s)

Transpariau

Just travel...

TRANSPORT4U

INTELLIGENT PUBLIC TRANSPORTATION MANAGER

TEAM MEMBERS:

Daj an Zveki ¢ daann@gmail.com

Di no Bart os ak dino.bartosak@gmail.com
Gaurav Kushwaha gaurav.gyani@gmail.com
Mahdi Sarabi msarabi@gmail.com
Muhammad Anwar Islam mar10001@student.mdh.se
Toni Pi vCevi ¢ tpivcevic@gmail.com

Vengal Rao Pachva vengalrao87@gmail.com

PROJECT WAS PERFORMED AS A PART OF DSD COURSE LED BY PROFESSOR/ wb Yh £ L O
'b5 t whC9{ { bihkdER UPHRVISMON OF ANETA VULGARAKIS.

WE ARE VERY PROUD TO PRESENT YOU OUR PROMOTIONAL VIDEO:

http://www.youtube.com/watch?v=VYw6wAPr-R8

v AN
| V4

s MALARDALEN UNIVERSITY
F:q SWEDEN

mailto:dajann@gmail.com
mailto:dino.bartosak@gmail.com
mailto:gaurav.gyani@gmail.com
mailto:msarabi@gmail.com
mailto:mar10001@student.mdh.se
mailto:t.pivcevic@gmail.com
mailto:vengalrao87@gmail.com
http://www.youtube.com/watch?v=VYw6wAPr-R8

EXECUTIVE SUMMARY

The organization of public transportation in large cities is both an uneasy task and a very
responsible one, due to the number of people and businesses depending on it.

The goal of the Transport4U project is to make the organization of the public transport system
more reliable and easier. One of the main benefits of this system is automatic purchasing of
tickets. The system sends a variety of notifications to users, in the form of SMS. These
notifications include: problems in the public transportation network, confirmation of ticket
purchase, expiration of active tickets, etc. Over time, the system learns the standard routes of
each user: journeys that a user takes frequently or periodically over the same segment of the
transport network. These standard routes are taken into account during notifications, meaning
that users are notified only about issues that affect them directly. Possible issues to the
transport system include complete interruption of a transport line or modification of a line on
an alternative route. The system also constantly attempts to optimize each dza S dskRMard
routes, sending out notification about possible faster alternative trips.

The Transport4U system makes the experience of a public transport more pleasant to its users
and to the public transport administrators. The system has an intuitive administration section,
a web interface for management of current issues in the transport network. A web interface is
also available for regular users (current or future passengers of the transport network). By
registering to the system users provide some essential information about their mobile phones:
phone number, MAC addresses, etc.

Transport4U consists of three main modules: Transport Unit Application (TUA), Transport Main
Application (TMA), and Transport Web Application (TWA). The TUA is the application support
which is deployed on every unit of the transport system (buses, trams, systems). The TMA is
the mainframe server of the entire system. The TWA provides users and administrators with a
web interface to interact with the system. All of these modules are built upon a single common
module knows as the Transport Model (TM), which represents the core features of the system
and the implementation of the main domain concepts. To organize all of these separate
modules into one whole system we used modern design approaches and patterns. We used
model-driven design to define our Transport4dU model, object-driven design for
implementation of the modules and test-driven design for testing. We used many software
patterns such as: factory, factory method, service, object pool, chain of responsibility,
singleton, etc.

We worked on the Transport4U project in a distributed environment. One part of the team
consisted of students fromthea Nf | NR I f S yMDU)¥ A & R K&nfsWicieh, while the
other part consisted of students from the Faculty of Electrical Engineering and Computing (FER)
from Zagreb, Croatia. Each location had its team leader. Communication between remote team
members was crucial to the success of the project. We communicated through a variety of
internet services and applications, such as e-mail, Google groups, Skype, etc. We decided to
centralize our communication to make it more effective. The team leaders had separate
meetings with their local team members to negotiate possible issues. These issues were then
delegated to the other side by the team leader.

http://www.mdh.se/

1. INTRODUCTION

Public transportation is a form of travel that most people experience during their lives. This
experience can be both enjoyable, but also unpleasant for a variety of reasons. The sole action
of purchasing a ticket can be problematic: working with difficult automatic ticket dispensing
machines that require the exact amount of change, or waiting in line in a specialized shop. This
is even more difficult when one is in a hurry, as most people are these days.

Even when one manages to start the trip more inconveniences can occur. Public transport is
often unreliable and cannot guaranty that one will make the trip on time. This is because a
wide variety of variables affect the flow of vehicles and units around a public transport network
of a metropolitan city. Daily issues, such as rush hour traffic or unexpected accidents, can
cripple the transport network for hours causing interruptions or modifications to the standard
transport lines. The quality of the entire system can also be judged by how it can cope with
such abnormal situations, keeping the network flowing despite the problems, and ultimately
getting the passengers to their intended destinations.

The Transport4U project is designed to help organize the public transportation system of
metropolitan cities. Such complex transportation systems most often consist of many network
layers, such as buses, trams or subways. The main goal of the project is to make public
transportation more reliable and easier to use for people who heavily depends on it. The
project also attempts to automate many of the everyday actions that are currently manually
executed.

The Transport4U project was proposed by external SCORE customers, Elisabetta Di Nitto and
Matteo Rossi. Like in a real life development scenario, all modifications to requirements and all
major decisions had to be approved by the product customers. In addition to this the team had
to meet the local requirements set upon them by their local DSD courses. Extensive
communication with both external customers and internal course supervisors was crucial to
the success of the project. The development team is confident with the developed product,
considers it in full effect an intelligent public transportation manager, and is confident that it
shows a glimpse of the future where public transportation is heading.

2. DOCUMENT OVERVIEW

The scope of this document is to give the reader insight into the functioning of Transport4U
system and the process the project members undertook to develop it. The report begins with
the scope of the project and main challenges in Section 3. The problem statement together
with detailed requirements specifications are presented in Section 4 and Section 5 respectively.
Section 6 describes the development process as well as project management. Architectural
design and implementation details are analyzed in Section 7 and Section 8. Verification and
validation of the system is presented in Section 9. Outcomes and lessons learned together with
and overall summary make up the final two sections.

3. SCOPE OF THE PROJEQGD MAIN CHALLENGES

Transport4U project was developed under university course Distributed Software Development
(DSD), a maa (i ScolBReijointly LINE GA RSR o0& a N f{(MDNJR IVdst&ras, Sweded DS NE A G &
and Faculty of Electrical Engineering and Computing (FER) ¢ Zagreb, Croatia.

