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AGENDA

O Introduction: building software that learns from data

0 Part 1: Elements of deep models for natural scene understanding
0 Part 2: Overview of our industrial collaboration

0 Part 3: Challenges and Opportunities

0 Conclusion: prospects, space for improvement
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INTRODUCTION : CHANGE OF TIDE
Deep learning caused profound changes into computer vision

methodology

Many of our beloved methods rapidly rapidly fell out of luck, eg:
O handcrafted features (SIFT)
0 handcrafted kernels (RBF)
O convex optimization (SVM)

0 shallow embeddings (BoW, Fisher)

Shift from software-centric towards data-centric paradigm?
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INTRODUCTION : BRAVE NEW WORLD

A popular view on contemporary computer vision development:
collect data, train a black-box model, repeat.

THIS 15 YOUR MACHINE LEARNING SYSTETT?

YUP! YOU POUR THE DATA NTO THIS BIG
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE.

WHAT IF THE ANSWERS ARE WRONG? )

JUST STIR THE PILE UNTIL
THEY START LOOKING RIGHT

[xked1838]

It may appear as if we act as data janitors instead of programmers,

research engineers or researchers.
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INTRODUCTION : RED OR BLUE?
However, popular views often miss the point.

Deep learning can automate only implementation details (eg. feature
extraction), the brains of our methods still have to be designed by us:

0 preference towards some solutions (aka inductive bias)
[kreso21tits,grcic21neurips,orsic21pr,saric20cvpr]

0 loss formulation to exploit incompatible labels [bevandic22wacv]

0 learning algorithms for exploiting unlabeled data [grubisic21mva]

Our presence is still required in the driver's seat.
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INTRODUCTION : RED OR BLUE? (2)

In general, our today's job consists in:

0 outlining a fairly large class of solutions (blue region)

O letting the optimization arrange details according to the data

Program space

Software 1.0

Software 2.0

[karpathy17medium]

Much more powerful than classic software development (red)!
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INTRODUCTION : INDUCTIVE BIAS

Inductive bias --- preference of a learning algorithm towards a class of
solutions:

0 fundamental concept of machine learning

0 it defines generalization from the training data to the test data

Learning without bias is futile [basi¢11sul].

Constructing inductive bias an important technique for designing deep
learning algorithms.
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INTRODUCTION : CONVOLUTIONAL MODELS

Convolutional layers express the following inductive bias:

O a translated image gives rise to translated activations (translational
equivariance)

Inductive bias of pooling layers:

0 activations do not depend on object location in the image
(translational invariance)

These two pieces of inductive bias are the reason why convolutional
models outperform fully connected models
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INTRODUCTION : RECURRENT LAYERS

A recurrent layer updates the latent state h sequentially, with respect to
each token x of the input sequence:

hi = fy(hi—1,x;) (1)

Such layers express the following inductive bias:
O all tokens are processed according to same parameters 6
0 influence of a particular token does not depend on its position in
the sequence

A more abstract formulation [abnar20github] applicable even when we
use positional embedding:
O input tokens are processed sequentially

0 there is no direct access to the past tokens
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SCALE INVARIANCE : SOMETHING'S FISHY

There are infinitely many useful pieces of inductive bias:
0 the list is limited only by our imagination.

For instance, note that convolutional layers are not scale-equivariant:
0 a scaled image results in a different convolutional representation

O there is no deterministic relation between convolutional
representations of scaled objects (??!)

[cordts16cvpr]
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SCALE INVARIANCE : HAND-CRAFTED PERSPECTIVE
This state of affairs does not feel right (to us at least):
O a model learns (per-class) perspective by heart?

