Modeling and robust estimation of a series of point sources in multidimensional imaging

Anita Gribl Koščević, mag. ing. (anita.gribl@fer.hr)

mentor: Prof. Davor Petrinović, PhD

University of Zagreb Faculty of Electrical Engineering and Computing

1. Introduction

Detection and extraction of stellar objects (point light sources) from astronomical images

- stellar objects blurred and extended in the image plane due to different image degradations
- the joint action of all those degradations can be approximated by 2D Gaussian profiles very well

Low-dose 2D PET imaging

implies the reduced amount of injected radiotracer into the patient's body, low signal-to-noise ratio (SNR), sparse sinogram, and low quality of the reconstructed image

Astrophotography

2D PET imaging

2. Problem Description

- Detect and extract the **overlapped** stellar components from noisy measurements even **above** the resolution limit
- **Multidimensional** Gaussian profile fitting
- Image reconstruction of the unknown underlying process in low-dose 2D PET imaging

Sums of two 1D Gaussian profiles with parameters $\sigma = 1$, $\mu_1 = 0$, $\mu_2 = d$

3. Methodology

Iteratively reweighted least squares (IRWLS) method for precise detection and extraction of the overlapped 2D Gaussian profiles based on robust statistics

Fast two-step method for fitting a multidimensional Gaussian function in the log domain

2D PET image reconstruction by using the **intersections of** response lines generated by unknown underlying process

4. Results

IRWLS method results

Sorted log10-distances of estimated and actual centroids

IRWLS method modeling gain in dB compared to the LS method

Fast method for multidimensional Gaussian fitting (m = 7000)

5. Conclusion

By using the proposed IRWLS method, it is possible to precisely estimate overlapped 2D Gaussian components even above the resolution limit. For a given centroid position, the proposed fast method in the exponential's argument domain yields the one-step solution for all other parameters of the multidimensional Gaussian profile with high accuracy.

6. Project Acknowledgement

This work was supported in part by the Croatian Science Foundation under Project IP-2019-04-6703 and DOK-01-2018 and in part by the European Regional Development partacross Fund under Grant KK.01.1.1.01.0009 (DATACROSS).