The main challenges facing the team members were the following:

development in a distributed environment
cultural differences
time pressure/deadlines

= =4 =4 =4

integration of SCORE and DSD requirement

Distributed software development poses a challenge even for experienced engineers, because
of the inherent lack of quality communication. This often leads to misunderstandings with
difficulties and delays in the development process. The Transport4U development team
conquered the problem of a distributed environment with the usage of modern online
communication and sharing tools. A well structured development process (described in section
6) was agreed upon and used throughout the project. Different coding and repository policies
were put in place and published, leading to a more unified and standardized development
process. All these actions eventually helped in overcoming the problems that arise in
distributed development, helping the team to overcome any problems early on and finish the
project with very good team communication.

The development team consists of 7 members with five different nationalities. Cultural
differences naturally arose in such a mixed group. Even at the final stages of the project, most
customs and habits remain unknown and difficult to understand, but the team was able to put
these differences aside and work together for the success of the project. Overall, such intensive
interaction with individuals of a different culture can be a valuable experience for similar future
endeavors.

Different DSD course and SCORE competitions deadlines meant the team had a very tight
schedule at times. Some optimized time and resource planning together with a lot of hard
work, lead to all requirements being fulfilled and on time. The development team is glad to be
able to submit the project to the SCORE completion.

4. REQUIREMENTS: PROBLETATEMENT

A typical public transport system provides some information to the end user, for example a
generic time schedule for a transport line. Rarely does such a system reflect problems and
modifications in the transport network in real time. Users might receive line modification
information by secondary means, such as the radio or television. In either case this information
arrives to the end user too late for them to alter their trips in time and only a limited portion of
the affected users are actually notified.

This is one of main goals of the Transport4U project is to provide the end user with a real time
personalized service. A variety of services are provided to the user, the two main one being the
automatic handling of billing and notifications about problems in the transport network.

The system provides effective solutions for following requirements:

I Provide user-friendly web site for users and administrators.
0 Users can register profiles.
O Users can update their information/options.
0 Users will be informed with recent news and changes in public transport.
0 Administrator can insert route interruption.
0 Administrator can insert route modification.
I Automatic detection of users inside transport unit using:
0 Mobile LK 2 Y S Q &Bluetnyth NjAdz&ddress.
0 Mobile LIK 2 Y S Q aWI-EizyIAC hddrSss.
Automatic ticket billing.
Manual ticket billing through SMS.
IdentifA OF GA2Yy 2F dzaSNNa adl yRIFINR NRdziSa
Notifications of users about:
0 Interruptions/modifications in transport network that affect them
0 Confirmation about ticket purchase.

= =4 -4

0 Warning about ticket expiration.

5. REQUIREMENTS SPECAMIION

The basic high-level requirements were defined in an official SCORE completion document
provided by the project customers. The purpose of the document was to give the development
team the basic understanding of what need to be done.

The development team anticipated the importance of a consistent base set of initial
requirements, so a lot of time and effort was invested in identifying and analyzing
requirements for the Transport4U system. The gathering of requirements was conducted using
several methods and in several iterations, as it has been proven time and time again that
identifying all requirements at the start of the project is impossible in software development.
Requirements were gathered as the project progressed in parallel with development.
Iterations of requirements gathering roughly followed the schedule of development iterations
(more detail in section 6).

The main sources for requirement gathering were the following:

9 The Official SCORE document for Transport4U was used for initial brainstorming and
introspection ¢ this resulted in initial version of the requirements.

Communication with the project supervisor.

Communication with the official SCORE customers, with whom every new version of
requirements was discussed and negotiated.

9 Official written communication with local stakeholders, ZET* and TELE2?.

The main methods for requirement gathering were the following: brainstorming, introspection,
and negotiations with customers. Brainstorming and introspection requires live communication
between participants, so initial requirements were developed separately by the local teams.
After that the requirements were merged and an initial stable set of requirements were
defined. Every new version of requirements was coordinated and negotiated with the project
costumers, through the exchange of emails.

During this phase the development team has had intensive communication with local

stakeholder ZET, both informally by phone and email, and formally through official university-

backed written communication. A representative of ZET was interviewed giving the team a lot

of insight about a real life public transportation system. In addition to this, ZET provided the

development team with concrete dataad 2 dzii %k ANB 6 QA& LIzt A O (NI yaLl2 NIl
layers, transport lines, GPS location of stations, etc.). This information was very helpful because

the team could develop and test on real life data very early in the development of the project.

It is important to note that, although the adopted agile development process was ready for
such an eventuality, during the development of the project no major changes to the
requirements occurred. This is mainly due to a well prepared set of initial requirements.

A small subset of use cases and requirements of the Transport4U system follow. Due to space
limitation, only one use case is elaborated. For an exhaustive list of use cases and requirements
please refer to the projects Requirements Definition Document’.

Keyword Definitions
User Citizen using public transportation.
Admin System administrator.
Driver Person employed as driver of transport unit.
TMA Transport main application.

Table5-1 - Use case actors

Transport Unit Application

User performs multiple
route section journey

A
User performs
section joumey

Figure5-1 - Trarsport Unit Application use case diagram

User

51.' {9 /1 {9 & R¥MSOMULTIPERODTESY / ¢ Lhb Wh'! wb9, ¢

Initiator:

Goalt

User.

User performs journey. User is correctly billed. Route information is saved.

Requirements:

1

1

Funcional:

TMAL, TMA2, TMA3, TMA4, TUA1, TUA2.
Non-functional:

TMAL, TUAL, TUA2, TUAS.

Main Scenario:

1.

2
3.
4.
5

User enters transportation unit.

Transportation unit application smartly detects user presence.
If no valid ticket is associated with user, user is billetraotified.

Transportation unit application smartly detects user absence.

User route section data is saved.

User repeats steps3 until journey is completed.

Extensions:

3a. If user has SMS payment.
1. Notification is sent to user to buy ticket.
2. Use buys ticket through SMS service.
3. User is notified about successful ticket purchase.

3b. If user has on demand payment and credit card service fails.
1. Notification is sent to user to buy ticket through SMS service.
2. User buys ticket through SiK&vice.
3. User is notified about successful ticket purchase.

