

Making Component-by-Component Selection Criteria Explicit:

Enabling Stepwise Software Systems Merge

Rikard Land, Jan Carlson, Ivica Crnković, Stig Larsson
Mälardalen University, Department of Computer Science and Electronics

PO Box 883, SE-721 23 Västerås, Sweden
+46 21 10 70 35

{rikard.land, jan.carlson, ivica.crnkovic, stig.larsson }@mdh.se, http://www.idt.mdh.se/{~rld, ~jcn, ~icc}

Abstract
Xxx

.

1. Background and Introduction
As in-house developed software systems are evolved,
their initial scope and purpose may change and grow,
until a point where there is some overlap in
functionality and purpose. The same situation occurs,
only more drastically, as a result of company
acquisitions and mergers. A new system combining the
functionality of the existing systems would improve
the situation from an economical and maintenance
point of view, as well as from the point of view of
users, marketing and customers.

To resolve this situation, it is perfectly possible to
retire one of the existing systems and evolve the other
to include some of the features of the retired system, or
even to start developing a new generation of the
systems and plan for retiring both the existing ones
[15,17]. Reusing experience instead of
implementations might be the best choice under some
circumstances [18], for example if the existing systems
are considered aged, or if users are dissatisfied and
improvements would require major efforts [15].

There is another option: to merge the systems, by
picking some parts from one, some from the other, and
assemble them into a new system [15,17]. If this is
possible, the potential benefits include decreased costs
for development and time to delivery, as well as
reduced risk in the sense that components are of
known quality. If the differences between the systems
are too large, it is probably not worth the effort to
attempt a merge. The purpose of the present paper is to
address the merge strategy by providing a method for
exploring different merge alternatives early in the
process.

1.1 Problem Context
The envisioned context of the method is the small
group of architects who typically meet and outline
various solutions [19,20]. Many alternatives are partly
developed and evaluated until (hopefully) one or a few
high-level alternatives are fully elaborated, including

some estimates on effort and time required for
implementation.

Merging large complex systems with limited
resources can be expected to take numerous years, and
there is a need to perform an evolutionary merge with
stepwise deliveries [15,17]. In practice this means
delivering the existing systems separately, with more
and more parts being common, until some point in the
future where all parts are common. This brings
complexities in terms of making new components fit
together with several existing ones. One would like to
put as little effort as possible into modifications that
are required only for an intermediate system delivery
but will be obsolete in the final system. There is a
delicate tradeoff between long-term and short term
costs and goals with no simple solution, but the
proposed method helps in exploring alternative partial
deliveries and their implications.

The starting points for our proposed method are
several: first, the common use of module dependency
diagrams to understand propagation of changes during
system evolution, second, our previous observation
from multiple cases in industry that similar high-level
structures seem to be a prerequisite for merge [18], and
third, one particular industrial case (presented in
section 4) where the work actually carried out was an
informal version of the method we present.

1.2 The Present Paper
We first provide some definitions and introduce

our proposed method by means of an example in
section Error! Reference source not found.. Section
4 describes the events in an industrial case that
supports the applicability of our method, and section 5
discusses some important observations from the case
and argues for some general advices based on this.
Section Error! Reference source not found. surveys
related literature, and section 6 summarizes and
concludes the paper by motivating how the goals of
the paper have been met and outlining future work.

More Motivation? conceptual integrity, AOP. List
problems - not here? conceptual integrity, divergence.
In discussion in section 5?

2. Related Work
In our previous literature survey [16], we found that
there are two classes of research on the topic of
software integration. First, there is basic research
describing integration rather fundamentally in terms of
a) interfaces [12,28,29], b) architecture [1,9,11],
architectural mismatch [8], and architectural patterns
[3,7,25], and c) information/taxonomies/data models
[10]. Second, there are three major fields of
application: a) Component-Based Software
Engineering [5,21,26,27], including component

technologies, b) standard interfaces and open systems
[21,22], and c) Enterprise Application Integration
(EAI) [6,24]. These existing fields are not directly
applicable to the in-house integration context, as they
address somewhat different problems than ours, as
these fields concern components or systems
complementing each other rather than systems that
overlap functionally. Also, it is typically assumed that
components or systems are acquired from third parties
and that modifying them is not an option, a constraint
that does not apply to the in-house situation. Finally,
the goals of integration in these fields are to reduce
development costs and time, while in the in-house
context the goals are to lower maintenance costs and
present a coherent system to users and customers.

