

1

TRANSPORT4U

INTELLIGENT PUBLIC TRANSPORTATION MANAGER

TEAM MEMBERS:

Dajan Zvekić dajann@gmail.com

Dino Bartošak dino.bartosak@gmail.com

Gaurav Kushwaha gaurav.gyani@gmail.com

Mahdi Sarabi msarabi@gmail.com

Muhammad Anwar Islam mar10001@student.mdh.se

Toni Pivčević t.pivcevic@gmail.com

Vengal Rao Pachva vengalrao87@gmail.com

PROJECT WAS PERFORMED AS A PART OF DSD COURSE LED BY PROFESSOR /wbYh±L0
!b5 twhC9{{hw ¿!D!wΣ UNDER SUPERVISION OF ANETA VULGARAKIS.

WE ARE VERY PROUD TO PRESENT YOU OUR PROMOTIONAL VIDEO:

http://www.youtube.com/watch?v=VYw6wAPr-R8

mailto:dajann@gmail.com
mailto:dino.bartosak@gmail.com
mailto:gaurav.gyani@gmail.com
mailto:msarabi@gmail.com
mailto:mar10001@student.mdh.se
mailto:t.pivcevic@gmail.com
mailto:vengalrao87@gmail.com
http://www.youtube.com/watch?v=VYw6wAPr-R8

2

EXECUTIVE SUMMARY

The organization of public transportation in large cities is both an uneasy task and a very

responsible one, due to the number of people and businesses depending on it.

The goal of the Transport4U project is to make the organization of the public transport system

more reliable and easier. One of the main benefits of this system is automatic purchasing of

tickets. The system sends a variety of notifications to users, in the form of SMS. These

notifications include: problems in the public transportation network, confirmation of ticket

purchase, expiration of active tickets, etc. Over time, the system learns the standard routes of

each user: journeys that a user takes frequently or periodically over the same segment of the

transport network. These standard routes are taken into account during notifications, meaning

that users are notified only about issues that affect them directly. Possible issues to the

transport system include complete interruption of a transport line or modification of a line on

an alternative route. The system also constantly attempts to optimize each ǳǎŜǊΩǎ standard

routes, sending out notification about possible faster alternative trips.

The Transport4U system makes the experience of a public transport more pleasant to its users

and to the public transport administrators. The system has an intuitive administration section,

a web interface for management of current issues in the transport network. A web interface is

also available for regular users (current or future passengers of the transport network). By

registering to the system users provide some essential information about their mobile phones:

phone number, MAC addresses, etc.

Transport4U consists of three main modules: Transport Unit Application (TUA), Transport Main

Application (TMA), and Transport Web Application (TWA). The TUA is the application support

which is deployed on every unit of the transport system (buses, trams, systems). The TMA is

the mainframe server of the entire system. The TWA provides users and administrators with a

web interface to interact with the system. All of these modules are built upon a single common

module knows as the Transport Model (TM), which represents the core features of the system

and the implementation of the main domain concepts. To organize all of these separate

modules into one whole system we used modern design approaches and patterns. We used

model-driven design to define our Transport4U model, object-driven design for

implementation of the modules and test-driven design for testing. We used many software

patterns such as: factory, factory method, service, object pool, chain of responsibility,

singleton, etc.

We worked on the Transport4U project in a distributed environment. One part of the team

consisted of students from the aŅƭŀǊŘŀƭŜƴ ¦ƴƛǾŜǊǎƛǘȅ (MDU)Σ ±ŅǎǘŜǊňǎ from Sweden, while the

other part consisted of students from the Faculty of Electrical Engineering and Computing (FER)

from Zagreb, Croatia. Each location had its team leader. Communication between remote team

members was crucial to the success of the project. We communicated through a variety of

internet services and applications, such as e-mail, Google groups, Skype, etc. We decided to

centralize our communication to make it more effective. The team leaders had separate

meetings with their local team members to negotiate possible issues. These issues were then

delegated to the other side by the team leader.

http://www.mdh.se/

3

 1. INTRODUCTION

Public transportation is a form of travel that most people experience during their lives. This

experience can be both enjoyable, but also unpleasant for a variety of reasons. The sole action

of purchasing a ticket can be problematic: working with difficult automatic ticket dispensing

machines that require the exact amount of change, or waiting in line in a specialized shop. This

is even more difficult when one is in a hurry, as most people are these days.

Even when one manages to start the trip more inconveniences can occur. Public transport is

often unreliable and cannot guaranty that one will make the trip on time. This is because a

wide variety of variables affect the flow of vehicles and units around a public transport network

of a metropolitan city. Daily issues, such as rush hour traffic or unexpected accidents, can

cripple the transport network for hours causing interruptions or modifications to the standard

transport lines. The quality of the entire system can also be judged by how it can cope with

such abnormal situations, keeping the network flowing despite the problems, and ultimately

getting the passengers to their intended destinations.

The Transport4U project is designed to help organize the public transportation system of

metropolitan cities. Such complex transportation systems most often consist of many network

layers, such as buses, trams or subways. The main goal of the project is to make public

transportation more reliable and easier to use for people who heavily depends on it. The

project also attempts to automate many of the everyday actions that are currently manually

executed.