3c. If user has prepaid payment and is out of prepaid tickets.
1. Notification is sent to user to buy ticket through SMS service.
2. User buys ticket through SMS service.
3. User is notifiedbout successful ticket purchase.

*a. If user fails to purchase ticket.
1. Ticket is added to ticket debt.
*b. System detects ticket expiration.
1. If user is currently inside Transport Unit, new ticket is purchased.

The project requirements were divided into functional and non-functional ones. Some of the

non-functional requirements that we have considered are:

= =4 —a -

Application sends notification by SMS.
Application detects users inside through unique Wi-Fi/Bluetooth MAC address.

Connection between TMA and TUA is GPRS based.

Web application is available on browsers: IE 7+, Mozilla Firefox 2+, Google Chrome,

Opera, Safari

The following table (Table 5-2 - Transport Main Application functional requirements) shows a

subset of all the functional requirements pertaining to the Transport Main Application module.

Identity | Status | Priority Description Source
Transport Main Application
F-TMA1 I 1 Application enforces billing. SDOC
Application notifies users about payment: SDOC,
DT
F-TMA2 | 1 1 On payment success.
9 Reminder to pay ticket.
I On payment failure.
9 On ticket expiration.
Application checks when ticket is expired and if user is still | DT
F-TMA3 I 1 . . o .
in vehicle application buys new ticket.
F-TMA4 I 1 Application records routes of every user. SDOC
Application performs scheduled standard route | SDOC
F-TMAS5 I 1 identification. (Finding standard users routes based on
existing data about users)
Application notifies users about routes and suggests | SDOC,
alternative: DT
F-TMA6 | 1
I Interruption in standard route.
{ Modification to standard route.
I Optimization to standard route.
If system crashes tickets are archived. (User will not lose | DT
F-TMA7 I 2) .
its active tickets because of system crash)
ETMAg? b 2 Hsystem-crashes-usersare-notified: BF

! Crossed requirement means that the requirement is dropped by the development team.

FFMAS b 2 Hsystem-erashescontroHsnotified: BT
System provides transport line data pushing when changes | DT
F-TMA10 A 1 y P .p . P § 8
occur to transport unit application.
F-TMA11 A 2 Application performs scheduled route optimization. DT
Application performs scheduled route optimization | DT
F-TMA12 A 2 T
notification.
F-TMA13 A 2 Application has structured schema for network input. DT

Table5-2 - Transport Main Application functional requirements

Requirement status:

T I =initial(this requirement has been identified at the beginning of the project),

1 D = droppedthis requirement has been deleted from the requirement definitions)
9 H = orhold(decision about requirement status will be takes latter)

9 A = additionalthis requirement was introduced during the project course).

Requirement source:

1 SCTM = official SCORE customer
1 SDOC = official SCORE document
1 DT = development team

1 SYS =required by system design

6. DEVELOPMENAROCESAND PROJECT MANAGHBWE

6.1. SCRUM

A team consisting of seven members, placed at different locations, worked on the project. We
chose Scrum, an agile development method, as the development process. An agile
development method was adopted, as requirements were not clear in the beginning of the
project and some requirements were expected to be modified or added. Also, the project had
to be completed in eleven weeks, so we decided to start working on the project as soon as
most of the requirements were identified.

The traditional Scrum approach for development was tweaked to fit into our scenario, as the
team members were located at different geographical locations and everyday meetings were
not feasible. The Scrum Manager role was assigned to one team member. The Scrum manager
adopted the Scrum development process to fit into our distributed environment. All changes
and definitions of the modified Scrum are documented in the Process methodology document®.

All Scrum artifacts created during the development process can be found in the scrum
repository web page”’.

We decided that the two teams in Sweden and in Croatia would hold their own daily meetings
separately. Meetings would be held twice a week. Sprint planning meetings would be held once
a week. Sprint retrospective meeting would be held once a week. Sprint review meeting would
be held as official presentation of the DSD course. Sprint length was one week because it gave
us flexibility to finish all the tasks required for the DSD course on a weekly basis.

We defined the following scrum roles: I 0 { ONHzY al aiSN)XY 5F2a2ly %@S{Ad
Customers Elizabetta Di Nitto and Mateo Rossi with supervisor Aneta Vulgarakis, c) Team of 7

members. During developement differenct standard Scrum artifacts were created: a) Product

backlog (Figure 6-1 - Scrum artifact - Product backlog), b) Sprint backlog, c) Sprint backboard ¢

shared as google documents to all team members.

A B c D E F G Q|R|S|T|U |V W

Transport4You Product Backlog

Week Requirement ID Task Description Responsible Cum. Status (Not »onsible person
Actuals Started/In
Progress |

Completed)

47 Notification of standard routes Toni, Dajan Done 5
47 “ersion of integration testing 3.0 Toni, Dajan, Ding Done 5
47 TransportMain simulater for new version of integration testing Ding Done 4
47 Transport web application{finishing pages and U} Gaurav, Muhammad Deprecated 12
47 Customer communcation, negotiating requirements version 3.0 Dajan Done 3
47 Preparing and presenting beta presentation Gaurav Done]
43 Transport web application (new version of design) Dino Done 6
48 Transport web application (remodeling, refactoring) Dino, Gaurav Done [}
48 Connecting with Wi-Fi interface Toni Done 5
48 Connecting with payment gateway (PayPal sendbox) Dajan Done 5 5 3
43 Stakeholder communication (ZET, TELEZ) continuous Dajan, Toni, Dino Done 3
48 Model and mapping for new features of main app Toni Done 7
48 Transport web application (Google AP reasearch) Gaurav In progress 7 12
New version of web application (Strutz) pages: index, login, 12
49 register, user profile. Validation and internatiolization Dino Done
49 Network parser Toni Daone 4 s s
49 Getting data from gps module Toni Done 5
49 Transport route interruption/modification Toni, Dajan Done 6
49 Standard route identification Dajan Done 5
=0 New version of web application (Struts) Dino Done 10 10
=] Transport web application (Google AP} Dino, Gaurav Done 4
=0 Transport route interruption/medification notification Dajan Done 4
50 Preparing release candidate presentation Dajan, Toni, Dine Done 15
5 wi fi detection implementation Toni TODO 8
52 Transforming ZET network schema into T4U network schema Toni Done 10
52 Paypal direct payment Dajan Done 5
52 Standard route identification testing Dajan In prograss 5 5
52 Ticket purchase (Web) Toni TO DO 5 s
52 Route medification (Web, Google APy Dino In prograss] 5
52 User optiens (Web) Toni TO DO 5 s
53 Score project description document Gaurav Done 8

Figure6-1 - Scrumartifact - Product backlog

At the end we can say that we have had a good experience with the Scrum development
process. It has helped us to keep the project on track and to pinpoint possible problems very
early on in the development process. For example, if someone was having trouble with a
particular task help was provided very early on, without wasting valuable time and resources.
This approach required a lot of code refactoring. Some sprints were dedicated only to
refactoring and redesigning, but that is something that is common to all agile iterative
development processes.