0 especially in real-time constraints where capacity is scarce

We have addressed this by promoting equivariance to scale:

0 analyze each pixel at a scale which matches its stereo depth

0 assemble scale-invariant representation through scale selection

WxH W/axH/a W/a5xH/a5 W/a7xH/a?
[kreso21phd]
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SCALE INVARIANCE : HAND-CRAFTED PERSPECTIVE (2)

Efficient (GPU friendly) implementation:
0 apply a shared backbone across a resolution pyramid
[farabet13pami]

0 use pixel-level depth information to pick appropriate scale

This simplifies things to the model by presenting all parts of the scene
as if they were filmed from three canonical distances.
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SCALE INVARIANCE : HAND-CRAFTED PERSPECTIVE (3)

Our inductive bias contributed 3pp mloU (Cityscapes val) over a
baseline with three fixed scales and no scale selection.

We noticed most improvement at rare classes and large objects:
o this suggests that our model had insufficient receptive field

0 likely caused by pre-training on 224x224 ImageNet images.

Size of the receptive field is critical for recognition of large objects:

[kreso16gcpr]
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LADDER DENSENET: DILATION?
Our scale invariant model was ranked #3 on Cityscapes test (2016).
However, it could not compete with later submissions which combined

large convolutional backbones with dilated convolutions.
0 dilated models reduce subsampling and retain pre-training

0 increased computational strain and memory footprint (blue bricks)

F=256

F=512 5
F=1024 F=2048
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LADDER DENSENET : BRUTE FORCE OR EFFICIENT?

Unfortunately (or fortunately) we could not afford dilated models:
0 huge training footprint, huge computational power

0 our competitors trained on 4 xTitan GTX
o unavailable in Croatia, expensive

O it makes no sense to compete from a handcapped position

Instead, we chose to compete by making our models more efficient:
0 increase the subsampling instead of increasing the computations

O very attractive due to opportunity to address real-time applications
o robotics, driver assistance, mobile phones
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LADDER DENSENET: CONCEPT

We therefore complemented ImageNet-pretrained convolutional
backbone with lightweight ladder-style upsampling:
0 most layers and most capacity assigned to the backbone

0 context recognition module increases the receptive field of the
most compressed representation

0 ladder-style upsampling blends low-resolution semantics with
high-resolution details

A

[kreso17iccvw]
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LADDER DENSENET: BIAS

Inductive bias of ladder-style upsampling:
O recognition receives more capacity than border refinement

0 bonus: much less computations (blue bricks) than dilated models
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LADDER DENSENET: RELATED WORK

A similar architecture has been proposed in the paper on feature
pyramid networks (2017, the same as Ladder DenseNet):
o they consider only object detection and they do not address
receptive field of dense predictions

[lin17cvpr]
CCVW 2021 — Ladder DenseNet (4) 18/56



LADDER DENSENET: RELATED WORK (2)

Ladder-style reconstruction has been invented for autoencoders:

0 deep layers focus on abstract invariant features

0 shallow layers keep information to reconstruct details

0 skips improve gradient exposure and speed-up the learning

Hierarchical Standard
latent variable autoencoder
model network
mite = By
g2(1) hi2(r) h(2(i)
&) hit(t) a(t)
x(t) x(t) x(t)

Ladder
autoencoder
network

K1) P

X(F)  — ()
[valpolai4arxiv]
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LADDER DENSENET: RELATED WORK (3)

Ladder-style upsampling has also been used in the UNet architecture:

output
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[ronneberger15miccai]

Our architecture outperforms UNets due to following advantages:
0 asymetric design: +generalization, -computations

O increased receptive field due to context/pyramid pooling

0 standard recognition backbone allows pre-training
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LADDER DENSENET: PYRAMID POOLING

Convolutional pyramid pooling [zhao17cvpr]:
0 augments each feature with a context descriptor

0 context descriptors are recovered through multi-grid pooling and
bilinear upsampling
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[zhao17cvpr]

Previous uses of pyramid pooling:
0 augmenting image-wide representations in convolutional

[he15pami] and classical BoW models [lazebnik06cvpr].
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LADDER DENSENET: PYRAMID POOLING (2)

Pyramid pooling allows the model to recognize pixels on smooth
surfaces by relying on context:

[kreso16gcpr]
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LADDER DENSENET: PYRAMID POOLING (3)

Different than in [zhao17cvpr] we apply convolutional pooling at R/32
(before ladder-style upsampling):
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[kreso18arxiv]

This achieves similar (or better) effects with much less computational
power [kreso21tits].
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LADDER DENSENET : BACKBONE
DenseNet architecture [huang17cvpr] has several advantages which

make it our default in many different tasks.

