.

From equation (2), it follows that Q function can be written
as:

Qπ(st, at) = V π(st) +Aπ(st, at) (3)

Dueling DDQN builds its architecture using (3). Input
convolutional layers are the same as in DQN and DDQN
while changes are made in the fully connected layers. The
fundamental change is that the output of the last convolutional
layer is shared between two streams, one for modeling value
function V (s|θ, α) and another one for modeling advantage
function A(s, a|θ, β). α and β represent parameters of fully
connected layers for value function and advantage function,
respectively. θ represents parameters of convolutional layers
that are shared by both functions.

The problem with implementing equation (3) straightfor-
ward as it is is that, given the value of Qπ(st, at), the values of
V π(st) and Aπ(st, at) can’t be determined uniquely. In order
to deal with this problem, the advantage function is replaced
with a substitution function Az so that the final equation is:

Q(st, at) = V (st) +Az(st, at)

The function Az can be defined in many ways but the
following one proved very good in practice:

Az(st, at) = A(st, at)−
1

m

∑

a
′
t

A(st, a
′
t) (4)

In equation (4), m is the number of actions in the given
environment. Introduction of the substitution function Az re-
sults in a loss of the original semantics of value and advantage
functions but it gives greater algorithm stability, as shown in
[22].

4) Asynchronous advantage actor-critic (A3C): Asyn-
chronous advantage actor-critic algorithm [26] is the only pol-
icy iteration algorithm in this paper. The main reason policy-
based algorithms weren’t previously used in deep reinforce-
ment learning is that they demand neighboring frames that are
highly correlated, caused by their temporal dependency.

The fundamental idea used in the A3C algorithm to solve
this problem is to start multiple agents with the same param-
eters in different environments and let them interact with the
environment. In this way, the correlation of the updates is
decreased.

Another difference with respect to previous algorithms is
that this algorithm speeds up the propagation of reward by
using n-step returns [23] whereas previous algorithms used
only one time step for updating parameters.

Proceedings of the Croatian Computer Vision Workshop, Year 6 October 24, 2018, Zagreb, Croatia

CCVW 2018
Oral Session 9

The number of steps before updating the algorithm param-
eters is determined by tmax or by terminal state. Expression
(1) is an unbiased estimator but there is a way to reduce it’s
variance as stated in [24]. The final estimate of the gradient
of the goal function for the A3C algorithm is:

ĝ(τ) = ∇θ
tmax−1∑

t=0

log π(at|st, θπ)A(st, at|θv)

θπ denotes the parameters of the policy while θv denotes
the parameters of the value function. In practice, all layers
are shared except for the last fully connected layers which
are separate since one of them models the value function with
linear function as the activation, while the other one models
the policy with softmax function as the activation.

It has been shown by [25] that it is very useful to introduce
entropy into the goal function since it prevents early conver-
gence of the policy into some suboptimal policy. In order to
regulate the influence of entropy function on the optimization
process, hyperparameter β is introduced to scale its influence.
If the influence of the entropy is too big the resulting policy
becomes stochastic.

Detailed description and pseudo-code for this algorithm can
be found in [26].

III. EXPERIMENTAL RESULTS

Algorithm learning and evaluation was done using OpenAI
Gym’s [27] implementation of Atari Breakout game where it
was noted that the average human score equals to 31, as stated
by [15]. The evaluation was restricted only to this game due
to limited available resources and the length of the training
process; however, previous work has shown that the relative
performance of the tested algorithms is similar for most of the
games from the Atari 2600 collection [15], [21], [22], [26].
Since the environment gives the state represented as an image
of height 210 pixels and width of 160 pixels in RGB format,
preprocessing was done. The preprocessing consists of resizing
the image height and width to 84 pixels and converting it to
grayscale format. In all of the algorithms, concatenation of
the 3 latest frames was used to represent the current state. In
the case of the start of the game, the first frame is repeated
3 times. The only algorithm that used only the current frame
as input is A3C with LSTM layer. Value-based algorithms
used prioritized forgetting for memory replay. Experiments
were done using Nvidia GTX 1060 6GB and Nvidia GTX
1080 graphics cards. Every point in the graph (for both reward
and episode length) represents the average of five consecutive
games being played. In the terms of evaluation, the episode
stands for one game played, the episode length is the number
of time steps in the episode (number of interactions with the
environment) and the reward is the sum of the rewards received
in each time step (cumulative reward). In the table I the used
architectures are displayed.