The Transport4U project was proposed by external SCORE customers, Elisabetta Di Nitto and

Matteo Rossi. Like in a real life development scenario, all modifications to requirements and all

major decisions had to be approved by the product customers. In addition to this the team had

to meet the local requirements set upon them by their local DSD courses. Extensive

communication with both external customers and internal course supervisors was crucial to

the success of the project. The development team is confident with the developed product,

considers it in full effect an intelligent public transportation manager, and is confident that it

shows a glimpse of the future where public transportation is heading.

 2. DOCUMENT OVERVIEW

The scope of this document is to give the reader insight into the functioning of Transport4U

system and the process the project members undertook to develop it. The report begins with

the scope of the project and main challenges in Section 3. The problem statement together

with detailed requirements specifications are presented in Section 4 and Section 5 respectively.

Section 6 describes the development process as well as project management. Architectural

design and implementation details are analyzed in Section 7 and Section 8. Verification and

validation of the system is presented in Section 9. Outcomes and lessons learned together with

and overall summary make up the final two sections.

4

 3. SCOPE OF THE PROJECT AND MAIN CHALLENGES

Transport4U project was developed under university course Distributed Software Development

(DSD), a maǎǘŜǊΩǎ course jointly ǇǊƻǾƛŘŜŘ ōȅ aŅƭŀǊŘŀƭŜƴ ¦ƴƛǾŜǊǎƛǘȅ (MDU) ς Vasteras, Sweden

and Faculty of Electrical Engineering and Computing (FER) ς Zagreb, Croatia.

The main challenges facing the team members were the following:

¶ development in a distributed environment

¶ cultural differences

¶ time pressure/deadlines

¶ integration of SCORE and DSD requirement

Distributed software development poses a challenge even for experienced engineers, because

of the inherent lack of quality communication. This often leads to misunderstandings with

difficulties and delays in the development process. The Transport4U development team

conquered the problem of a distributed environment with the usage of modern online

communication and sharing tools. A well structured development process (described in section

6) was agreed upon and used throughout the project. Different coding and repository policies

were put in place and published, leading to a more unified and standardized development

process. All these actions eventually helped in overcoming the problems that arise in

distributed development, helping the team to overcome any problems early on and finish the

project with very good team communication.

The development team consists of 7 members with five different nationalities. Cultural

differences naturally arose in such a mixed group. Even at the final stages of the project, most

customs and habits remain unknown and difficult to understand, but the team was able to put

these differences aside and work together for the success of the project. Overall, such intensive

interaction with individuals of a different culture can be a valuable experience for similar future

endeavors.

Different DSD course and SCORE competitions deadlines meant the team had a very tight

schedule at times. Some optimized time and resource planning together with a lot of hard

work, lead to all requirements being fulfilled and on time. The development team is glad to be

able to submit the project to the SCORE completion.

 4. REQUIREMENTS: PROBLEM STATEMENT

A typical public transport system provides some information to the end user, for example a

generic time schedule for a transport line. Rarely does such a system reflect problems and

modifications in the transport network in real time. Users might receive line modification

information by secondary means, such as the radio or television. In either case this information

arrives to the end user too late for them to alter their trips in time and only a limited portion of

the affected users are actually notified.

5

This is one of main goals of the Transport4U project is to provide the end user with a real time

personalized service. A variety of services are provided to the user, the two main one being the

automatic handling of billing and notifications about problems in the transport network.

The system provides effective solutions for following requirements:

¶ Provide user-friendly web site for users and administrators.

o Users can register profiles.

o Users can update their information/options.

o Users will be informed with recent news and changes in public transport.

o Administrator can insert route interruption.

o Administrator can insert route modification.

¶ Automatic detection of users inside transport unit using:

o Mobile ǇƘƻƴŜΩǎ ǳƴƛǉǳŜ Bluetooth MAC address.

o Mobile ǇƘƻƴŜΩǎ ǳƴƛǉǳŜ WI-Fi MAC address.

¶ Automatic ticket billing.

¶ Manual ticket billing through SMS.

¶ IdentifƛŎŀǘƛƻƴ ƻŦ ǳǎŜǊΩǎ ǎǘŀƴŘŀǊŘ ǊƻǳǘŜǎ.

¶ Notifications of users about:

o Interruptions/modifications in transport network that affect them

o Confirmation about ticket purchase.

o Warning about ticket expiration.

 5. REQUIREMENTS SPECIFICATION

The basic high-level requirements were defined in an official SCORE completion document

provided by the project customers. The purpose of the document was to give the development

team the basic understanding of what need to be done.

The development team anticipated the importance of a consistent base set of initial

requirements, so a lot of time and effort was invested in identifying and analyzing

requirements for the Transport4U system. The gathering of requirements was conducted using

several methods and in several iterations, as it has been proven time and time again that

identifying all requirements at the start of the project is impossible in software development.

Requirements were gathered as the project progressed in parallel with development.

Iterations of requirements gathering roughly followed the schedule of development iterations

(more detail in section 6).

The main sources for requirement gathering were the following:

¶ The Official SCORE document for Transport4U was used for initial brainstorming and

introspection ς this resulted in initial version of the requirements.

¶ Communication with the project supervisor.

¶ Communication with the official SCORE customers, with whom every new version of

requirements was discussed and negotiated.

¶ Official written communication with local stakeholders, ZET1 and TELE22.

6

The main methods for requirement gathering were the following: brainstorming, introspection,

and negotiations with customers. Brainstorming and introspection requires live communication

between participants, so initial requirements were developed separately by the local teams.