A DenseNet model consists of 3-5 procesing blocks:
0 multi-unit convolutional modules (6-100+ convolutions)
0 all these convolutions operate at the same resolution

O other architectures (AlexNet, VGG, ResNet) have similar structure

Input

Dense Block 2

=

Dense Block 1

=

Prediction
Dense Block 3
=

[huang17cvpr]
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LADDER DENSENET: BACKBONE (2)

A DenseNet block relies on dense connectivity and concatenations:

0 each unit operates on all preceeding units from the same block

0 the output of the block is a concatenation of all units.

Fin Fout=Fintn-k
¥ iconcat (n+1) %%»o
Ty
N2

concat (n-2)
Nk

1
concat (n-1)
fn\J;

N

[kreso21phd]

The solution is expressed in terms of features with differing capacities

o this inductive bias makes DenseNets very efficient
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LADDER DENSENET : BACKBONE (3)

DenseNets also have a great potential to reduce the memory footprint:

0 backprop caches inputs for all layers with multiplicative parameters

0 these inputs could be assembled by concatenating f;-f,,.
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[kreso21phd]

However, DenseNet units are not atomic: let's have a look!
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LADDER DENSENET : BACKBONE (4)

However, DenseNet units are not atomic:
0 they consist of a sequence: BN-ReLu-c1x1 BN-ReLU-c3x3

0 autograd caches pink tensors; it is unable to notice that it could
cache f;s in O(n) instead of their concatenations in O(n?)

—_— —

O thus, the default DenseNet caches each unit multiple times (red):

. =2
fz II

7221 duplicated caching

undesired caching

concat
batchnorm
RelLU
conv 1x1
RelLU
C3x3

[

Hence, a popular vote describes DenseNets as memory hungry.
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LADDER DENSENET : BACKBONE (5)

Nevertheless, autograd can be instructed to consider the whole
convolutional unit as a single node of the computational graph.

The technique is called checkpointing. As a result, only f; are cached:

—_— ————————

(checkpointing segment)

Checkpointing LDN-161: 6-fold memory reduction, 27% more time

]
concat
batchnorm
RelLU
conv 1x1
RelLU
C3x3

This is how we succeeded to train very competitive models on

commodity hardware and to deliver competitive research.
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LADDER DENSENET: BACKBONE (6)
DenseFlow applies dense connectivity to normalizing flows
[grcic21neurips]:

@ Augmentation + Noise centering

(&4 Squeeze + Split

‘94 b LB

z,~N(O, I)

[grcic21neurips]

DenseFlow outperforms approaches trained with 24x more GPU power.

Dataset Model GPUtype GPUs Duration (h) Likelihood (bpd)
VFlow [24] Tesla V100 16 ~1440 3.83
ImageNet32 NVAE [51] Tesla V100 24 70 3.92
DenseFlow-74-10  Tesla V100 1 310 3.63
[grcic21neurips]

Inductive bias towards efficient computation of simple features can help
in unsupervised learning as well.
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LADDER DENSENET : EXPERIMENTS

Cityscapes experiments reveal:
O competitive performance wrt state of the art with much less
computations (left, full resolution)