It is commonly known that a software architecture
should be documented and described according to
different views [4,11,13,14]. One commonly proposed
view is the module view [4,11] (or development view
[14]), describing development abstractions such as
layers and modules and their relationships. The
dependencies between the development time artifacts
were first defined by Parnas [23] and are during
ordinary software evolution the natural tool to
understand how modifications made to one component
propagate to other. The assumption underlying the
present research is that dependency graphs should be a
viable way to also understand the consequences of
some choice during software merge.

Although there are methods for merging source
code [2], we consider this to be unrealistic for the task
of in-house integration of large systems with complex
requirements and stakeholder interests. The abstraction
level must be higher.
Evolution..
Degradation/deterioration.
SA:
• Arch styles/patterns.
• ADLs (including UML)
Merge of source code [Berzins?][Bosch]
Arch mismatch [Garlan] – relate to this

Take from Laurens paper, the idea of detecting
mismatches with a tool.

If the merge process is largely unexplored, a little

more is known about the types of incompatibilities that
may occur when assembling components built under
different assumptions and using different technologies
[8][Laurens’ survey].

3. Presenting the Method
The method consists of two parts that are presented in
this section: a model, i.e. a set of formal concepts and

definitions, and a process, i.e. a set of human activities
that utilizes the model. The model is designed to be
simple but reflect reality as well as possible, and the
process describes higher-level reasoning and heuristics
that are suggested as useful practices in many cases.

Figure 1 describes an example of two computer
car games that after a company merger are candidates
for merge. The figure describes a scenario where some
modifications have been made – initially, all modules
of System A would be denoted αA, and all of System B
αB. The figure is further explained in the rest of the
present section, as it is used to exemplify the method.

KMA JMA

EngineA

GMB

GLnew

NMA

System A System B

Dependency

Module

Visual Key

KMB JMB

EngineA

GMB

GLnew

NMB

Module Acronyms
KM = Keyboard Management
JM = Joystick Management
NM = Network Management
GM = Graphics Management
GL = Graphics Library

<GMB, GLnew>
<NMB, EngineA>

Action set

Figure 1: Two example systems.

3.1 The Underlying Model
Our proposed method builds on a model consisting of
three parts, presented and defined below: a set of
model elements, an inconsistency pattern defined in
terms of these structures, and a set of permissible user
operations. Once the systems are described in terms of
the model elements, users can apply any of the
possible operations, in any order, which includes
annotating the structures with information how to
solve the individual inconsistencies. Whenever the
pattern is no longer found, the model represents
systems that are internally consistent given that the
annotated modifications are made.

3.1.1 Concepts and Notation
The following concepts are used in the model:

• Existing systems are denoted by capital letters A,
B, etc.

• Module roles represent conceptual system parts
that have been identified in the existing systems,
such as “Engine” or “Graphics Library”. In the
current version of the method, we assume full
overlap between the module roles of the existing
systems. Module roles are written with capital first
letter, and parameterized by Greek letters α and β.

• A module instance corresponds to a concrete
realization of a module role, and is denoted αX
where X is either a system (A, B, etc.) meaning
that the module instance is the one that already
exist in that system (e.g. EngineA), or a “new”
marker, representing a module that is new to the
systems. Such a new module could be either a
non-existing, planned implementation, or an
already existing module, to be reused in-house
from some other program or a commercial
component.

• An adaptation is a pair of module instances. The
pair 〈αX, βY〉 represents that αX is modified to be
consistent with βY. In practice, this could mean
anything from introducing some adapter to
modifying many scattered lines of code
throughout αX. This is further discussed in xxx

• A dependency graph captures the structure of a
system. It is a directed acyclic graph where each
node in the graph represents a module instance
and the edges represent dependencies between
these module instances. An edge αX βY
represents that βY provides some service required
by αX. In Figure 1, we have for example the
dependencies JMA EngineA and GMB GLnew.
Graphically, nodes with the same module role are
written together inside a dashed box.

