CHAPTER 3

N-gram Language Models

“You are uniformly charming!” cried he, with a smile of associating and now and then I bowed and they perceived a chaise and four to wish for.

Random sentence generated from a Jane Austen trigram model

Being able to predict the future is not always a good thing. Cassandra of Troy had the gift of foreseeing but was cursed by Apollo that no one would believe her predictions. Her warnings of the destruction of Troy were ignored and—well, let’s just say that things didn’t turn out great for her.

In this chapter we take up the somewhat less fraught topic of predicting words. What word, for example, is likely to follow

Please turn your homework ...

Hopefully, most of you concluded that a very likely word is in, or possibly over, but probably not refrigerator or the. In the following sections we will formalize this intuition by introducing models that assign a probability to each possible next word. The same models will also serve to assign a probability to an entire sentence. Such a model, for example, could predict that the following sequence has a much higher probability of appearing in a text:

all of a sudden I notice three guys standing on the sidewalk

than does this same set of words in a different order:

on guys all I of notice sidewalk three a sudden standing the

Why would you want to predict upcoming words, or assign probabilities to sentences? Probabilities are essential in any task in which we have to identify words in noisy, ambiguous input, like speech recognition or handwriting recognition. In the movie Take the Money and Run, Woody Allen tries to rob a bank with a sloppily written hold-up note that the teller incorrectly reads as “I have a gub”. As Russell and Norvig (2002) point out, a language processing system could avoid making this mistake by using the knowledge that the sequence “I have a gun” is far more probable than the non-word “I have a gub” or even “I have a gull”.

In spelling correction, we need to find and correct spelling errors like Their are two midterms in this class, in which There was mistyped as Their. A sentence starting with the phrase There are will be much more probable than one starting with Their are, allowing a spellchecker to both detect and correct these errors.

Assigning probabilities to sequences of words is also essential in machine translation. Suppose we are translating a Chinese source sentence:

He 向 记者 介绍了 主要 内容

He to reporters introduced main content
As part of the process we might have built the following set of potential rough English translations:

he introduced reporters to the main contents of the statement
he briefed to reporters the main contents of the statement
he briefed reporters on the main contents of the statement

A probabilistic model of word sequences could suggest that *briefed reporters on* is a more probable English phrase than *briefed to reporters* (which has an awkward *to* after *briefed*) or *introduced reporters to* (which uses a verb that is less fluent English in this context), allowing us to correctly select the boldfaced sentence above.

Probabilities are also important for *augmentative communication* (Newell et al., 1998) systems. People like the late physicist Stephen Hawking who are unable to physically talk or sign can instead use simple movements to select words from a menu to be spoken by the system. Word prediction can be used to suggest likely words for the menu.

Models that assign probabilities to sequences of words are called *language models* or LMs. In this chapter we introduce the simplest model that assigns probabilities to sentences and sequences of words, the *n-gram*. An n-gram is a sequence of N words: a 2-gram (or *bigram*) is a two-word sequence of words like “please turn”, “turn your”, or “your homework”, and a 3-gram (or *trigram*) is a three-word sequence of words like “please turn your”, or “turn your homework”. We’ll see how to use n-gram models to estimate the probability of the last word of an n-gram given the previous words, and also to assign probabilities to entire sequences. In a bit of terminological ambiguity, we usually drop the word “model”, and thus the term *n-gram* is used to mean either the word sequence itself or the predictive model that assigns it a probability.

3.1 N-Grams

Let’s begin with the task of computing $P(w|h)$, the probability of a word w given some history h. Suppose the history h is “its water is so transparent that” and we want to know the probability that the next word is *the*:

$$P(\text{the}|\text{its water is so transparent that}). \quad (3.1)$$

One way to estimate this probability is from relative frequency counts: take a very large corpus, count the number of times we see *its water is so transparent that*, and count the number of times this is followed by *the*. This would be answering the question “Out of the times we saw the history h, how many times was it followed by the word w”, as follows:

$$P(\text{the}|\text{its water is so transparent that}) = \frac{C(\text{its water is so transparent that the})}{C(\text{its water is so transparent that})} \quad (3.2)$$

With a large enough corpus, such as the web, we can compute these counts and estimate the probability from Eq. 3.2. You should pause now, go to the web, and compute this estimate for yourself.