0 dilated models (LDDN-121*) underperform wrt ladder models
(LDN-121*, half resolution, right)

foU | Top@IMpx Class Cat. | Model | FLOP
Method Backbone | Val Test | single scale e S i ‘
Method IoU | iloU | IoU size 1MPx
LKM [25] m50 d32) 774 769 0.1107
TuSimple [46] ml0lds) | 764 776 | 0720t DN121 32| 662 | 467 | 783 | 82M | 561G
SAC-multiple [47) | mi101d8) | 787 781 | 0720t LDNI21 64—+4 | 753 | 548 | 88.1 | 95M | 665G
ResNet-38[48] | wm38ds | 779 784 | 21107 LDN12132+4 | 766 | 57.5 | 88.6 | 9.0M | 754G
PSPNet [17] mi0lds, | n/a 784 | 07201 LDN16932—+4 | 758 | 555 | 884 | 156M | 888G
Multi Task [49] | mi01d8L | n/a 785 0720 LDNI12132—2 | 775 | 589 | 893 | 94M | 1545G
TKCN [50] mi101d8) | n/a 795 0.7201
DEN [51] mi01d32, | n/a 793 | o0dsof ResNet18 32—4 | 709 | 497 | 867 | 133M | 557G
Mapillary [20] wm3sdsy | 783 n/a | 2110t ResNet10132—4 | 737 | 543 | 87.8 | 459M | 186.7G
DeepLabv3[19] | mi01ds) | 793 n/a | 0720t ResNet5032—4 | 739 | 542 | 87.8 | 269M | 109.0G
DeepLabv3+ [33] x65d8, | 79.1 n/a 0.710 DPN&68 324 740 | 53.0 | 87.8 | 13.7M | 59.0G
DRN [52] wm38 8y | 79.7 799 2-110: DDN-121 8}, 725 | 525 | 855 | 82M | 147.8G
DenseASPP[21] | dnl61d8| | 789 806 | 0500 LDDN-1218-34 | 755 | 553 | 883 | 86M | 1748G
LDN121 644 dnl21 64) 80.3 80.0 0.066
LDN161 64—4 dnl61 64 80.7 80.6 0.139 LDDN-121 16—4 758 559 88.4 8.9M 87.0G
[kreso21tits]
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LAbDER DENSENET: RVC 2018

We have used LDN-169 at Robust Vision Challenge 2018:
O evaluation of one model on four benchmarks [kreso18arxiv]
0 we ranked #2 out of 10 in spite of training on one GPU

o the winners could train on much more data due to having 8xV100

<« c @ ® www.robustvision.net/leaderboard.php?benchmark=semantic B | - @ ¢ | Q>Adversarial Attacks —> LN @ =

Semantic Segmentation Leaderboard

¥ wethod KITTI ScanNet Cityscapes WildDash

(Detailed subrankings) (Detailed subrankings) (Detailed subrankings) (Detailed subrankings)

1 MapillaryAl_ROB 1 1 1 1
In-Place Activated BatchiNorm for Memory-Optimized Training of DNNs [Project page] - Submitted by Peter Kontschieder (Mapillary Research)
2 LDN2_ROB 3 2 2 3
Ladder-style DenseNets for Semantic Segmentation of Large Natural Images [Project page] - Submitted by Ivan Kreso [University of Zagreb, Faculty of Electrcal Engineering and
Computing]
3 IBN-PSP-SA_ROB 2 3 3 4
Submitted by Anonymous
4 AHISS_ROB 5 8 5 2
Training of Convolutional Networks on Multipl Datasets for Street Segmentation [Project page] - Submitted by Panagiot Eindhoven
Ui
5 VENUS_ROB 4 4 4
VENUS-Net for Robustyision - Submitted by Anorymous
6 AdapNetv2_ROB 5 5 6 7
Submitted by Anonymous
7 VlocNet+_ROB 7 5 10 5

mitted byAnomymy
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LADDER DENSENET ; OPEN-SET

Deep models underperform on outliers:

O several recent datasets address that problem, eg. StreetHazards,
Fishyscapes, Segment Me If You Can

o the problem can be addressed with open-set recognition models.