After that the requirements were merged and an initial stable set of requirements were

defined. Every new version of requirements was coordinated and negotiated with the project

costumers, through the exchange of emails.

During this phase the development team has had intensive communication with local

stakeholder ZET, both informally by phone and email, and formally through official university-

backed written communication. A representative of ZET was interviewed giving the team a lot

of insight about a real life public transportation system. In addition to this, ZET provided the

development team with concrete data aōƻǳǘ ½ŀƎǊŜōΩǎ ǇǳōƭƛŎ ǘǊŀƴǎǇƻǊǘŀǘƛƻƴ ƴŜǘǿƻǊƪ όǘǊŀƴǎǇƻǊǘ

layers, transport lines, GPS location of stations, etc.). This information was very helpful because

the team could develop and test on real life data very early in the development of the project.

It is important to note that, although the adopted agile development process was ready for

such an eventuality, during the development of the project no major changes to the

requirements occurred. This is mainly due to a well prepared set of initial requirements.

A small subset of use cases and requirements of the Transport4U system follow. Due to space

limitation, only one use case is elaborated. For an exhaustive list of use cases and requirements

please refer to the projects Requirements Definition Document3.

Keyword Definitions

User Citizen using public transportation.

Admin System administrator.

Driver Person employed as driver of transport unit.

TMA Transport main application.

Table 5-1 - Use case actors

Figure 5-1 - Transport Unit Application use case diagram

 5.1. ¦{9 /!{9 ά¦{9w t9wChRMS MULTIPLE ROUTE S9/¢Lhb Wh¦wb9¸έ

7

Initiator:

User.

Goal:

User performs journey. User is correctly billed. Route information is saved.

Requirements:

¶ Functional:
TMA1, TMA2, TMA3, TMA4, TUA1, TUA2.

¶ Non-functional:
TMA1, TUA1, TUA2, TUA3.

Main Scenario:

1. User enters transportation unit.
2. Transportation unit application smartly detects user presence.
3. If no valid ticket is associated with user, user is billed and notified.
4. Transportation unit application smartly detects user absence.
5. User route section data is saved.

User repeats steps 1-5 until journey is completed.

Extensions:

3a. If user has SMS payment.

1. Notification is sent to user to buy ticket.

2. User buys ticket through SMS service.

3. User is notified about successful ticket purchase.

3b. If user has on demand payment and credit card service fails.

1. Notification is sent to user to buy ticket through SMS service.

2. User buys ticket through SMS service.

3. User is notified about successful ticket purchase.

3c. If user has prepaid payment and is out of prepaid tickets.

1. Notification is sent to user to buy ticket through SMS service.

2. User buys ticket through SMS service.

3. User is notified about successful ticket purchase.

*a. If user fails to purchase ticket.

1. Ticket is added to ticket debt.

 *b. System detects ticket expiration.

 1. If user is currently inside Transport Unit, new ticket is purchased.

The project requirements were divided into functional and non-functional ones. Some of the

non-functional requirements that we have considered are:

¶ Application sends notification by SMS.

¶ Application detects users inside through unique Wi-Fi/Bluetooth MAC address.

¶ Connection between TMA and TUA is GPRS based.

¶ Web application is available on browsers: IE 7+, Mozilla Firefox 2+, Google Chrome,

Opera, Safari

8

The following table (Table 5-2 - Transport Main Application functional requirements) shows a

subset of all the functional requirements pertaining to the Transport Main Application module.

Identity Status Priority Description Source

 Transport Main Application

F-TMA1 I 1 Application enforces billing. SDOC

F-TMA2 I 1

Application notifies users about payment:

¶ On payment success.

¶ Reminder to pay ticket.

¶ On payment failure.

¶ On ticket expiration.

SDOC,

DT

F-TMA3 I 1
Application checks when ticket is expired and if user is still

in vehicle application buys new ticket.

DT

F-TMA4 I 1 Application records routes of every user. SDOC

F-TMA5 I 1

Application performs scheduled standard route

identification. (Finding standard users routes based on

existing data about users)

SDOC

F-TMA6 I 1

Application notifies users about routes and suggests

alternative:

¶ Interruption in standard route.

¶ Modification to standard route.

¶ Optimization to standard route.

SDOC,

DT

F-TMA7 I 2
If system crashes tickets are archived. (User will not lose

its active tickets because of system crash)

DT

F-TMA81 D 2 If system crashes users are notified. DT

1
 Crossed requirement means that the requirement is dropped by the development team.

9

F-TMA9 D 2 If system crashes control is notified. DT

F-TMA10 A 1
System provides transport line data pushing when changes

occur to transport unit application.

DT

F-TMA11 A 2 Application performs scheduled route optimization. DT

F-TMA12 A 2
Application performs scheduled route optimization

notification.

DT

F-TMA13 A 2 Application has structured schema for network input. DT

Table 5-2 - Transport Main Application functional requirements

Requirement status:

¶ I = initial (this requirement has been identified at the beginning of the project),

¶ D = dropped (this requirement has been deleted from the requirement definitions)

¶ H = on hold (decision about requirement status will be takes latter)

¶ A = additional (this requirement was introduced during the project course).