A. Deep Q Network

DQN was modeled using a convolutional neural network.
Input image dimensions were 84x84. The network is made

TABLE I
TABLE OF ARCHITECTURES

Layer DQN Dueling DDQN A3C LSTM A3C

1 Input 84x84 As DQN As DQN As DQN
2 Conv

32 8x8 As DQN As DQN As DQN
4x4 stride

ReLU activation
3 Conv

64 4x4 As DQN As DQN As DQN
2x2 stride

ReLU activation
4 Conv

64 3x3 As DQN As DQN As DQN
1x1 stride

ReLU activation
5 Flatten As DQN As DQN As DQN
6 Advantage

stream FC
FC (FC(|A|)) As DQN

(512) Value (512)
stream
FC(1)

7 Policy
Output Output stream Recurrent

(FC(|A|) layer
FC(|A|) (Sum layer) Value (256)

stream
(FC(1)

8 Output As 7th
- - (Policy layer of

stream) A3C
9 Output

- - - (Policy
stream)

of a convolutional layer with 32 kernels of size 8 in both
dimensions, a stride of 4 in both dimensions without padding
and ReLU activation. This is the input layer. The following
layer is also convolutional with 64 kernels of size 4 with a
stride of 2 without padding and ReLU activation. Next layer
is convolutional with 64 kernels of size 3, a stride of 1 without
padding and ReLu activation. These layers are followed by a
flattening layer and two fully connected layers. The first fully
connected layer has 512 neurons and ReLU activation. The
last layer has as many outputs as there are game actions and
has a linear activation function since it models Q(s, a).

The experiment was done using ε-greedy state exploration
strategy. The training was done for 4 million iterations and it
lasted 90 hours using Nvidia GTX 1080 graphics card. The
results are displayed in Fig. 1.

As it can be seen from the graph of the episode length and
reward, the agent is slowly learning how to play the game.

B. Double Deep Q Network

The architecture that was used is the same as for DQN.
The experiment was done using ε-greedy state exploration

strategy. The training lasted 17 hours using Nvidia GTX 1080
graphics card. The results that were obtained are given in the
Fig. 2.

Proceedings of the Croatian Computer Vision Workshop, Year 6 October 24, 2018, Zagreb, Croatia

CCVW 2018
Oral Session 10

Fig. 1. DQN: Display of episode length and reward with respect to the episode
count

Fig. 2. DDQN: Display of episode length and reward with respect to the
episode count

From the display of both the episode length and the reward
value, it can be deduced that the agent is learning how to play
the game since both are increasing.

C. Dueling Double Deep Q Network

The only difference between the architecture of this network
and the previous ones is that the fully connected layer with 512
neurons is removed and, based on the output of the flattening
layer, two separate streams are created: one for approximating
the value and one for approximating the advantage function.

Two approaches to state exploration were used in combina-
tion with this network, ε-greedy and Boltzmann.

The results that were obtained by using Boltzmann explo-
ration strategy are shown in Fig. 3. The training lasted 24
hours using Nvidia GTX 1080 graphics card.

The results that were obtained by using ε-greedy exploration
strategy are given in Fig. 4. The training was done for 2 million
iterations and it lasted 61 hours using Nvidia GTX 1060 6GB
graphics card.

Comparing the results of the Boltzmann version of Dueling
DDQN with the ε-greedy one shows that ε-greedy one proved
better because it resulted in greater reward value. However,
when testing, Boltzmann approach showed to be more con-
sistent (stable) with respect to how big reward it was getting
from the environment while the ε-greedy approach had greater
variance.

Fig. 3. Boltzmann Dueling DDQN: Display of episode length and reward
with respect to the episode count

Fig. 4. ε-greedy Dueling DDQN: Display of episode length and reward with
respect to the episode count

D. Asynchronous advantage actor-critic

This algorithm has been tested with two different archi-
tectures. Both architectures were similar to the one that was
used in DQN. The only difference is that after the first fully
connected layer, either LSTM or additional fully connected
layers (with one neuron with linear activation for value ap-
proximation and a number of neurons equal to the number of
actions with softmax activations for policy approximation) are
introduced. The outputs of these additional layers are used as
a stream for value and policy. Both algorithms used 24 threads
as agents. It must be remarked that the graphs are displayed for
only one thread/agent. In other words, this algorithm roughly
played 24 times more games than it is displayed on the graph.

The results that were obtained by using the LSTM layer
are given in Fig. 5. The training lasted 32 hours using Nvidia
GTX 1060 6GB graphics card.

The results that were obtained by a simple feedforward
convolutional network are shown in Fig. 6. The training lasted
24 hours using Nvidia GTX 1060 6GB graphics card.

From the display of both the episode length and the reward
value of both LSTM A3C algorithm and feedforward A3C
algorithm, it can be deduced that the agent is learning how to
play the game since both are increasing. It can also be stated
that in this case the feedforward A3C algorithm proved to
learn better policy.