Dense outlier map

Segmentation + outliers

Multi-task

model

[bevandic19gcpr]
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LADDER DENSENET: OUTLIERS (2)
Open-set models can be obtained by training on noisy negative data

[bevandic19gcpr]

Interestingly, we need to train on mixed content images in order to be
able detect outlier objects in inlier context

Dense open-set Two-head open-set
recognition model recognition module

Segmentation prediction Y Segmentation ground truthy}

Dense feature
extractor

Il conv
Cmaps

C-way
softmax

Inputimage x
—

2maps

Outlier prediction O
ey .
frmax 7? -
LA Vg

= Backbone ’xl conv

[bevandic19gcpr]
This suggests that deep models are lazy: what you get is what you ask.
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SWIFTNET: CONCEPT

SwiftNet --- efficient variant of Ladder-DenseNet based on ResNet-18:

0 very fast training and inference

0 outperformed prior real-time models by a large margin

o still a competitive baseline for low-power applications

> EB —> EB —> EB —EB

LadderDensenet
o d2MPX)
LinkNet
o(2MPX) SwiftNetRN-18
J2MPx)
it GUNet  SwiftNetRN-18
s < JO5MPX)  (0.5MPx)
o s  JCNEte
ERFNet  (2MPx)
(0.5MPx)
ESPNet
JO.5MPx)
1x10* 3x10* 1x10?
speed[FPS]
[orsic19cvpr]
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SWIFTNET : SEMI-SUPERVISED

Semi-supervised learning uses labeled and unlabeled data:
0 extremely important since it relaxes dependence on labeled data

0 our work sheds additional light on widely used consistency loss
(and proposes a state-of-the-art perturbation model)

iz
e AR

(none) D(hg:(x), he(2)) D(he(x),he (E))
[grubisic21mva]
In comparison to widely used DeepLabV2-RN101:
0 SwiftNet-RN18 delivers comparable performance in
fully-supervised and semi-supervised setups

0 SwiftNet-RN18 requires 12x less memory and 12x faster inference.
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SWIFTNET: PYRAMIDAL SWIFTNET

Scale-equivariant recognition and cross-scale upsampling:
0 decreases the speed for only 30% due to strong subsampling

O a strong contender both in embedded and large-capacity setups

o confirms utility of inductive bias on our datasets.

el N

H/4 x W/4
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SwiFTNET: RVC 2020

We have used pyramidal SwiftNet at Robust Vision Challenge 2020:
0 submit the same model to 7 benchmarks with incompatible labels

0 our strengths: SNPyr, DN161ckpt, NLL+

O we trained our submission on 6 V100 32 GB GPUs provided by
VSITE College for Information Technologies

O the inference took over a day on several GPUs (192 dense logits)

[bevandic22wacvl/
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SwirTNET: ROB 2020 (2)

We achieved rank #1 on the semantic segmentation task:

[orsic20arxiv]

The trained model can segment test images from multiple domains:

[bevandic22wacv]
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SWIFTNET: WIiLbDASH 2

Our ROB 2020 model sets the state of the art on the most advanced
road driving benchmark:

0 hand-picked very hard scenes with various kinds of domain shift

Neta Classic Negative Impact (loU class)
Algorithm oY | doY, oY, toucat U9V |louclass| Blur Coverage Distortion Hood  Occ. Overexp. Particles Screen Underexp. Var.
SN_DN161_fat_pyrx8 46.8% 51.0% 439% 71.4% 655% 32.6% 7% -11% -5% -9% -3% 2% 7% -22% -8% -8%
SN_DN161s3pyrx8 45.6% 498% 41.6% 71.3% 653% 31.0% -10% -6% -6% -10% -3% -3% 6% -20% -9% -10%
SN_RN152pyrx8_RVC 45.4% 489% 427% 70.1% 64.8% 32.5% 6% 7% -5% 7% 1% 2% 7% -19% -11% -3%
seamseg_rvcsubset 37.9% 412% 372% 63.1% 58.1% 30.5% -16% -17% 0% 7% -4% -14% -18% -31% -14% 7%
Tong 37.2% | 410% 412% 652% 535% | 260% | -18% 9% 5% 6% 2% 3% 12%  24% 0% 1%
seamseg_mvd_ss 37.1% 413% 369% 63.4% 557% 26.6% -15% -14% 0% 1% -4% -11% -30% -36% -20% -10%
sw 36.5% | 41.0% 386% 658% 531% | 241% | -16% 7% 6% 4% 2% 7%  19% 23%  -10% 6%
hs1 357% | 40.0% 380% 64.8% 523% | 230% | 17% 0% 8%  18% 1% 5% 1% 2% 9% -9%
MSeg1080_RVC 352% | 387% 354% 651% 507% | 247% | 5% 1% 9% 9% 3% 4% 6%  25% 8%  -13%
hs 344% | 384% 362% 642% 521% | 223% | -19% 1% 8%  18% 0%  13% 1%  20%  11% 6%
EffPS_bibsdsem RVC 32.2% | 357% 24.4% 638% 560% | 204% | -10% 6% A% 7% A% 7% 0% -25% 8% -6%