Requirement source:

¶ SCTM = official SCORE customer

¶ SDOC = official SCORE document

¶ DT = development team

¶ SYS = required by system design

 6. DEVELOPMENT PROCESS AND PROJECT MANAGEMENT

6.1. SCRUM

A team consisting of seven members, placed at different locations, worked on the project. We

chose Scrum, an agile development method, as the development process. An agile

development method was adopted, as requirements were not clear in the beginning of the

project and some requirements were expected to be modified or added. Also, the project had

to be completed in eleven weeks, so we decided to start working on the project as soon as

most of the requirements were identified.

The traditional Scrum approach for development was tweaked to fit into our scenario, as the

team members were located at different geographical locations and everyday meetings were

not feasible. The Scrum Manager role was assigned to one team member. The Scrum manager

adopted the Scrum development process to fit into our distributed environment. All changes

and definitions of the modified Scrum are documented in the Process methodology document4.

10

All Scrum artifacts created during the development process can be found in the scrum

repository web page5.

We decided that the two teams in Sweden and in Croatia would hold their own daily meetings

separately. Meetings would be held twice a week. Sprint planning meetings would be held once

a week. Sprint retrospective meeting would be held once a week. Sprint review meeting would

be held as official presentation of the DSD course. Sprint length was one week because it gave

us flexibility to finish all the tasks required for the DSD course on a weekly basis.

We defined the following scrum roles: ŀύ {ŎǊǳƳ aŀǎǘŜǊΥ 5ŀƧŀƴ ½ǾŜƪƛŏΣ ōύ tǊƻŘǳŎǘ ƻǿƴŜǊΥ

Customers Elizabetta Di Nitto and Mateo Rossi with supervisor Aneta Vulgarakis, c) Team of 7

members. During developement differenct standard Scrum artifacts were created: a) Product

backlog (Figure 6-1 - Scrum artifact - Product backlog), b) Sprint backlog, c) Sprint backboard ς

shared as google documents to all team members.

Figure 6-1 - Scrum artifact - Product backlog

At the end we can say that we have had a good experience with the Scrum development

process. It has helped us to keep the project on track and to pinpoint possible problems very

early on in the development process. For example, if someone was having trouble with a

particular task help was provided very early on, without wasting valuable time and resources.

This approach required a lot of code refactoring. Some sprints were dedicated only to

refactoring and redesigning, but that is something that is common to all agile iterative

development processes.

We tried to keep tasks simple and short because of sprint duration and managed to finish most

tasks on time. Short sprints also helped us with integration of new components and gave us

11

flexibility to handle changes in requirements. All in all scrum turned out to be a good choice for

this project and it made the entire development process more robust and enjoyable.

 6.2. TEAM MANAGEMENT

Transport4U team was divided into two sub teams based on the locations, one of them was

Swedish part (4 members) and other was Croatian part (3 members). One member from the

Swedish side was assigned as Project Leader whose task was to coordinate with the whole

team and provide project status report to the Supervisor (by the means of weekly reports and

meetings). Similarly, a Team Leader was assigned from the Croatian side whose additional tasks

were to coordinate with the Croatian part and gather week reports.

We encouraged informal communication in all directions in between the team members. This,

not only helped in speeding up the project work, but also in creating a bond between the team

members, gaining technical knowledge, while always maintaining calm and respectful. We

came from different countries, so the informal communication helped us as well in gaining

knowledge about different cultures.

 6.3. COMMUNICATION CHANNELS

Language: All the formal communication was done in the English language. All documents

were written in English language. There were no language restrictions in informal

communication.

Synchronous communication: The synchronous communication between the team members

was mostly done by instant messaging and conference calls through internet VOIP service. This

type of communication was the most productive.

Asynchronous Communication: The asynchronous communication between the team members

was mostly done by sending email either to individual or to all members using mailing list.

Repository on FER site: A directory was created on the FER project web page and it was used as

repository for all documents, including temporary and final versions.

Subversion: A Subversion (SVN) repository was created and managed. SVN was used for sharing

source code of the project. A SVN policy document was drafted and published and all team

members followed it.

 7. ARCHITECTURAL DESIGN

Transport4U is conceived as an intelligent transport manager. After initial requirements were

gathered we were faced with several critical decisions. We needed to decide what our system

would offer to the users and administrators of a public transportation network. We had

interesting dilemmas, such as a) do we force users to use mobile application, or does system

automatically handle necessary arrangements for user detection and ticket payment, b) how

do we handle user registration and security, c) how and when will users be notified about

events, d) how do we optimize the system for best performance, e) how to integrate multiple

public networks layers, etc.

12

We decided to make Transport4U as much as possible user friendly and easy to use, keeping

the user interaction with the system to a minimum. The following sections describe how these

decisions impacted the overall design of the system.

 7.1. TRANSPORT4U DESCRIPTION

Main guideline for our Transport4U system was to make it user friendly and easy to use. This

means that user will be required to make minimal interaction with the Transport4U and that

system will be easy to maintain by administrators.

One of the most important decisions was that users will not be forced to use a particular

mobile application on their mobile phones to use the system. This means that all users with

mobile phones which posses Bluetooth or Wi-Fi devices can use the system. The problem with

mobile applications is that it needs to be specific for a particular operating system. For example

if we decided to make mobile application for Android6, only mobile phones with Android OS

would be supported. We decided to avoid mobile application for initial version of the system.

The component design of the system allows for a future addition of a mobile application

component if this is ever required. In the current version, users are automatically detected

through Bluetooth or Wi-Fi devices. The user has the options to allow the system to

automatically handle ticket purchasing, or can choose the buy the ticket personally by sending

an SMS.