While this method of estimating probabilities directly from counts works fine in many cases, it turns out that even the web isn’t big enough to give us good estimates
in most cases. This is because language is creative; new sentences are created all the time, and we won’t always be able to count entire sentences. Even simple extensions of the example sentence may have counts of zero on the web (such as “Walden Pond’s water is so transparent that the”).

Similarly, if we wanted to know the joint probability of an entire sequence of words like its water is so transparent, we could do it by asking “out of all possible sequences of five words, how many of them are its water is so transparent?” We would have to get the count of its water is so transparent and divide by the sum of the counts of all possible five word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce cleverer ways of estimating the probability of a word given a history h, or the probability of an entire word sequence W.

Let’s start with a little formalizing of notation. To represent the probability of a particular random variable X_i taking on the value “the”, or $P(X_i = \text{“the”})$, we will use the simplification $P(\text{the})$. We’ll represent a sequence of N words either as $w_1...w_n$ or w_n^{-1} (so the expression w_n^{-1} means the string $w_1,w_2,...,w_{n-1}$). For the joint probability of each word in a sequence having a particular value $P(X_1,Y_2,Z_3,...,W_n)$ we’ll use $P(w_1,w_2,...,w_n)$.

Now how can we compute probabilities of entire sequences like $P(w_1,w_2,...,w_n)$? One thing we can do is decompose this probability using the chain rule of probability:

$$P(X_1...X_n) = P(X_1)P(X_2|X_1)P(X_3|X_2^2)...P(X_n|X_n^{n-1})$$

$$= \prod_{k=1}^{n} P(X_k|X_k^{k-1}) \quad (3.3)$$

Applying the chain rule to words, we get

$$P(w_1^n) = P(w_1)P(w_2|w_1)P(w_3|w_1^2)...P(w_n|w_1^{n-1})$$

$$= \prod_{k=1}^{n} P(w_k|w_1^{k-1}) \quad (3.4)$$

The chain rule shows the link between computing the joint probability of a sequence and computing the conditional probability of a word given previous words. Equation 3.4 suggests that we could estimate the joint probability of an entire sequence of words by multiplying together a number of conditional probabilities. But using the chain rule doesn’t really seem to help us! We don’t know any way to compute the exact probability of a word given a long sequence of preceding words, $P(w_n|w_1^{n-1})$. As we said above, we can’t just estimate by counting the number of times every word occurs following every long string, because language is creative and any particular context might have never occurred before!

The intuition of the n-gram model is that instead of computing the probability of a word given its entire history, we can approximate the history by just the last few words.

The bigram model, for example, approximates the probability of a word given all the previous words $P(w_n|w_1^{n-1})$ by using only the conditional probability of the preceding word $P(w_n|w_{n-1})$. In other words, instead of computing the probability

$$P(\text{the}|\text{Walden Pond’s water is so transparent that}) \quad (3.5)$$
we approximate it with the probability

\[P(\text{the}|\text{that}) \] (3.6)

When we use a bigram model to predict the conditional probability of the next word, we are thus making the following approximation:

\[P(w_n|w_{n-1}) \approx P(w_n|w_{n-1}) \] (3.7)

The assumption that the probability of a word depends only on the previous word is called a Markov assumption. Markov models are the class of probabilistic models that assume we can predict the probability of some future unit without looking too far into the past. We can generalize the bigram (which looks one word into the past) to the trigram (which looks two words into the past) and thus to the n-gram (which looks \(n-1 \) words into the past).

Thus, the general equation for this n-gram approximation to the conditional probability of the next word in a sequence is

\[P(w_n|w_{n-1}) \approx P(w_n|w_{n-1:n+1}) \] (3.8)

Given the bigram assumption for the probability of an individual word, we can compute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

\[P(w_1^n) \approx \prod_{k=1}^{n} P(w_k|w_{k-1}) \] (3.9)

How do we estimate these bigram or n-gram probabilities? An intuitive way to estimate probabilities is called maximum likelihood estimation or MLE. We get the MLE estimate for the parameters of an n-gram model by getting counts from a corpus, and normalizing the counts so that they lie between 0 and 1.\(^2\)

For example, to compute a particular bigram probability of a word \(y \) given a previous word \(x \), we’ll compute the count of the bigram \(C(xy) \) and normalize by the sum of all the bigrams that share the same first word \(x \):

\[P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})} \] (3.10)

