
PhD Day Faculty of Electrical Engineering and Computing, 1 June 2023.

Distributed software development governed by
security-constrained data flow

Rudolf Lovrenčić, mag. ing. comp.
(rudolf.lovrencic@fer.hr)

mentor: Assoc. Prof. Dejan Škvorc, PhD
University of Zagreb Faculty of Electrical Engineering and Computing

1. Introduction
Cloud computing is increasingly used for personal and business
purposes, both as passive data storage and as a place for data
processing, e.g. running applications. However, a certain
number of organizations are unwilling or unable to take
advantage of cloud computing due to trust issues. If the cloud is
used not only for data storage, but also for data processing,
then the data privacy can be violated not only in the repository if
the data is not encrypted, but also during the processing.
Encrypting the data before outsourcing them to the cloud
increases their security, but at the same time prevents them
from being processed in the cloud. This research aims to
provide a paradigm for outsourcing both the data and the code
to the cloud in a way that preserves data privacy, while still
enabling their processing outside the organization.

2. Problem Description
To be able to distribute the program logic, protocols for
performing computations without revealing the operands or the
results of the operations to the participants must be introduced.
In order to minimize performance degradation, the granulation
of software fragmentation should be optimized based on the
user-provided security requirements and the set of available
hosts. The optimization process decides which operations are
computed using distributed patterns.

3. Methodology
The generator translates the application from a monolithic form,
which simplifies the development, into a distributed form with
embedded security-constrained data flow optimized for the
given deployment environment. Generation consists of three
phases:
1) Parse the environment description, security constraints,
 dababase schema and program logic.

2) Determine the optimal mapping of data to the provided hosts.
3) Generate a distributed application in the target language.

4. Results
Performance testing has been performed on a trivial application
that calculates the payout of company’s employees. Relative to
the monolithic application, two additional variations of the
application have been analyzed: i) fine split, where each piece of
data is stored on a separate location, ii) minor split, where only
the bonus is separated.

5. Conclusion
The performance analysis indicates that the paradigm is
suitable for small-scale applications or critical parts of larger
cloud systems. Results also imply that the performance impact
is lower in applications dominated by computation because the
introduced communication cost is relatively small. A tool for
automatic generation of distributed logic based on the
monolithic logic, environment description, and security
constraints has been introduced. The tool reduces the
complexity of development significantly and separates security
requirements from the application logic.

6. Project Acknowledgement
This research is co-sponsored by the
European Regional Development Fund
through research grant KK.01.2.1.01.0109.

Development of a distributed application with
security-constrained data flow

Distributed addition pattern in which no component learns
both operands

1 2 3 4 5 10 20
2

3

4

5

6

7

8

9

10

Minor, Sync

Fine, Sync

Minor, Async

Fine, Async

Number of requests

S
lo

w
d

o
w

n

A “minor split” version of the demo application

Two versions of the client were also considered:
a) synchronous client that waits for the response before
sending another request, and b) asynchronous client that
sends all requests immediately.

During the optimization procedure, the generator decides which
operations should be performed using the distributed patterns
and which should remain monolithic, ensuring a minimal
performance penalty.

	Slide 1