The user can interact with the system through a web interface that supports: user registration,

user data management, system options for specific user, news about public transportation. The

web interface also has an administration section for management of the transport network,

and insertion of general transportation news.

The system makes use of a smart notification module. The system notifies users by sending

them SMS messages. Users will be notified only if the system recognizes that they are directly

affected be the content of the notification. By maintaining this no-spam policy, it is almost

impossible that a user receives a notification without pausing and simply ignores it.

To make these features possible, some very complicated and heavy processing tasks have to

occur in the background. We optimized the system in the way that all heavy processing tasks

occur in periods when the system is not on full workload, for example during the night.

The system integrates many public transport layers, and can work with a variety of different

transportation units. This was achieved by developing a generic domain model, making the

system independent of the concrete physical means of transport.

DurƛƴƎ ǘƘŜ ŘŜǾŜƭƻǇƳŜƴǘ ǇǊƻŎŜǎǎ ǿŜ ƘŀǾŜƴΩǘ ōŜŜƴ ǘƻƻ ŦƻŎǳǎŜŘ ƻƴ ƻǇǘƛƳƛȊŀǘƛƻƴΣ ŀǎ ǘƻƻ ŜŀǊƭȅ

optimization makes more damage than benefits. But once the system is in a real life scenario

with a large amount of data, some optimization will be necessary.

 7.2. CONCEPTUAL DESIGN

13

In system design we combined model-driven, component-based and object-oriented concepts.

These concepts allowed us to detach complex system into several smaller and simpler

components. This greatly improved our chances of finishing the project in time.

Our system is designed in a way that all components are decoupled and the implementations

of the components are hidden behind interfaces. This gave us the possibility for development

of new, improved, components without the need to change any existing part of the system.

The Transport4U model is a separate part of the system and can be easily reused for similar

projects or for the extension of existing components. The system is composed from four main

components: Transport Model, Transport Main Application, Transport Unit Application, and

Transport Web Application. The Component diagram is show in Figure 7-1.

Figure 7-1 - component diagram

 7.3. TRANSPORT MODEL AND DATABASE

The Transport Model is the model of the Transport4U system. The model primarily contains all

the classes that belong to the domain. This module is completely decoupled without any

complex behavior, making it an ideal component reused by most of the other components that

make up the system.

 7.4. TRANSPORT MAIN APPLICATION

The Transport Main Application (TMA) is the mainframe of the Transport4U system. It contains

the behavior of the system and it is composed of several sub-modules a) notification module,

b) standard route identification module, c) user data handler module, d) billing handler

module, e) payment module, f) route optimization module. All these modules represent

general behavior of the Transport4U system and new implementations can be integrated, with

the existing system, very easily. TMA is the server of the system and only one instance of this

application is deployed.

14

 7.5. TRANSPORT UNIT APPLICATION

The Transport Unit Application (TUA) represents the application support which is deployed into

each transport unit travelling around the transport network. TUA needs to handle events and

identification of users inside a vehicle. It is composed of several sub-modules a) interfaces to

external devices (Bluetooth, Wi-Fi, GPRS7, GPS8), b) smart detection module (algorithm for

detection of users only inside a transport unit), c) event handler module (handler for events

generated by a transport unit, such as doors opened, doors closed, etc.). The main purpose of

the TUA is to detect users inside a transport unit and send this data back to TMA to be handled

appropriately.

Figure 7-2 is a sequence diagram representing the behavior of the TUA. This module is event

based, with and the main ŜǾŜƴǘ άDoor closedέ ǘǊƛƎƎŜǊƛƴƎ the smart detection of users. Once

smart detection is finished, the collected data is sent to the TMA.

Figure 7-2 - TUA Sequence Diagram 1

15

 7.6. TRANSPORT WEB APPLICATION

The Transport Web Application (TWA) is Transport4U web interface. Main purpose of TWA is to

offer users easy registration into the system. TWA is also used for presentation of news about

transport network problems or changes. The administrative section of the application offers

easy input of problems and changes to the network system. TWA and TMA are connected to

the same persistence layer, making any additional coupling between the two applications

unnecessary.

Figure 7-3 shows the basic flow and interactions between components of the Transport4U

system, during a ǳǎŜǊΩǎ ƧƻǳǊƴŜȅΦ More advanced features, such as standard route identification

or line interruption notification is not shown on this diagram.

Figure 7-3 ς Sequence diagram for automatic detection and billing of a user

 7.7. TRANSPORT4U ARCHITECTURE

Figure 7- shows the general architecture of the Transport4U system at a high level of

abstraction. Connections on the general architecture diagram are the following:

1. Users are detected inside a vehicle through the Bluetooth and Wi-Fi devices on their

mobile phones.

2. Data about detected users is sent to TMA through GPRS protocol.

3. TMA notifies users about ticket purchase through SMS notifications.

4. Users visiting Transport4U web site

5. Internal database communication.

6. Delegation of notifications to the SMS gateway.

16

 Figure 7- also shows a variety of technologies used in the Transport4U system: Bluetooth, SMS,

Wi-Fi, GPS, GPRS, mobile phone tethering9, GNokii10, Paypal sandbox11, Google maps12 .

All of this is combined with modern development technologies such as: Java 13, MySQL14,

Hibernate15, Apache Struts 216, etc.