We tried to keep tasks simple and short because of sprint duration and managed to finish most
tasks on time. Short sprints also helped us with integration of new components and gave us

10

flexibility to handle changes in requirements. All in all scrum turned out to be a good choice for
this project and it made the entire development process more robust and enjoyable.

6.2. TEAM MANAGEMENT

Transport4U team was divided into two sub teams based on the locations, one of them was
Swedish part (4 members) and other was Croatian part (3 members). One member from the
Swedish side was assigned as Project Leader whose task was to coordinate with the whole
team and provide project status report to the Supervisor (by the means of weekly reports and
meetings). Similarly, a Team Leader was assigned from the Croatian side whose additional tasks
were to coordinate with the Croatian part and gather week reports.

We encouraged informal communication in all directions in between the team members. This,
not only helped in speeding up the project work, but also in creating a bond between the team
members, gaining technical knowledge, while always maintaining calm and respectful. We
came from different countries, so the informal communication helped us as well in gaining
knowledge about different cultures.

6.3. COMMUNICATION CHANNELS

Language: All the formal communication was done in the English language. All documents
were written in English language. There were no language restrictions in informal
communication.

Synchronous communication: The synchronous communication between the team members
was mostly done by instant messaging and conference calls through internet VOIP service. This
type of communication was the most productive.

Asynchronous Communication: The asynchronous communication between the team members
was mostly done by sending email either to individual or to all members using mailing list.

Repository on FER site: A directory was created on the FER project web page and it was used as
repository for all documents, including temporary and final versions.

Subversion: A Subversion (SVN) repository was created and managed. SVN was used for sharing
source code of the project. A SVN policy document was drafted and published and all team
members followed it.

7. ARCHITECTURAL DESIGN

Transport4U is conceived as an intelligent transport manager. After initial requirements were
gathered we were faced with several critical decisions. We needed to decide what our system
would offer to the users and administrators of a public transportation network. We had
interesting dilemmas, such as a) do we force users to use mobile application, or does system
automatically handle necessary arrangements for user detection and ticket payment, b) how
do we handle user registration and security, c) how and when will users be notified about
events, d) how do we optimize the system for best performance, e) how to integrate multiple
public networks layers, etc.

11

We decided to make Transport4U as much as possible user friendly and easy to use, keeping
the user interaction with the system to a minimum. The following sections describe how these
decisions impacted the overall design of the system.

7.1. TRANSPORT4U DESCRIPTION

Main guideline for our Transport4U system was to make it user friendly and easy to use. This
means that user will be required to make minimal interaction with the Transport4U and that
system will be easy to maintain by administrators.

One of the most important decisions was that users will not be forced to use a particular
mobile application on their mobile phones to use the system. This means that all users with
mobile phones which posses Bluetooth or Wi-Fi devices can use the system. The problem with
mobile applications is that it needs to be specific for a particular operating system. For example
if we decided to make mobile application for Android®, only mobile phones with Android OS
would be supported. We decided to avoid mobile application for initial version of the system.
The component design of the system allows for a future addition of a mobile application
component if this is ever required. In the current version, users are automatically detected
through Bluetooth or Wi-Fi devices. The user has the options to allow the system to
automatically handle ticket purchasing, or can choose the buy the ticket personally by sending
an SMS.

The user can interact with the system through a web interface that supports: user registration,
user data management, system options for specific user, news about public transportation. The
web interface also has an administration section for management of the transport network,
and insertion of general transportation news.

The system makes use of a smart notification module. The system notifies users by sending
them SMS messages. Users will be notified only if the system recognizes that they are directly
affected be the content of the notification. By maintaining this no-spam policy, it is almost
impossible that a user receives a notification without pausing and simply ignores it.

To make these features possible, some very complicated and heavy processing tasks have to
occur in the background. We optimized the system in the way that all heavy processing tasks
occur in periods when the system is not on full workload, for example during the night.

The system integrates many public transport layers, and can work with a variety of different
transportation units. This was achieved by developing a generic domain model, making the
system independent of the concrete physical means of transport.

buAyd (KS RS@St2LIVSyld LINROSaa ¢S KI @SyQi

optimization makes more damage than benefits. But once the system is in a real life scenario
with a large amount of data, some optimization will be necessary.

7.2. CONCEPTUAL DESIGN

12

z

0SSy

4

u

In system design we combined model-driven, component-based and object-oriented concepts.
These concepts allowed us to detach complex system into several smaller and simpler
components. This greatly improved our chances of finishing the project in time.

Our system is designed in a way that all components are decoupled and the implementations
of the components are hidden behind interfaces. This gave us the possibility for development
of new, improved, components without the need to change any existing part of the system.
The Transport4U model is a separate part of the system and can be easily reused for similar
projects or for the extension of existing components. The system is composed from four main
components: Transport Model, Transport Main Application, Transport Unit Application, and
Transport Web Application. The Component diagram is show in Figure 7-1.

«component»
TransportWebApplication

|auses»

«component» wuses» «components «components
Database TransportModel K~ Twusess | TransportMainApplication
————— -O/RMapper

I
I
|
I
|
I

N
«components
TransportUnitApplication

Figure7-1 - component diagram
7.3. TRANSPORT MODEL AND DATABASE

The Transport Model is the model of the Transport4U system. The model primarily contains all
the classes that belong to the domain. This module is completely decoupled without any
complex behavior, making it an ideal component reused by most of the other components that
make up the system.

7.4. TRANSPORT MAIN APPLICATION

The Transport Main Application (TMA) is the mainframe of the Transport4U system. It contains
the behavior of the system and it is composed of several sub-modules a) notification module,
b) standard route identification module, c) user data handler module, d) billing handler
module, e) payment module, f) route optimization module. All these modules represent
general behavior of the Transport4U system and new implementations can be integrated, with
the existing system, very easily. TMA is the server of the system and only one instance of this
application is deployed.