• A scenario consists of a dependency graph for
each existing system and a single set of
adaptations. The dependency graphs must have
identical module role dependency structures, so
that for each dependency αX βY there is a
dependency αZ βW in all graphs.

• The full model consists of a set of scenarios and
an information database with general information
related to individual adaptations and development
of new module instances (including effort
estimates). This information is not associated with
a particular scenario, but can be used to derive
scenario-specific information, e.g. the estimated
total effort associated with the modifications in a
given scenario. We envision that any particular
project or tool would define its own formats and
types of information. At the least, there would be
short textual descriptions of what each adaptation
means in practice. We can note that a model might
contain several different new modules for the

same role α, used in different scenarios, such as
αnew implementation, αopen source, αcommercial, etc.

Figure 1 depicts a scenario where the Engine module
instance from system A and the GM module from
system B are used in both systems, and a new GL
module is planned to be developed or acquired and is
used in both systems.

3.1.2 Inconsistency
An inconsistency means that two dependent

module instances are not functioning together.
Trivially, two module instances from the same system
are consistent without further adaptation. Two modules
from different systems are consistent only if some
measure has been taken to ensure it, i.e., if either
module have been modified to work with the other.

Formally, a dependency from αX to βY is consistent
if X = Y or if the adaptation set contains 〈αX, βY〉 or 〈βY,
αX〉. Otherwise, the dependency is inconsistent.

A scenario is consistent if all dependencies in all
dependency graphs are consistent. This means that the
actual systems specified by the graphs are free from
internal mismatches, provided that the module
instances are modified according to the action set.

Example: The scenario in Figure 1 is inconsistent,
because of the inconsistent dependencies from KMB
and JMB to EngineA, and from EngineA to GMB. The
dependencies from GMB to GLnew and from EngineA to
NMB on the other hand are consistent, as there are
adaptations 〈GMB, GLnew〉 and 〈NMB, EngineA〉
meaning that GMB and NMB have been modified to be
consistent with GLnew and EngineA respectively.

3.1.3 Scenario Operations
The following operations can be performed on a

scenario:
1. Add or remove an adaptation to/from the

adaptation set.
2. Add the module instance αX to one of the

dependency graphs. For each module role β, such
that there is a dependency αY βZ in the graph, a
dependency αX βW is added for some βW in the
graph.

3. Remove the module instance αX from one of the
dependency graphs, if there are no edges to αX in
the graph, and if the graph contains another
module instance αY (i.e. X≠Y).

4. Replace the dependency αX βY by αX βZ, for
some βZ in the graph.

Note that these operations never change the
participating module roles of the graph, nor the
dependencies between them. Note also that we allow
two or more instances for the same role in a system;
whether this is suitable for a real system.

3.2 Suggested Process
The suggested process consists of two phases, the first
consisting of two simple preparatory activities, and the
second being recursive and exploratory.

3.2.1 Preparatory Phase
The Preparatory phase consists of two activities:
P-I: Describe Existing Systems
P-II: Describe Desired Future Architecture
Activity P-I: Describe Existing Systems
First, the dependency graphs of the existing systems
must be created, and common module roles identified.
This activity could and should arguably be kept
informal as it occurs early, meaning that the people
meet for the first time. We do not suggest any
particular systematic method to arrive at these
descriptions.
Activity P-II: Describe Desired Future Architecture
The dependency graph of the future system is the
union of the graphs depicting the existing systems, i.e.
where each existing role is present and each
dependency is present. It is assumed that the systems
show a considerable degree of similarity, so there is no
need to formalize this further here (this assumption is
further discussed in section 5.x).

Not any module instance is desired in the future
system. For some roles it is imperative to use some
specific instance (e.g. αX because it is superior to αY, or
a new implementation αnew because there have been
problems with the existing αX, αY). For other roles, αX
might be preferred over αY, but the final choice will
also depend on other implications of the choice, which
is not known until different alternatives are explored.
The result of this activity is an outline of a desired
future system, with some annotations, that serve as a
guide during the exploratory phase.