 8. IMPLEMENTATION

At the beginning of the development, while identifying the basic components of the

Transport4U system, we decided to implement our system in pure Java and Java oriented

frameworks. With this on our mind we decided to follow well known principles for object

oriented programming languages. Model-driven, object-oriented, component-based and test-

driven approaches fitted well with the identified structure of the system and the chosen

programming language.

Model-driven approach helped us to have a centralized model for all components of the

system. With this approach we were able to implement new versions of components without

changing any existing parts of the system. Together with model-driven approach, we followed

component-based development to separate the identified components of the system. This kind

of development helped us achieve separation of the system into distinct modules. Obeying the

so called άseparation of concernsέ17 principle, we kept overlapping functionality to a bare

minimum.

Object-oriented and test-driven approaches are best fitted for the programming language and

the development process we have chosen, mainly because an agile development relies heavily

on the short iterations and refactoring. Test cases are helpful in the way that, when any part of

the system is enhanced or refactoring takes place, the system can quickly be verified by passing

all the defined test cases.

Figure 7-4 - General architecture of the Transport4U system

17

As stated before, the basic components of our system are: Transport Model, Transport Main

Application, Transport Unit Application, and Transport Web Application.

 8.1. TRANSPORT MODEL AND DATABASE IMPLEMENTATION

The Transport model contains mainly domain related classes that require persistence to a

Figure 8-1 - ER diagram

18

relational database. The persistence layer was implemented using an ORM (object-relational

mapper) specifically JPA (Java Persistence API), using Hibernate as the underlying provider. As

the underlying database we used MySQL, but the mapping is defined in such a way that

changing to a different database is fast and easy. The database schema (which is viewable in

Figure 8-1) is automatically generated by the defined class structure. Apache Ant18 build scripts

were used for database creation and loading of initial data.

Database access is implemented using the DAO (Database Access Object) design pattern. All

queries towards the database are hidden behind interfaces. The DAO design pattern approach

provided us with flexibility to change the application's persistence mechanism over time

without the need to re-engineer application logic that interacts with the persistence layer.

8.2 TRANSPORT MAIN APPLICATION IMPLEMENTATION

TMA is the mainframe of the Transport4U system. It handles all requests from all others

components and modules of the system. For TMA to work efficiently we implemented it as a

smart concurrent server, which means that the application is multithreaded and the number of

active threads depends on the current workload.

Every request made to TMA is regarded as a task, which is stored in a queue of tasks. There is a

thread pool which contains active threads which handle these tasks. The number of threads in

the thread pool depends on the number of tasks in the queue. TMA tends to balance between

the number of tasks waiting in the queue and the number of active threads. When there are no

tasks in the queue than all resources are freed. An active coordinator thread is responsible for

the assignment of tasks to worker threads and the load balancing.

Other specialized threads are the following:

1) Task receiver ς receives requests from other components or modules.

2) Transport server handler ς sets server handler factories.

3) Transport unit user data handler ς handles and process requests from TUA.

4) Route inactivation thread ς determines when user has stopped using a route.

5) Modification/interruption notification thread ς notified users about problems in transport

network.

6) Route optimization thread ς optimizes routes for user and notifies about alternative faster

trips.

7) SMS payment receiver ς handles ticket purchase by SMS.

8) Ticket expiration thread ς ǿŀǊƴǎ ƻǊ ŜȄǘŜƴŘǎ ǳǎŜǊΩǎ ǘƛŎƪŜǘǎ ǘƘŀǘ ŀǊŜ ŀōƻǳǘ ǘƻ ŜȄǇƛǊŜΦ

9) Standard route identification thread ς identifies ǿƘƛŎƘ ǊƻǳǘŜǎ ŀǊŜ άǎǘŀƴŘŀǊŘέ ŦƻǊ ŀ ǳǎŜǊ όǘƘŜ

ones that are taken frequently or periodically).

We divide these threads into scheduled threads and threads that are always active. Scheduled

threads are threads that depend heavily on processing resources. Examples of such threads

are route optimization thread, standard route identification thread, etc. Other threads need to

be active all the time. Those threads are implemented to have a smaller performance

consummation.

19

 8.3 TRANSPORT UNIT APPLICATION IMPLEMENTATION

TUA is a client application and is deployed into each transport unit. Its main task is to detect

when users enter or leave a certain transport unit and to send this data to TMA through GPRS.

For the detection of users we developed an algorithm called Smart Detection Algorithm. The

problem arises because Bluetooth and Wi-Fi hotspots are not limited only inside the transport

units, but is also reachable outside. The detection must be such that it absolutely avoids false

positives (detecting someone outside the transport unit) while attempting to detect all

passengers inside.

8.3.1 SMART DETECTION ALGORITHM

Each Transport unit defines and triggers two events: Doors_Open and Doors_Closed event. The

Doors_Closed event triggers the start of the smart detection of passengers.

When the Smart Detection Algorithm (SDA) starts, it performs multiple scans of passengers to

determine which passengers are inside the transport unit's Bluetooth/Wi-Fi range. Each scan is

started if one of these conditions is fulfilled:

1) A certain amount of time passed since the last scanning.

2) The transport unit moved a certain distance from the location of the last scanning.

Smart detection algorithm defines four parameters: TIME_SCAN_PERIOD,

LOCATION_SCAN_DISTANCE, MIN_TIME_SCANS, and MIN_LOCATION_SCANS. These are

defined as follows:

¶ TIME_SCAN_PERIOD ς defines the number of seconds between each scan.