We can simplify this equation, since the sum of all bigram counts that start with a given word \(w_{n-1} \) must be equal to the unigram count for that word \(w_{n-1} \) (the reader should take a moment to be convinced of this):

\[P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{C(w_{n-1})} \] (3.11)

Let’s work through an example using a mini-corpus of three sentences. We’ll first need to augment each sentence with a special symbol \(<s>\) at the beginning of the sentence, to give us the bigram context of the first word. We’ll also need a special end-symbol. \(<</s>^2\)

1. For probabilistic models, normalizing means dividing by some total count so that the resulting probabilities fall legally between 0 and 1.
2. We need the end-symbol to make the bigram grammar a true probability distribution. Without an end-symbol, the sentence probabilities for all sentences of a given length would sum to one. This model would define an infinite set of probability distributions, with one distribution per sentence length. See Exercise 3.5.
Here are the calculations for some of the bigram probabilities from this corpus

\[
P(I|<s>) = \frac{2}{7} = 0.2857 \quad P(Sam|<s>) = \frac{1}{7} = 0.1429 \quad P(am|I) = \frac{2}{7} = 0.2857
\]

\[
P(<s>|Sam) = \frac{1}{2} = 0.5 \quad P(Sam|am) = \frac{1}{2} = 0.5 \quad P(do|I) = \frac{1}{7} = 0.1429
\]

For the general case of MLE n-gram parameter estimation:

\[
P(w_n|w_{n-N+1}) = \frac{C(w_{n-N+1}w_n)}{C(w_{n-N+1})}
\]

Equation 3.12 (like Eq. 3.11) estimates the n-gram probability by dividing the observed frequency of a particular sequence by the observed frequency of a prefix. This ratio is called a relative frequency. We said above that this use of relative frequencies as a way to estimate probabilities is an example of maximum likelihood estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood of the training set \(T\) given the model \(M\) (i.e., \(P(T|M)\)). For example, suppose the word Chinese occurs 400 times in a corpus of a million words like the Brown corpus. What is the probability that a random word selected from some other text of, say, a million words will be the word Chinese? The MLE of its probability is \(\frac{400}{1,000,000}\) or 0.0004. Now 0.0004 is not the best possible estimate of the probability of Chinese occurring in all situations; it might turn out that in some other corpus or context Chinese is a very unlikely word. But it is the probability that makes it most likely that Chinese will occur 400 times in a million-word corpus. We present ways to modify the MLE estimates slightly to get better probability estimates in Section 3.4.

Let’s move on to some examples from a slightly larger corpus than our 14-word example above. We’ll use data from the now-defunct Berkeley Restaurant Project, a dialogue system from the last century that answered questions about a database of restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some text-normalized sample user queries (a sample of 9332 sentences is on the website):

- can you tell me about any good cantonese restaurants close by
- mid priced thai food is what i’m looking for
- tell me about chez panisse
- can you give me a listing of the kinds of food that are available
- i’m looking for a good place to eat breakfast
- when is caffe venezia open during the day

Figure 3.1 shows the bigram counts from a piece of a bigram grammar from the Berkeley Restaurant Project. Note that the majority of the values are zero. In fact, we have chosen the sample words to cohere with each other; a matrix selected from a random set of seven words would be even more sparse.

Figure 3.2 shows the bigram probabilities after normalization (dividing each cell in Fig. 3.1 by the appropriate unigram for its row, taken from the following set of unigram probabilities):

| want to eat chinese food lunch spend |
|---------|--------|--------|--------|----------|--------|
| 2533 | 927 | 2417 | 746 | 158 | 1093 |
| 341 | 278 | | | | |

Here are a few other useful probabilities:
Figure 3.1 Bigram counts for eight of the words (out of $V = 1446$) in the Berkeley Restaurant Project corpus of 9332 sentences. Zero counts are in gray.

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>5</td>
<td>827</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>want</td>
<td>2</td>
<td>0</td>
<td>608</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>to</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>686</td>
<td>2</td>
<td>0</td>
<td>6</td>
<td>211</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>42</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>82</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Figure 3.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus of 9332 sentences. Zero probabilities are in gray.

