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Outline

• What is 3D profilometry?

• Fringe projection profilometry
• structured light patterns
• fringe patterns
• wrapped phase and phase unwrapping
• examples

• Multi-camera multi-projector structured light scanner
• phase unwrapping and selection of spatial frequencies
• on geometric and colorimetric calibration (for discussion only)

• On optimal frequency selection
• distance in wrapped phase space as fringe design criteria
• some designed patterns
• point-cloud filtering

• Underwater structured light imaging
• future research directions

• Conclusion
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What is 3D profilometry?

• 3D profilometry is the measurement of coordinates of selected points
which are located on the surface of an object.
• Other names: 3D surface scanning, range finding, depth sensing

• 3D coordinates (x, y, z) are always measured, and sometimes surface reflectance, 
surface color or albedo are also measured

• Resulting data is called a point cloud

• Specific measurement techniques: structured light scanning, fringe projection 
profilometry, stereo vision, time-of-flight

• 3D profilometry vs 3D imaging: in 3D imaging we measure some property p for each 
point (x, y, z) within a finite volume (e.g. CT, MRI, 3DRA)
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Structured light 
scanning

• In structured light scanning an 
artificial controllable light source 
is used to illuminate a scene
• projectors project images

• Multiple measurements are made 
for various projected patterns
• cameras acquire images of the 

object on which patterns are 
projected

• Computational imaging is used to 
extract the data of interest
• decoding the projected code or 

observing how the pattern is 
deformed enables 3D 
measurement
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Structured Light Patterns

• In structured light surface scanning we may project one or more 
patterns:

1) one-shot patterns

• reconstruction from
a single image

• object may move

• spatial pattern decoding

• reconstruction is usually sparse 
or low-resolution

2) multi-shot patterns

• multiple images
are projected in time

• object must be stationary

• temporal pattern decoding

• reconstruction is dense or high-
resolution

• Fringe projection profilometry: pattern is a sinusoidal fringe.
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Examples of structured light patterns
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projector
camera

object

sinusoidal fringe

xPRJ

yPRJ

xCAM

yCAM
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Projector-camera pair 
(a common setup)



Wrapped phase and phase unwrapping

• The intensity of a sinusoidal fringe which encodes xPRJ as the argument of 
the cosine is
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• Projecting at least three patterns with phase shifts [n] enables the recovery of xPRJ, 
but only up to mod 2

• The phase is wrapped and must be unwrapped by determining the fringe order number k

Φ = 𝜑 + 2𝑘𝜋



Human body scanner

a b

c

d
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Common issues/design challenges

• Have to take into consideration: occlusions, ambient illumination, 
interreflections, non-Lambertian surfaces (shiny, semi-transparent, ...), etc.

• We want to measure the whole surface of an object
• multiple measurements are usually required

• reposition or move either the object or the measuring device

• increase the number of sensors  (increasing the number of projectors introduces 
interferences)

• We want to measure under normal illumination
• dark rooms are impractical for everyday scanning

• structured light pattern should be insensitive to ambient illumination

• We want good quality scans which require minimal post-processing
• automatic rejection of bad measurement points
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A flexible
laboratory setup

• Three carts with 
poles
• easy positioning

• Each pole contains
• one projector

• two cameras
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What do we project and observe?

• A projector is projecting a sinusoidal fringe 

• A camera observing the pattern of one projector measures the intensity 

• If multiple projectors are projecting simultaneously
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Decomposition of the observed intensities

• Requires solving a system of linear equations:
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Signal decomposition for one camera
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Example of multi-projector interference
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Calibration

• Both geometric and 
photometric calibration is 
required

• Geometric calibration
• a double-sided calibration board

• hexagonal circular pattern with 
side markers

• transform between sides is know

• Photometric calibration
• only gamma correction

• can be omitted at the cost of a 
significant increase in the number 
of projected images
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Calibration Objects

                                                                                                   

                                                                                                          

1D: calibration wands

2D: calibration boards

3D: calibration cages
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Pattern Processing

scale-space
detection

of
circles

circle
center

detection
with

non-maximum
suppression
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Extracted Grids
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Colorimetric Calibration

standard colorimetric
calibration board
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Selection of phase shifts and
of spatial frequencies