¶ LOCATION_SCAN_DISTANCE ς defines the number of meters the transport unit has to

drive between each scan.

¶ MIN_TIME_SCANS ς defines the minimum ƴǳƳōŜǊ ƻŦ αǘƛƳŜ ǎŎŀƴǎάόscans which were

started because of the time condition).

¶ MIN_LOCATION_SCANS ς defines the minimum ƴǳƳōŜǊ ƻŦ αƭƻŎŀǘƛƻƴ ǎŎŀƴǎάόscans

which were started because of the location condition).

After each scan is finished, scanned BT/Wi-Fi addresses are saved in memory. After each scan

the algorithm checks if the following conditions are meet:

1) There are at least MIN_TIME_SCANS scans with TIME_SCAN_PERIOD time units in between

each.

2) There are at least MIN_LOCATION_SCANS scans, with the transport unit having passed a

minimum distance of LOCATION_SCAN_DISTANCE in between each scan.

When both conditions are fulfilled, the scan is considered complete. The algorithm does

αŀŘŘǊŜǎǎ ŦƛƭǘŜǊƛƴƎάΦ This means that the algorithm retains only the addresses found in every

scan. In this way the detection is sure to avoid accidental false positive detections.

20

When the doors of the transport unit are opened, the Doors_Open event is triggered. If SDA is

already running, Doors_Open event tells ǘƘŜ ŀƭƎƻǊƛǘƘƳ ǘƻ αǉǳƛŎƪ ŦƛƴƛǎƘάΦ ¢ƘŜ ŀƭƎƻǊƛǘƘƳ ǘƘŜƴ

only checks one condition: at least MIN_LOCATION_SCANS scans were completed because the

transport unit passed a minimum distance of LOCATION_SCAN_DISTANCE in between.

TUA connects to a variety of external devices: Bluetooth, WI-Fi, GPS and GPRS. All interaction

of TUA with external devices is hidden behind interfaces which makes it highly maintainable in

the future, is say a certain device was to be updated to a newer model.

 8.4. TRANSPORT WEB APPLICATION IMPLEMENTATION

TWA is implemented using the Java-based framework Apache Struts 2, because of faster

development time and the support it provides for much of the functionality common to all web

applications. TWA offers to users a good looking and intuitive graphical interface, easy

registration, personal profile and options management, validation of data at input, and

authorization and role-based authentication. Internationalization is supported, with the web

application currently being available in English, Croatian, and Swedish. All news about the

public transportation system is visible on the home page, figure 8-2.

Figure 8-2 - TWA Home Page

21

The administration section allows for easy management of the transport system allowing for

the insertion of interruptions and modifications to the transport system. The application makes

use of Google Maps API, making it a reliable, fast, and pleasant graphic user interface, as can be

seen on figure 8-3.

Figure 8-3 - Admin Inserts Interruption

22

 9. VERIFICATION AND VALIDATION

Because of the complexity of the system and issues with real scenario testing we decided to

implement test-driven development, meaning that most of implemented features are covered

with unit tests. In early stages a simulator was implemented and used to simulate a real

environment for testing the system.

Integration of different components was handled iteratively, in a way that for every couple of

Scrum sprints we had a system that could be connected and tested. In each new iteration, new

components were connected to the system, and a session of integration testing was

conducted. Problems and bugs that arose were solved in the next sprint.

Towards the end of the project we tested our system in a real environment (a real tram

travelling around the city of Zagreb). With a large variety of devices (see Figure 9-1) we tested

several scenarios, including automatic detection of users and notification of

interruptions/modifications. During this time we also made a video19 which shows some of the

main features of the system.

 10. OUTCOMES AND LESSONS LEARNED

This project offered a real environment for distributed software development, where master

students learned how to communicate with project customers, supervisors and with other

team members in a distributed environment. It was a good experience as it provided us with a

real world scenario and we learnt how to prevent and tackle real problems in a software

development cycle. The team was expected to handle the pressure of upcoming deadlines in

early stages of project so the team members need to get to know each other very fast and start

producing visible artifacts. This was quite challenging, but a great overall experience. The team

Figure 9-1 - Real scenario deployment

23

for this project was initially composed of three students from ±ŅǎǘŜǊňǎ, Sweden and three from

Zagreb, Croatia. Another challenge was to integrate a new member into our team, latter on.

We learned to work under pressure, as we had to develop some component from scratch at a

late stage of project. This added additional pressure as we needed to put some extra effort to

finish the project in time. Overall, we are happy that we had the opportunity to work on this

project within the DSD course. Distributed environment and challenging project forced us to

give our best and to adapt to a new environment as the project progressed. On top of

everything, we made some new friends which make this experience additionally special.

 11. SUMMARY

Transport4U project was developed as a part of Distributed Software Development course
ǇǊƻǾƛŘŜŘ ōȅ aŅƭŀǊŘŀƭŜƴ ¦ƴƛǾŜǊǎƛǘȅ όa5¦ύ ς Vasteras and Faculty of Electrical Engineering and
Computing (FER) ς Zagreb. A team of 7 students worked on it for a period of 14 weeks. The
final developed product is a intelligent transport network system and possibly shows a glimpse
of where public transportation system are headed in years to come. Possible future
development of the system includes:

¶ Mobile application and/or web application for live transport system overview with
information about current location of transport units, estimated time of arrival at
station, traffic, etc.

¶ Mobile application and/or web application for smart/optimized route planning.