<table>
<thead>
<tr>
<th></th>
<th>i</th>
<th>want</th>
<th>to</th>
<th>eat</th>
<th>chinese</th>
<th>food</th>
<th>lunch</th>
<th>spend</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td>0.002</td>
<td>0.33</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>want</td>
<td>0.002</td>
<td>0.0083</td>
<td>0.66</td>
<td>0.0011</td>
<td>0.0065</td>
<td>0.0065</td>
<td>0.0054</td>
<td>0.0011</td>
</tr>
<tr>
<td>to</td>
<td>0.00083</td>
<td>0.0017</td>
<td>0.28</td>
<td>0.00083</td>
<td>0</td>
<td>0</td>
<td>0.0025</td>
<td>0.087</td>
</tr>
<tr>
<td>eat</td>
<td>0</td>
<td>0</td>
<td>0.0027</td>
<td>0</td>
<td>0.021</td>
<td>0.0027</td>
<td>0.056</td>
<td>0</td>
</tr>
<tr>
<td>chinese</td>
<td>0.0063</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.52</td>
<td>0.0063</td>
<td>0</td>
</tr>
<tr>
<td>food</td>
<td>0.014</td>
<td>0</td>
<td>0.014</td>
<td>0</td>
<td>0.00092</td>
<td>0.0037</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>lunch</td>
<td>0.0059</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0029</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>spend</td>
<td>0.0036</td>
<td>0</td>
<td>0.0036</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

$P(i|<s>) = 0.25$ $P(english|want) = 0.0011$
$P(food|english) = 0.5$ $P(<s>|food) = 0.68$

Now we can compute the probability of sentences like *I want English food* or *I want Chinese food* by simply multiplying the appropriate bigram probabilities together, as follows:

\[
P(<s> \text{ i want english food } \text{ } <s>)
\]
\[
= P(i|<s>)P(want|i)P(english|want)
\]
\[
P(food|english)P(<s>|food)
\]
\[
= .25 \times .33 \times .0011 \times 0.5 \times 0.68
\]
\[
= .000031
\]

We leave it as Exercise 3.2 to compute the probability of *i want chinese food*.

What kinds of linguistic phenomena are captured in these bigram statistics? Some of the bigram probabilities above encode some facts that we think of as strictly syntactic in nature, like the fact that what comes after *eat* is usually a noun or an adjective, or that what comes after *to* is usually a verb. Others might be a fact about the personal assistant task, like the high probability of sentences beginning with the words *I*. And some might even be cultural rather than linguistic, like the higher probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described bigram models, in practice it’s more common to use trigram models, which condition on the previous two words rather than the previous word, or 4-gram or even 5-gram models, when there is sufficient training data. Note that for these larger n-grams, we’ll need to assume extra context for the contexts to the left and right of the
3.2 Evaluating Language Models

The best way to evaluate the performance of a language model is to embed it in an application and measure how much the application improves. Such end-to-end evaluation is called \textit{extrinsic evaluation}. Extrinsic evaluation is the only way to know if a particular improvement in a component is really going to help the task at hand. Thus, for speech recognition, we can compare the performance of two language models by running the speech recognizer twice, once with each language model, and seeing which gives the more accurate transcription.

Unfortunately, running big NLP systems end-to-end is often very expensive. Instead, it would be nice to have a metric that can be used to quickly evaluate potential improvements in a language model. An \textit{intrinsic evaluation} metric is one that measures the quality of a model independent of any application.

For an intrinsic evaluation of a language model we need a \textit{test set}. As with many of the statistical models in our field, the probabilities of an n-gram model come from the corpus it is trained on, the \textit{training set} or \textit{training corpus}. We can then measure the quality of an n-gram model by its performance on some unseen data called the \textit{test set} or test corpus. We will also sometimes call test sets and other datasets that are not in our training sets \textit{held out} corpora because we hold them out from the training data.

So if we are given a corpus of text and want to compare two different n-gram models, we divide the data into training and test sets, train the parameters of both models on the training set, and then compare how well the two trained models fit the test set.

But what does it mean to “fit the test set”? The answer is simple: whichever model assigns a \textit{higher probability} to the test set—meaning it more accurately predicts the test set—is a better model. Given two probabilistic models, the better model is the one that has a tighter fit to the test data or that better predicts the details of the test data, and hence will assign a higher probability to the test data.

Since our evaluation metric is based on test set probability, it’s important not to let the test sentences into the training set. Suppose we are trying to compute the probability of a particular “test” sentence. If our test sentence is part of the training corpus, we will mistakenly assign it an artificially high probability when it occurs in the test set. We call this situation \textit{training on the test set}. Training on the test set introduces a bias that makes the probabilities all look too high, and causes huge