REMES Tool-chain: A Set of Integrated Tools for Behavioural Modelling and Analysis of Embedded Systems

Dinko Ivanov1 Marin Orlić2 Cristina Seceleanu3
Aneta Vulgarakis3

1University "St.Kliment Ohridski", Bulgaria
2University of Zagreb, Croatia
3Mälardalen University, Sweden
Introduction

- Embedded systems (ES)
 - Resource constrained
 - Time constrained, must be checked (formal analysis)
- Component-based approach to design of embedded systems
- Goal: support modelling and analysis of ES as early in the design phase as possible
 - Modelling architecture + behaviour
- Predictability – top challenge in ES
Motivation

- Focus on behaviour modelling
 - Functionality, timing constraints, resource usage
- Enable model input, support model-checking
- Introduce simulation
 - Spot logical errors early in the design phase
 - Perfect the model before performing full formal analysis
 - Test prototype model quickly
- Contribution
 - Tool-chain: editor, simulator, mapping to formal model
REMES behavioural language

- REMES (REsource Model for Embedded System) resource and behaviour model
 - Functional behaviour (discrete state-based)
 - Resource behaviour (discrete, continuous)
 - Timing behaviour (dense time, state based)
 - (Priced) Timed automata (TA / PTA) for analysis
 - Separation between input and output
 - Resources as primitives
 - Explicit types
The toolchain

- Built on Eclipse Platform
 - Integrates with PRIDE – IDE for component-based ES development
- Graphical REMES model editor
- Simulator
- Transformation to analytical model
I. REMES language editor
REMES language elements

- Composite mode ①
- Compartments ② for variables, resources, constants
REMES language elements

- Submodes
 - Invariant – time is allowed to pass until invariant is violated
 - Urgent – time is not allowed to pass (invariant is false)
REMES language elements

- Input and output
 - Init-, entry-, exit-, local exit points
REMES language elements

- Control flow
 - Edges with guards and actions
 - Conditional connectors
II. REMES simulator

- Simulates the behaviour modelled in REMES
 - Single trace, out of all possible
 - Output: mode transitions, clock- and variable changes
- Quick prototype tests
- Spot logical errors early
- Perfect the model before formal analysis
Analysis model

- Formal analysis – verify timing properties (TCTL)
- (Priced) timed automata – flat model
Formal analysis

- Performed by tools of the UPPAAL family
 - Exhaustive search of the state-space, highest guarantee of model correctness
 - UPPAAL – timed automata
 - UPPAAL CORA – priced timed automata
 - Resources represented as a weighted sum in a single cost variable
III. REMES to PTA tool

- Automated transformation in IDE (M2M)
- Basic support for visual editing of PTA
- Export to UPPAAL (TA), UPPAAL CORA (PTA)
 - Includes triggering information (if available)
 - Integration with component model
Conclusions + future work

- Testing
 - Useful tool to follow timing and extra functional beh.
 - Ongoing work to test scalability on industrial case (Ericsson Nikola Tesla, Croatia)

- Integration
 - Integrate simulator, analysis model, integrate with PRIDE

- REMES updates
 - Implement all language improvements to tools
 - Support hierarchy
 - Provide feedback from formal analysis
Thank you

http://www.fer.hr/dices/remes-ide

Marin Orlić
marin.orlic@fer.hr

Faculty of Electrical Engineering and Computing
University of Zagreb, Croatia