¶ Mobile application for ticket payment and notifications.

¶ Route optimization taking into account real time traffic situation.

¶ Integration with third party planning tools (eg. Google Calendar).

The possibilities for this to become widely used software are present. A more positive period
(once the global recession is overcome) and a healthier (R&D prone) environment would
increase the probabilities of such an outcome.

 12. REFERENCES

All relevant documents for the Transport4U project can be found at:

http://shap2.info-sol.net:8090/Documents/

1
 ½9¢Υ ½ŀƎǊŜōŀőƪƛ 9ƭŜƪǘǊƛőƴƛ ¢ǊŀƳǾŀƧ όhttp://www.zet.hr) - public transportation company for the city of

Zagreb.

2
 TELE2: (http://www.tele2.hr/) - global mobile phone provider.

3
 Requirement Definition Document:

http://shap2.info-sol.net:8090/Documents/documents/Transport4You_Requirements_Definition.doc

4
 Process Methodology Document:

http://shap2.info-sol.net:8090/Documents/documents/Process_methodology.pdf

http://shap2.info-sol.net:8090/Documents/
http://www.zet.hr/
http://www.tele2.hr/

24

5
 Scrum Artifacts Repository: http://shap2.info-sol.net:8090/Documents/

6
 Android: (http://www.android.com/) - Android is a mobile operating system initially developed by

Android Inc.

7
 GPRS: General packet radio service is a packet oriented mobile data service on the 2G and 3G cellular

communication systems global system for mobile communications.

8
 GPS: The Global Positioning System is a space-based global navigation satellite system (GNSS) that

provides reliable location and time information in all weather and at all times and anywhere on or near

the Earth when and where there is an unobstructed line of sight to four or more GPS satellites. It is

maintained by the United States government and is freely accessible by anyone with a GPS receiver.

9
 Mobile phone tethering: A method for connecting a computer to the internet via an internet-

capable mobile phone.

10
 Gnokii: (http://www.gnokii.org/) - Gnokii is a suite of programs for communicating with mobile

phones.

11
 Paypal sandbox: (https://developer.paypal.com) - A sandbox is a testing environment that isolates

untested code changes and outright experimentation from the production environment or repository, in

the context of software development including Web development and revision control.

12
 Google maps: (http://maps.google.com/) - Google Maps (formerly Google Local) is a web

mapping service application and technology provided by Google, free (for non-commercial use), that

powers many map-based services, including the Google Maps website.

13
 Java: (http://www.java.com/en/download/index.jsp) - Java is a programming language originally

developed by James Gosling at Sun Microsystems (which is now a subsidiary of Oracle Corporation) and

released in 1995 as a core component of Sun Microsystems' Java platform.

14
 MySQL: (http://www.mysql.com/) - MySQL is a relational database management system that runs as a

server providing multi-user access to a number of databases.

15
 Hibernate: (http://www.hibernate.org/) - Hibernate is an object-relational mapping (ORM) library for

the Java language, providing a framework for mapping an object-oriented domain model to a

traditional relational database.

16
 Apache Struts2: (http://struts.apache.org/2.x/index.html) - Apache Struts is an open-source web

application framework for developing Java EE web applications.

17
 ά{eparation of concernsέΥ In computer science, separation of concerns is the process of separating

a computer program into distinct features that overlap in functionality as little as possible.

18
 Apache Ant: (http://ant.apache.org/) - Apache Ant is a Java library and command-line tool who's

mission is to drive processes described in build files as targets and extension points dependent upon

each other.

19 Test video: http://shap2.info-sol.net:8090/Documents/documents/dsd_video.wmv

http://shap2.info-sol.net:8090/Documents/
http://www.android.com/
http://en.wikipedia.org/wiki/Mobile_operating_system
http://en.wikipedia.org/wiki/Packet_oriented
http://en.wikipedia.org/wiki/Mobile_Data_Service
http://en.wikipedia.org/wiki/2G
http://en.wikipedia.org/wiki/3G
http://en.wikipedia.org/wiki/Cellular_communication
http://en.wikipedia.org/wiki/Cellular_communication
http://en.wikipedia.org/wiki/Global_System_for_Mobile_Communications
http://en.wikipedia.org/wiki/Global_navigation_satellite_system
http://en.wikipedia.org/wiki/Positioning_system
http://en.wikipedia.org/wiki/United_States
http://en.wikipedia.org/wiki/Mobile_phone
http://www.gnokii.org/
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Mobile_phone
https://developer.paypal.com/
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Software_development
http://en.wikipedia.org/wiki/Web_development
http://en.wikipedia.org/wiki/Revision_control
http://maps.google.com/
http://en.wikipedia.org/wiki/Web_mapping
http://en.wikipedia.org/wiki/Web_mapping
http://en.wikipedia.org/wiki/Google
http://www.java.com/en/download/index.jsp
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/James_Gosling
http://en.wikipedia.org/wiki/Sun_Microsystems
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/Java_(software_platform)
http://www.mysql.com/
http://en.wikipedia.org/wiki/Relational_database_management_system
http://www.hibernate.org/
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Software_framework
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Domain_model
http://en.wikipedia.org/wiki/Relational_database
http://struts.apache.org/2.x/index.html
http://en.wikipedia.org/wiki/Open-source
http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Web_application_framework
http://en.wikipedia.org/wiki/Java_EE
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Computer_program
http://ant.apache.org/