13

7.5. TRANSPORT UNIT APPLICATION

The Transport Unit Application (TUA) represents the application support which is deployed into
each transport unit travelling around the transport network. TUA needs to handle events and
identification of users inside a vehicle. It is composed of several sub-modules a) interfaces to
external devices (Bluetooth, Wi-Fi, GPRS’, GPS®), b) smart detection module (algorithm for
detection of users only inside a transport unit), c) event handler module (handler for events
generated by a transport unit, such as doors opened, doors closed, etc.). The main purpose of
the TUA is to detect users inside a transport unit and send this data back to TMA to be handled
appropriately.

Transport Unit Event listener DetectionHandler BluetoothModul WiFiModul GpsModul G odul

| | | T
L
Doors open event IJ-I Quick finish detectior|

T

|

|

|

|

1

|

|

|

|

|

| 1

| |

| 1

| ' 1
| Handle passengers —1 gpsLocation = getGpsLocation()

} t

|

|

|

|

|

|

|

T

|

|

1

|

|

|

|

Doors close event

T
|
I

= Smart detect passengers |
I L
|
|
|
|

Loo|

1
bluelgolhAddresses = getBluetoothAddresses()

wiFiAddresses = getWiFiAddresses()

U

-

Identify new passengers
5

Identify missing passengers
i

T

Send data to Main D

Figure 72 - TUA Sequence Diagrain

Figure 7-2 is a sequence diagram representing the behavior of the TUA. This module is event
based, with and the main S @ S Poor clésedé (i NA HedstadxPdefedtion of users. Once
smart detection is finished, the collected data is sent to the TMA.

14

7.6. TRANSPORT WEB APPLICATION

The Transport Web Application (TWA) is Transport4U web interface. Main purpose of TWA is to
offer users easy registration into the system. TWA is also used for presentation of news about

transport network problems or changes. The administrative section of the application offers

easy input of problems and changes to the network system. TWA and TMA are connected to

the same persistence layer, making any additional coupling between the two applications

unnecessary.

Figure 7-3 shows the basic flow and interactions between components of the Transport4U
system, during a dz& S NID & Mar2 aiiziddfes fatures, such as standard route identification
or line interruption notification is not shown on this diagram.

Figure 7- shows the general architecture of the Transport4U system at a high level of

Figure7-3 ¢ Sequencadiagram for automatic detection and billing of a user

7.7. TRANSPORT4U ARCHITECTURE

abstraction. Connections on the general architecture diagram are the following:

1.

o Vs wN

User Transport Unit Tran: t Unit Application Transport Main ication Database SMS Gateway
1 1 1 1 1 H
AL L A A R |
LOOp Arrives at station event |
Sends user, time and GPS data :
. |
Leaves station event Save users data |
|
Smart detection of users I
Purchase ticket :
|
|
Send SMS notification :
SMS notification

T
|
|
T |
. T
I I
' I

| LJ - L -

Users are detected inside a vehicle through the Bluetooth and Wi-Fi devices on their

mobile phones.

Data about detected users is sent to TMA through GPRS protocol.

TMA notifies users about ticket purchase through SMS notifications.

Users visiting Transport4U web site

Internal database communication.

Delegation of notifications to the SMS gateway.

15

Figure 7- also shows a variety of technologies used in the Transport4U system: Bluetooth, SMS,
Wi-Fi, GPS, GPRS, mobile phone tethering®, GNokii'®, Paypal sandbox'!, Google maps*?.

SMS Gateway

Ticket purch ssed notification SMS

Route changed notificaton
Transport Main Rerminder 1o purchase ticket
Application

Save users routes

Optemize route

Execute paymeets

Web application |

Subecnbe 10 routes

Pre-pay tickets

Regster

Transport Unit
Application

4 Dotect passenger entrance

Detect passenger laaves

Send info on each station

Figure 74 - General architecture of the Transport4U system

All of this is combined with modern development technologies such as: Java >, MysQL™,
Hibernate®, Apache Struts 2% etc.

8. IMPLEMENTATION

At the beginning of the development, while identifying the basic components of the
Transport4U system, we decided to implement our system in pure Java and Java oriented
frameworks. With this on our mind we decided to follow well known principles for object
oriented programming languages. Model-driven, object-oriented, component-based and test-
driven approaches fitted well with the identified structure of the system and the chosen
programming language.

Model-driven approach helped us to have a centralized model for all components of the
system. With this approach we were able to implement new versions of components without
changing any existing parts of the system. Together with model-driven approach, we followed
component-based development to separate the identified components of the system. This kind
of development helped us achieve separation of the system into distinct modules. Obeying the
so called Gseparation of concernsé' principle, we kept overlapping functionality to a bare
minimum.

Object-oriented and test-driven approaches are best fitted for the programming language and
the development process we have chosen, mainly because an agile development relies heavily
on the short iterations and refactoring. Test cases are helpful in the way that, when any part of
the system is enhanced or refactoring takes place, the system can quickly be verified by passing
all the defined test cases.

16

As stated before, the basic components of our system are: Transport Model, Transport Main
Application, Transport Unit Application, and Transport Web Application.

8.1. TRANSPORT MODEL AND DATABASE IMPLEMENTATION

The Transport model contains mainly domain related classes that require persistence to a