[bevandic22wacv]
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SWIFTNET: WiLDDASsH 2 (2)

[bevandic22wacv]
CCVW 2021 — SwiftNet (6) 40/56



COLLABORATION

Part 2: Overview of current collaborations
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COLLABORATION : RIMAC AUTOMOBILI

Dense semantic forecasting [saric20cvpr]:

0 guess the content of short-term (120 ms) and mid-term (540 ms)
future images

0 give up upsampling to forecast single-level low-resolution features

0 the approach can be applied to three dense prediction tasks

[saric20cvpr]
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COLLABORATION : RIMAC AUTOMOBILI (2)

Some experimental results:
0 model correctly forecasts disappearance of the car

O blue pixels indicate that our model is aware that this part of the
road has to be imagined

k 255)

43

il

Accuracy (mloU)

Short term:sAt=3  Mid term: At=9

All

MO

All

MO

Oracle-DN121 758 752 758 752
Oracle-RN18 725 715 725 715
Copy last (DN121) 533 487 390 297
3Dconv-F2F [39] 570/ 408  /
Dil10-28 [11] 594 553 478 408
LSTM $28 [33] 60.1  / / /
Mask-F2F [12] /o612 /42
FeatReproj3D [40] 615  / 454/
Bayesian 528 [32] 651/ 512/
LSTM AM $2§ [34] 658  / 513/
LSTM M2M [14] 671 65.1 515 463
F2ME-RN18 w/o d.a. 669 656 559 524
F2MF-DNI121 w/o d.a. 68.7 668 568 531
F2ME-DN121 w/ d.a. 69.6 617 579 546
F2ME-DNI21 w/ d.a. 702 687 591 563

“Z_—‘;

[saric20cvpr]
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CoOLLABORATION : GIDEON BROTHERS

Open-set recognition by training on synthetic negative images:
0 mixed-content training with pasted negative patches

0 the negatives are sampled from a jointly trained generative model
O state-of-the-art performance on Segment Me If You Can

O better than all other approaches which do not use real negatives
and image resynthesis.

Classifier

NF-inverse
-4
z

x|

NF-forward

- s
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COLLABORATION : GIDEON BROTHERS (2)

Self-supervised learning of stereoscopic reconstruction [liu20cvpr]:

o the training proceeds on neighbouring stereo pairs

0 self-supervised geometrical constrains, eg:
flow(I1,12) + stereo(12,r2) = flow(l1,r2)

[geiger13ijrr]

[sovic21]
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COLLABORATION : RomB

Full-stack solution for embedded real-time perception:

O

a

O

management of the labeling process [orsic21phd]

dense prediction with pyramidal SwiftNet [orsic21pr]

training suitable non-ImageNet initialization [bevandic22wacv]
semi-supervised training [grubisic21mva]

optimization with TensorRT on Jetson AGX [orsic21phd]
optimization through static quantization [orec21ms]

pruning according to the lottery ticket hypothesis [bratulic22]
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COLLABORATION : MICROBLINK