• Phase shifts p[n] must be selected so the system of equations is solvable

• There exists a convenient selection of phase shifts which enables efficient 
decomposition via FFT
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• Spatial frequencies p[n] must be selected so the system of equations is 
solvable

• At least two frequencies are required per projector to enable reliable phase 
unwrapping via Chinese reminder theorem

• Higher frequencies are preferable due to better properties



Example:
three spatial frequencies and phase unwrapping
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To unwrap the phase the 
following system of 
equations must be solved:



Two frequency example
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Optimal frequency selection

• Optimality is defined w.r.t. the noise robustness to phase unwrapping

• Optimization is not differentiable
• Exhaustive search (cannot use gradient descent)

• Instead of spatial frequencies it is more convenient to search over the 
fringe counts

• The projector coordinate xPRJ is limited to 0 < xPRJ < X interval (normalized, 
not measured in px). Let Ni be the fringe count for the wavelength i .Then:
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0 X

i

Ni = 3



Exhaustive Search Over Viable Fringe Counts

• Exhaustive search is performed over 
viable fringe counts

• We select minimal and maximal 
number of fringe counts over the 
whole projector width (or height)

• Search complexity is factorial, but 
for regularly used fringe counts the 
total search time is acceptable
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Selecting optimal spatial frequencies w.r.t.
resistance to wrapped phase noise
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Is there an optimal number of frequencies?

• Under the assumption of 
independence between 
wrapped phase 
measurements expected 
deviation is
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• For M spatial frequencies 
and the minimal half-
distance d we have an 
upper limit

designed SL codes

limit for
the power-2 sequence



Point cloud filtering

• Filter out all points which are farther from 
the line-constellation then some predefined 
threshold 
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Underwater imaging and physical properties
of water

• Liquid water strongly absorbs electromagnetic radiation

• There is a narrow window of weak absorption
• it includes the visible spectrum

• the lowest absorption is for the blue light (at 418 nm for water at 22°C)

• Underwater imaging using the visible spectrum is of particular interest

• Compared to ultrasound imaging
• spatial resolution is better when using visible light

• imaging range/distance is better when using sound

(source of images: Wikipedia)



Challenges of underwater imaging

• Compared to in-the-air imaging
• the absorption coefficient of liquid water is much higher

• turbidity of water causes blurring, haze, and backscatter

• air-to-water interface causes refractions

milk added to tap water to simulate turbidity

blurring

haze and backscatter refractions



Key prerequisites for successful imaging

• Well designed structured light patterns to be projected
• most often a set of moving sinusoidal fringes, selection of spatial shape is difficult

• A comprehensive image formation model
• should account for refractions, backscatter and blurring

• A robust and easy to use calibration procedure
• calibrate on land/in the laboratory, minimal adjustments in the field

• A practical underwater enclosure for imaging equipment
• allows adjustments to set the baseline and overlapping fields of view



Structured light patterns

• A sinusoidal fringe with varying phase shifts, spatial frequencies and 
orientations is projected.



Image formation model

• Developed for flat refractive interfaces
• a flat acrylic sheet is a viewport for camera to image and for projector to illuminate

• a key concept is plane-of-refraction

• it is similar to an axial camera model

         

             

             

           

      
  
 

  
 



Calibration procedure

• Calibration can be performed in the laboratory

• Imaging is possible both in air and underwater simply by changing the 
refraction index of the last medium

flat calibration board projector
columns

projector
rows

illuminated
area imaging geometry



Prototype of an underwater SL scanner

two cameras
(image

acquisition)

one projector
(illumination)

three watertight
enclosures

and support
structure





Verification
via known objects

Two verification objects
are a cube and a cylinder
of known dimensions.

3D scanning in
clear water

3D reconstruction



Conclusion and future work

• Considerations when designing a structured light 3D system
• optical setup – surrounding the object with sensors or moving the object in front of 

a sensor

• structured light pattern – scanning time vs. resolution vs. robustness

• fringe projection profilometry – we have a good understanding of how to select all 
relevant parameters of the structured light imaging system

• Future work
• designing spatially pre-warped structured light patterns which are insensitive to flat 

refractive interface

• research Fourier imaging to measure the light transportation matrix and enable 
imaging under very high turbidity

• investigate possibilities of spatio-temporal processing to enable imaging dynamic 
scenes
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