] TICKET r] TRANSPORT_NETWORK ¥
] PAYMENT ¥ dINT(11) id INT(11)
id INT{11) :mj‘y:: INT;ﬁEHME > niame VARCHAR{S0) ‘
mevaldrrom
D_aymenmpe wran |, o timeValidTo DATETIME "] TRANSPORT_UNIT v "
* tme [?ATEHME ¢ payment_id INT{11) id INT(11) ?
& user_id INT(11) .
< Cuser_id INT(11) » identifier VARCHAR(S0) P _
> timeCurrentStation DATETIME Sj— — — — — — — - |
le W ¢ ¢ currentStation_id INT(11) I %
I I | < transportLayer_id INT{11) | j TRANSPORT_LAVER v
| I I > I id INT(11)
IJ o= EF o ___ OH & type INT(11)
| : I j USER_IN_ROLE v I <» transportietwork_id INT(1 1)’
| é 1 id INT(11) |
2 M & role_id INT(11) I qi
j LEH v <ruser_id INT(11) | |
id INT(11) > | |
* ssord VARGHAR(AD) |] TRANSPORT_STANDARD_ROUTE_SECTION v | |
) N4 v | id INT(11) |
sessionHash INT(11) | | | |
sessionToken BIGINT(20) | | | dayOfiesk INT(11) [
| —— 1 | » fromStationDayTime TIME |
» username VARCHAR(50) | o | L toStationDayTine TIME |
. valid BIT(1) I r “y — v \
» creditCardCYV2 VARCHAR(50) e K | I) ﬁcm5§non_|d INT(11) }
» creditCardAddress1 VARCHAR (50) j ROLE i | | v tcstafmn_\d () |
reditCardAddress2 VARCHAR(50) dINT(1L) I I O user Jd INT(11) }
» creditCardCity VARCHAR(0) » name VARCHAR(50) | | " |
» creditCardExpirationMonth INT{11) o I |——-| le * [
» creditCardExpirationYear INT{11) | | | | }
» creditCardFirsthame VARCHAR(S0) ! I I I |
» creditCardLastMame VARCHAR{50) j TRANSPORT_ROUTE_SECTION v | | }
> reditCardNumber VARCHAR(50) St EET VOB | | \
» creditCardState VARCHAR (50) » fromStationTime DATETIME I I }
» creditCardType VARCHAR({S0) toStationTime DATETIME j TRANSPORT_STATION v |
» creditCardZipCode VARCHAR(SD) < fromstation_id INT{11) id INT(11) I
bluetoothMacAddress VARCHAR (50) < route_id INT(11) =71, displayMame VARCHAR(S0) - _4‘
» phonehumber VARCHAR (50) toStation_id INT{11) l > atitude DOUBLE I
wifiMacAddress VARCHAR({50) > |_ _+O| » longitude DOUBLE |
» address VARCHAR(50) o———, 5;: }lt }F i I : » index VARCHAR(50) I
» addressMumber YARCHAR(50) 1 r— | | | | | » name VARCHAR(50) |
» country VARCHAR(50) A + __ | | | l > |
> posthiumber VARCHAR (50) _] TRANSPORT_ROUTE ¥ I } I I Lo I
» town VARCHAR (50) id INT(11) 1 é é 1! 1 L
> dateOffirth DATETIVE > active BIT(D) T A * T _] TRANSPORT_ROUTE_MODIFICATION ¥
» email VARCHAR (1) & user_id INT(1L) _J TRANSPORT_LINE_STATION ¥ d INT(11)
 frethiame VARCHAR (50) > dINT(11) 1 _—lg fromTime DATETIME
. lastilame VARCHAR(50) P —— | 5 stﬁﬁanNun?ber INT(11) . » stationMameList VARCHAR(255)
middleName VARCHAR(50) | < transportLineBackward_id INT({11) u__l toTime DTQTETIME
bilingMade INT(11) | < transportLineForward_jd INT(11) 1| ﬁomSt.atlofn_ld INT{11)
notifyonstandardRouteChange BIT(L) Jl_ & transportStation_id INT(11) — — —| < toStation_id INT{11) .
notifyOnStandardRouteOptimization BIT(1) M >
notifyOnSuccessfulPurchase BIT(1) j NEWS v + + ¥ } I
& activeTicket_id INT{11) id INT(11) I I I | |
> category INT(11) | | | ‘ l
2 contents TEXT } I I } I
2 time: DATETIME 1~ | | 4 1
» title VARCHAR(255) | | | T A
 zuthor_id INT(11) } I I :l TRANSPORT_LINE v
< 1 1 | id INT(11)
™ A e — ¢ | < name VARCHAR(50)
j TRANSPORT_ROUTE_INTERRUPTION ¥ (> transportLayer_jd INT{11)
id INT(11) >
» fromTime DATETIME
toTime DATETIME
< fromStation_id INT(11)
% toStation_id INT(11)
>

Figure8-1 - ER diagram

relational database. The persistence layer was implemented using an ORM (object-relational
mapper) specifically JPA (Java Persistence API), using Hibernate as the underlying provider. As
the underlying database we used MySQL, but the mapping is defined in such a way that
changing to a different database is fast and easy. The database schema (which is viewable in
Figure 8-1) is automatically generated by the defined class structure. Apache Ant™® build scripts
were used for database creation and loading of initial data.

Database access is implemented using the DAO (Database Access Object) design pattern. All
gueries towards the database are hidden behind interfaces. The DAO design pattern approach
provided us with flexibility to change the application's persistence mechanism over time
without the need to re-engineer application logic that interacts with the persistence layer.

8.2 TRANSPORT MAIN APPLICATION IMPLEMENTATION

TMA is the mainframe of the Transport4U system. It handles all requests from all others
components and modules of the system. For TMA to work efficiently we implemented it as a
smart concurrent server, which means that the application is multithreaded and the number of
active threads depends on the current workload.

Every request made to TMA is regarded as a task, which is stored in a queue of tasks. There is a
thread pool which contains active threads which handle these tasks. The number of threads in
the thread pool depends on the number of tasks in the queue. TMA tends to balance between
the number of tasks waiting in the queue and the number of active threads. When there are no
tasks in the queue than all resources are freed. An active coordinator thread is responsible for
the assignment of tasks to worker threads and the load balancing.

Other specialized threads are the following:

1) Task receiver ¢ receives requests from other components or modules.

2) Transport server handler ¢ sets server handler factories.

3) Transport unit user data handler ¢ handles and process requests from TUA.

4) Route inactivation thread ¢ determines when user has stopped using a route.

5) Modification/interruption notification thread ¢ notified users about problems in transport

network.

6) Route optimization thread ¢ optimizes routes for user and notifies about alternative faster
trips.

7) SMS payment receiver ¢ handles ticket purchase by SMS.

8) Ticket expirationthread¢ ¢ | Ny a 2NJ SEGSyRa dzaSNRa GA0
9) Standard route identification thread ¢ identifiesd KA OK NR dzi S&a | NB &

ones that are taken frequently or periodically).

We divide these threads into scheduled threads and threads that are always active. Scheduled
threads are threads that depend heavily on processing resources. Examples of such threads
are route optimization thread, standard route identification thread, etc. Other threads need to
be active all the time. Those threads are implemented to have a smaller performance
consummation.

18

D¢ —*

[« ¢pN
- C=:

<,

pufi

- C:

R

Z

8.3 TRANSPORT UNIT APPLICATION IMPLEMENTATION

TUA is a client application and is deployed into each transport unit. Its main task is to detect
when users enter or leave a certain transport unit and to send this data to TMA through GPRS.