We address sparse monocular reconstruction.
o focus on self-supervised correspondence

O require near-real-time performance on mobile devices.
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COLLABORATION : UNIZG-FPZ
Multi-label classification in video:
0 around 40 attributes related to road safety
0 knowledge transfer from our state-of-the-art segmentation models

0 clear commercial potential, struggle with dataset imballance and
noisy labels

o current work considers monocular reconstruction and panoptics

SIDEWAUK=IPASSENGER SIDE P DELINEATION DIVIDED CARRIAGEWAY

ROADSIDEISEVERITY - DRIVER-
= sipE ogjeCT.

[kaca20itsc]
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CHALLENGES AND OPPORTUNITIES

Part 3: Challenges and Opportunities
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CHALLENGES AND OPPORTUNITIES : TWO PERSPECTIVES
Optimistic perspective:
0 unprecedented progress, healthy rate of improvement

0 we would be busy sorting details for at least a decade even with no
further development (unlikely)

0 Moore law still applies: the computing power will increase
Pessimistic perspective:

0 tough competition, many smart people produce at full speed

O unreasonable to expect faster rate of improvement

o we know we could improve faster with more computational power

O hardware improves slowly and wastes a lot of energy.
Clearly, there is some uncertainty ahead.

However, catastrophic forecasts appear Iarggcl¥ exaggerated.
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CHALLENGES AND OPPORTUNITIESZ A VIEW
Thomas Edison said in 1895:

It is apparent to me that the possibilities of the aeroplane, which
two or three years ago were thought to hold the solution to the
[flying machine] problem, have been exhausted, and that we
must turn elsewhere. [https:/www.xaprb.com/blog/flight-is-impossible/]
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CHALLENGES AND OPPORTUNITIES : A VIEW (2)

In spite of abundant scepticism, the Wright brothers flew in 1903:

[wikipedia]

Wilbur Wright delivered the following speech in 1908:

I know of only one bird, the parrot, that talks, and he can't fly
very high.
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CHALLENGES AND OPPORTUNITIES : FUTURE WORK

O Learning with incomplete supervision:
o discriminative vs generative vs self-supervised

o huge industrial value due to relaxed dependence on labels

O

Deep learning for reconstruction:
o adapt classic approaches for end-to-end learning

0 Transformers
o they may offer a way to smarter vision

O

Increasing robustness to distribution shifts
o multi-domain, outliers, adversarial examples, cross-dataset learning

New kinds of inductive bias
o limited by imagination

O

New hardware
o Tesla NPU: 37 TOPS, 36W

o Google TPUv3: 100 TFLOPS, 450W
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CONCLUSIONS : PROSPECTS

The prospects for young researchers are quite good.
o competent employers who require relevant competence
0 decent pays for interesting jobs
0 world is still quite open

O most research papers have corresponding github pages
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CONCLUSIONS : SPACE FOR IMPROVEMENT

Two things could be improved.
1. compulsory journal publications
o our decision delays distribute according to A/(13,3) (months)

o if one is unlucky, (s)he can be rejected after 15 months of review,
and then having to wait for another 15 months

o outcome: promotion of poor journals with large APCs instead of top
conferences

2. availability of GPU power
o0 many research papers inacessible in spite of published code.

O Isabella is insufficient and crowded with jobs with very low GPU
utlization.

o we should think about funding a computing center with at least
12-fold performance of Isabella.
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Thank you for your attention!

Questions?

This presentation would not have been possible without insightful ideas and hard work of Ivan Kre$o, Marin Ors$i¢, Petra Bevandic,
Josip Sari¢, Ivan Grubiié, Matej Grci¢, Marin Kagan and Iva Sovi¢.

This research has been supported by Croatian Science Foundation (MULTICLOD, ADEPT), ERDF (DATACROSS, A-UNIT,
SAFETRAM), Rimac automobili, Microblink, Gideon brothers, Romb technologies, Konéar, UniZg-FPZ, and VSITE.
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