Proceedings of the Croatian Computer Vision Workshop, Year 6 October 24, 2018, Zagreb, Croatia

CCVW 2018
Oral Session 11

Fig. 5. LSTM A3C: Display of episode length and reward with respect to
the episode count

Fig. 6. Feedforward A3C: Display of episode length and reward with respect
to the episode count

IV. CONCLUSION

The main focus of this paper was to provide an overview of
various deep reinforcement learning techniques. By comparing
the acquired results it can be seen that the A3C algorithm has
proved to be the best solution so far since it has yielded the
greatest reward in the shortest time span. With this in mind,
it can be noted that this could be the algorithm that will be
used as the cornerstone of future work.

REFERENCES

[1] G. Barto, P. S. Thomas, and R. S. Sutton, “Some Recent Applications
of Reinforcement Learning”. In Proceedings of the Eighteenth Yale
Workshop on Adaptive and Learning Systems, 2017.

[2] J. Kober, J. Andrew (Drew) Bagnell and J. Peters, “Reinforcement
Learning in Robotics: A Survey”. International Journal of Robotics
Research, July 2013.

[3] A. El Sallab, M. Abdou, E. Perot and S. Yogamani “Deep Reinforcement
Learning for Autonomous Driving. Electronic Imaging, Autonomous
Vehicles and Machines 2017, pp. 70-76(7).

[4] R. Sutton and A. Barto, “Reinforcement Learning: An Introduction,”
MIT Press, 1998.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks”. Advances in Neural Informa-
tion Processing Systems 25, pp 1097–1105., 2012.

[6] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition”. CoRR, abs/1409.1556, 2014.

[7] K. He, X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image
Recognition”. 10.1109/CVPR.2016.90, 2015.

[8] C. Szegedy, W. Liu, Y Jia, P. Sermanet and S. Reed, “GoogLeNet: Going
Deeper with Convolutions”. CVPR 2015., pp. 1-9

[9] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: towards real-
time object detection with region proposal networks”. NIPS 2015, pp.
91-99.

[10] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection”. CVPR 2016., pp. 779-788.

[11] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C-Y Fu, A. C.
Berg, “SSD: Single Shot MultiBox Detector”. ECCV 2016.

[12] J. Long, E. Shelhamer and T. Darrell, “Fully convolutional networks for
semantic segmentation”. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp 3431–3440, 2015.

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation”, pp 234–241. Springer
International Publishing, Cham, 2015.

[14] V. Badrinarayanan, A. Kendall and R. Cipolla, “SegNet: A Deep
Convolutional Encoder-Decoder Architecture for Image Segmentation”.
IEEE TPAMI, vol. 39, Issue 12, 2017., pp. 2481-2495.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D.
Wierstra and M. Riedmiller, “Playing Atari with Deep Reinforcement
Learning,” arXiv, 2013

[16] Y. Li, “Deep Reinforcement Learning: An Overview”. ArXiv, 2017.
[17] K. Arulkumaran, M. P. Deisenroth, M. Brundage and A. A. Barath, “A

Brief Survey of Deep Reinforcement Learning”, IEEE Signal Processing
Magazine, 2017

[18] J.E. Smith and R.L. Winkler, “The Optimizer’s Curse: Skepticism and
Postdecision Surprise in Decision Analysis”, 2006.

[19] H. van Hasselt, “Double Q-learning”, 2010.
[20] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg and D. Hassabis, “Human-level control through deep
reinforcement learning,” 10.1038/nature14236, 2015

[21] H. van Hasselt, A. Guez and D. Silver, “Deep Reinforcement Learning
with Double Q-learning,” arXiv, 2015.

[22] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot and N.
de Freitas,“Dueling Network Architectures for Deep Reinforcement
Learning,” arXiv, 2016.

[23] J. Peng and R.J. Williams, “Incremental multi-step q-learning,” Machine
Learning, 1996.

[24] R.J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning”, 1992.

[25] R.J. Williams and J. Peng, “Function Optimization Using Connectionist
Reinforcement Learning Algorithms”, 1991.

[26] V. Mnih, A.P. Badia, A. Graves, T.P. Lillicrap, T. Harley, D. Silver
and K. Kavukcuoglu, “Asynchronous Methods for Deep Reinforcement
Learning”, arXiv, 2016.

[27] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang, W. Zaremba “OpenAI Gym”, arXiv:1606.01540, 2016.

[28] M. C. Machado, M. G. Bellemare, E. Talvitie, J. Veness, M.
Hausknecht, M. Bowling “Revisiting the Arcade Learning Environ-
ment: Evaluation Protocols and Open Problems for General Agents”,
doi:10.1613/jair.5699, 2013.

Proceedings of the Croatian Computer Vision Workshop, Year 6 October 24, 2018, Zagreb, Croatia

CCVW 2018
Oral Session 12