For the detection of users we developed an algorithm called Smart Detection Algorithm. The
problem arises because Bluetooth and Wi-Fi hotspots are not limited only inside the transport
units, but is also reachable outside. The detection must be such that it absolutely avoids false
positives (detecting someone outside the transport unit) while attempting to detect all
passengers inside.

8.3.1 SMART DETECTION ALGORITHM

Each Transport unit defines and triggers two events: Doors_Opefand Doors_Closedvent. The
Doors Closeckvent triggers the start of the smart detection of passengers.

When the Smart Detection Algorithm (SDA) starts, it performs multiple scans of passengers to
determine which passengers are inside the transport unit's Bluetooth/Wi-Fi range. Each scan is
started if one of these conditions is fulfilled:

1) A certain amount of time passed since the last scanning.
2) The transport unit moved a certain distance from the location of the last scanning.

Smart detection algorithm defines four parameters: TIME_SCAN_PERIOD,
LOCATION_SCAN_DISTANCE, MIN_TIME_SCANS, and MIN_LOCATION_SCANS. These are
defined as follows:

I TIME_SCAN_PERIOD ¢ defines the number of seconds between each scan.

9 LOCATION_SCAN_DISTANCE ¢ defines the number of meters the transport unit has to
drive between each scan.

f MIN_TIME_SCANS ¢ defines the minimum Y dzY 0 S NJ 2 T deddhswhith ward | v &
started because of the time condition).

f MIN_LOCATION_SCANS ¢ defines the minimum y dzZY 6 SNJ 2 F aébés@aml A2y &0
which were started because of the location condition).

After each scan is finished, scanned BT/Wi-Fi addresses are saved in memory. After each scan
the algorithm checks if the following conditions are meet:

1) There are at least MIN_TIME_SCANS scans with TIME_SCAN_PERIOD time units in between
each.

2) There are at least MIN_LOCATION_SCANS scans, with the transport unit having passed a
minimum distance of LOCATION_SCAN_DISTANCE in between each scan.

When both conditions are fulfilled, the scan is considered complete. The algorithm does
al RRNX & & Thi indars S:tRkhy aligdridhm retains only the addresses found in every
scan. In this way the detection is sure to avoid accidental false positive detections.

19

When the doors of the transport unit are opened, the Doors_Opemrvent is triggered. If SDA is
already running, Doors_Open event tells it KS | € 32 NRAGKY (G2 aljdz O
only checks one condition: at least MIN_LOCATION_SCANS scans were completed because the
transport unit passed a minimum distance of LOCATION_SCAN_DISTANCE in between.

TUA connects to a variety of external devices: Bluetooth, WI-Fi, GPS and GPRS. All interaction

of TUA with external devices is hidden behind interfaces which makes it highly maintainable in

the future, is say a certain device was to be updated to a newer model.

8.4. TRANSPORT WEB APPLICATION IMPLEMENTATION

TWA is implemented using the Java-based framework Apache Struts 2, because of faster
development time and the support it provides for much of the functionality common to all web

applications. TWA offers to users a good looking and intuitive graphical interface, easy
registration, personal profile and options management, validation of data at input, and
authorization and role-based authentication. Internationalization is supported, with the web
application currently being available in English, Croatian, and Swedish. All news about the

public transportation system is visible on the home page, figure 8-2.

Home

Username:

Password:

Remember me

Login

Search...

News

Tramlining

11/01/2011 01:47:30, firstNameZ lastMame2

Tramlining is the tendency of a vehicle's wheels to follow the contours in the surface upon which it
runs. The term comes from the tendency of a car's wheels to follow the normally recessed rails of
street trams, without driver input in the same way that the train does.

| Posted by firstNameZ2 lastName2 | Categories: GENERAL |

Line 2 interruption

11/01/2011 01:47:30, firstNameZ lastName2
Line 2 won't be driving on Wednesday 02/16 8:00-9:30 due to presidents ceremony.

| Posted by firstName?2 lastName2 | Categories: ROUTE_INTERRUPTION |

Line 7 interruption

11/01/2011 01:47:30, firstNameZ lastName2
Line 7 won't be driving on Thursday 02/17 10:00-11:00.
| Posted by firstName?2 lastName2 | Categories: ROUTE_INTERRUPTION |

Line 6 interruption

11/01/2011 01:47:30, firstNameZ lastName2
Line & won't be driving on Friday 02/18 10:00-11:00 from stations Sveti Duh to Trg Bana 1. Jelatica

| Posted by firstName2 lastName2 | Categories: ROUTE_INTERRUPTION |

010 Transport

Figure 82 - TWA Home Page

20

TAYAA

The administration section allows for easy management of the transport system allowing for
the insertion of interruptions and modifications to the transport system. The application makes
use of Google Maps API, making it a reliable, fast, and pleasant graphic user interface, as can be
seen on figure 8-3.

Transport 4 You

Just travel... firstName2 lastMame2 (username2) Logout

Welcome, username?

News tasks

Add new news
Choose transport line and select 2 stations on map

Edit news
below
Route tasks
Insert route Transport line: 106 [~
interruption
Insert route

TR Select START and END time (START time requiered)

Interruption
start time:

=3 zvrtaosoo)

Interruption
end time:

@ 2011-01-07T00-

Select 2 stations

=
Teren ||

00

z —
Karta | Satelit | Hibrid |

i -
JPOWESID B: |

Copyright © 2010 Transport 4 You | All Rights Reserved
Design by Wolfgang | Modified by Dino Bartossk | Powered by FER & MDH | W3C XHTML 1.0 | W3C CS5 2.0

Figure 83 - Admin Inserts Interruption

21

9. VERIFICATION AND VERATION

Because of the complexity of the system and issues with real scenario testing we decided to
implement test-driven development, meaning that most of implemented features are covered
with unit tests. In early stages a simulator was implemented and used to simulate a real
environment for testing the system.

Integration of different components was handled iteratively, in a way that for every couple of
Scrum sprints we had a system that could be connected and tested. In each new iteration, new
components were connected to the system, and a session of integration testing was
conducted. Problems and bugs that arose were solved in the next sprint.

Figure9-1 - Real scenario deployment

Towards the end of the project we tested our system in a real environment (a real tram
travelling around the city of Zagreb). With a large variety of devices (see Figure 9-1) we tested
several scenarios, including automatic detection of users and notification of
interruptions/modifications. During this time we also made a video®® which shows some of the
main features of the system.

10. OUTCOMES AND LESSQIEBRNED

This project offered a real environment for distributed software development, where master
students learned how to communicate with project customers, supervisors and with other
team members in a distributed environment. It was a good experience as it provided us with a
real world scenario and we learnt how to prevent and tackle real problems in a software
development cycle. The team was expected to handle the pressure of upcoming deadlines in
early stages of project so the team members need to get to know each other very fast and start
producing visible artifacts. This was quite challenging, but a great overall experience. The team

22

for this project was initially composed of three students from = N & U, SMdderdand three from
Zagreb, Croatia. Another challenge was to integrate a new member into our team, latter on.

We learned to work under pressure, as we had to develop some component from scratch at a
late stage of project. This added additional pressure as we needed to put some extra effort to
finish the project in time. Overall, we are happy that we had the opportunity to work on this
project within the DSD course. Distributed environment and challenging project forced us to
give our best and to adapt to a new environment as the project progressed. On top of
everything, we made some new friends which make this experience additionally special.

11. SUMMARY

Transport4U project was developed as a part of Distributed Software Development course
LINE A RSR o0& aNf |l NRINt&a and Rfchitd & Ndatdical Bngindeairg and
Computing (FER) ¢ Zagreb. A team of 7 students worked on it for a period of 14 weeks. The
final developed product is a intelligent transport network system and possibly shows a glimpse
of where public transportation system are headed in years to come. Possible future
development of the system includes:

9 Mobile application and/or web application for live transport system overview with
information about current location of transport units, estimated time of arrival at
station, traffic, etc.

Mobile application and/or web application for smart/optimized route planning.
Mobile application for ticket payment and notifications.

Route optimization taking into account real time traffic situation.

Integration with third party planning tools (eg. Google Calendar).

=A =4 =4 =9

The possibilities for this to become widely used software are present. A more positive period
(once the global recession is overcome) and a healthier (R&D prone) environment would
increase the probabilities of such an outcome.

12. REFERENCES

All relevant documents for the Transport4U project can be found at:

http://shap2.info-sol.net:8090/Documents/

Y19 ¢Y %l ANBO I 61 Ahtt@/fws.zétNdh -Gublic trabspidrtariéh lcozhpady for the city of
Zagreb.

® TELE2: (http://www.tele2.hr/) - global mobile phone provider.

3 Requirement Definition Document:

http://shap2.info-sol.net:8090/Documents/documents/Transport4You Requirements Definition.doc

* Process Methodology Document:

http://shap2.info-sol.net:8090/Documents/documents/Process methodology.pdf

23

http://shap2.info-sol.net:8090/Documents/
http://www.zet.hr/
http://www.tele2.hr/

> Scrum Artifacts Repository: http://shap2.info-sol.net:8090/Documents/

® Android: (http://www.android.com/) - Android is a mobile operating system initially developed by
Android Inc.

’ GPRS: General packet radio service is a packet oriented mobile data service on the 2G and 3G cellular
communication systems global system for mobile communications.

® GPS: The Global Positioning System is a space-based global navigation satellite system (GNSS) that
provides reliable location and time information in all weather and at all times and anywhere on or near
the Earth when and where there is an unobstructed line of sight to four or more GPS satellites. It is
maintained by the United States government and is freely accessible by anyone with a GPS receiver.

° Mobile phone tethering: A method for connecting a computer to the internet via an internet-
capable mobile phone.

1% Gnokii: (http://www.gnokii.org/) - Gnokiiis a suite of programs for communicating with mobile

phones.

n Paypal sandbox: (https://developer.paypal.com) - A sandbox is a testing environment that isolates

untested code changes and outright experimentation from the production environment or repository, in
the context of software development including Web development and revision control.

Google maps: (http://maps.google.com/) - Google Maps (formerly Google Local) is aweb

mapping service application and technology provided by Google, free (for non-commercial use), that
powers many map-based services, including the Google Maps website.

B Java: (http://www.java.com/en/download/index.jsp) - Javais a programming language originally

developed by James Gosling at Sun Microsystems (which is now a subsidiary of Oracle Corporation) and
released in 1995 as a core component of Sun Microsystems' Java platform.

" MySQL: (http://www.mysgl.com/) - MySQL is a relational database management system that runs as a

server providing multi-user access to a number of databases.

 Hibernate: (http://www.hibernate.org/) - Hibernate is an object-relational mapping (ORM) library for

the Java language, providing aframework for mapping an object-oriented domain modelto a
traditional relational database.

® Apache Struts2: (http://struts.apache.org/2.x/index.html) - Apache Strutsis an open-source web

application framework for developing Java EE web applications.

& gparation of concerns€¢ Y computer science, separation of concerns is the process of separating
a computer program into distinct features that overlap in functionality as little as possible.

18 Apache Ant: (http://ant.apache.org/) - Apache Ant is a Java library and command-line tool who's

mission is to drive processes described in build files as targets and extension points dependent upon
each other.

19 Test video: http://shap2.info-sol.net:8090/Documents/documents/dsd_video.wmv

24

http://shap2.info-sol.net:8090/Documents/
http://www.android.com/
http://en.wikipedia.org/wiki/Mobile_operating_system
http://en.wikipedia.org/wiki/Packet_oriented
http://en.wikipedia.org/wiki/Mobile_Data_Service
http://en.wikipedia.org/wiki/2G
http://en.wikipedia.org/wiki/3G
http://en.wikipedia.org/wiki/Cellular_communication
http://en.wikipedia.org/wiki/Cellular_communication
http://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
http://en.wikipedia.org/wiki/Global_navigation_satellite_system
http://en.wikipedia.org/wiki/Positioning_system
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Mobile_phone
http://www.gnokii.org/
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Mobile_phone
https://developer.paypal.com/
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Revision_control
http://maps.google.com/
http://en.wikipedia.org/wiki/Web_mapping
http://en.wikipedia.org/wiki/Web_mapping
http://en.wikipedia.org/wiki/Google
http://www.java.com/en/download/index.jsp
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/James_Gosling
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/Java_(software_platform)
http://www.mysql.com/
http://en.wikipedia.org/wiki/Relational_database_management_system
http://www.hibernate.org/
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Domain_model
http://en.wikipedia.org/wiki/Relational_database
http://struts.apache.org/2.x/index.html
http://en.wikipedia.org/wiki/Open-source
http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Java_EE
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_program
http://ant.apache.org/