3.2.2 Exploratory Phase
Initially, the model contains a single scenario
corresponding to the structure and contents (?) of the
existing systems. The exploratory phase can be
described in terms of four activities, but the order
between them is not pre-determined. Any activity
could be performed after any of the others, but they are
not completely arbitrary. Early in the process, there
will be an emphasis on activity E-I, where desired
changes are introduced. These changes will lead to
inconsistencies that need to be resolved in activity E-
II. As the exploration continues, one wants to branch
scenarios in order to explore different choices; this is
done in activity E-III. One also wants to continually
evaluate the scenarios and compare them, which is
done in activity E-IV, and towards the end when there
are a number of consistent scenarios there will be an

emphasis on evaluating these deliveries of the existing
systems. It should once again be noted that these
activities describe high-level things that are often
useful to do, but nothing prohibits the user from
carrying out any of the primitive operations defined
above at any time.
Activity E-I: Introduce Desired Changes
Some module instances, desired in the future system,
should be introduced into the existing systems. In
some cases, it is imperative where to start (as described
for activity P-II), and sometimes there might be several
possible starting points. The choice may e.g. depend
on the local priorities for each system (e.g. “we need to
improve the Engine of system A”), and/or some
strategic considerations concerning how to make the
envisioned merge succeed (e.g. “the Engine should be
made a common component as soon as possible”).
Activity E-II: Resolve Inconsistencies
As components are exchanged in the graphs, there will
be mismatches between modules αX βY that need to
be resolved. There are three main ways of resolving
these:
1. Exchanging either module instance for another by

combining operations 2, 4 and 3, so that the new
pair of components are consistent, i.e. either
exchange αX for αY, or βY for βX. In Figure 1, the
inconsistent dependency between EngineA and
GMB could be solved by replacing GMB by GMA.

2. Modifying either module to be consistent with the
interface of the other, i.e. adding an adaptation to
the adaptation set (operation 1). In the example,
this means adding either the adaptation 〈GMB,
EngineA〉 or 〈EngineA, GMB〉 to the adaptation set.
The actual modification could be of many
different kinds, depending on the system domain
and the type of module, e.g. adapters, modifying
lines of source code throughout, etc. This is
further discussed… This information should be
added to the model information database for the
particular adaptation.

3. To introduce one more module instance for one
of the roles, to exist in parallel with the existing.
(This could be suitable for some library with
many using modules, where using both libraries
in parallel does not cause any problems. This is
discussed further in section 5.x.)

4. Developing a new instance…
These introduced changes will likely cause new
inconsistencies that need to be resolved (i.e. this
activity need to be performed again).
Activity E-III: Branching Scenarios
As a scenario is evolved by applying the operations to
it (most often according to either of the high-level

approaches of activities E-I and E-II), there will be
occasions where it is desired to explore two or more
different choices. For example, two of the ways to
resolve an inconsistence might make sense, and both
choices should be explored. It is possible to copy the
scenario and treat them as branches coming from
different choices.

(At this point, it could be noted that we have
avoided formalizing operations such as create, delete,
copy, or branch scenarios, because this is not essential
neither to the model nor the process. In a tool
implementation, one is free to visualize the
information for example in several ways, that
facilitate the users’ work, . (unordered) set of
adaptations as a tree of choices, with some branches.

In the example, …

Activity E-IV: Evaluate Scenarios
As scenarios evolve, they need to be evaluated in order
to decide which branch to evolve further and which to
abandon. Towards the end of the process, one
probably wants to evaluate the final alternatives more
thoroughly, and compare them. There seems to be at
least two evaluation criteria for which data can be
inferred directly from the model:
1. The actual state of the systems (module instances

plus the modifications to reduce inconsistencies).
Do the systems contain many shared modules?
Are the chosen modules the ones desired for the
future system (highest quality etc.)?

2. The work that needs to be done in order to arrive
at the final scenario, i.e. the sum of all individual
modification efforts (and new development effort
for new components). This requires that the effort
for each adaptation has been added to the
information database.

It also becomes possible to extract all information
entered concerning the adaptations needed, such as
short notes outlining what each modification means in
practice, into a draft project plan.

In addition, it becomes possible to reason about
how much of the efforts required are “wasted”, that is:
is most of the effort related to modifications that
actually lead towards the desired future system, or is
much effort required to make modules fit only for the
next delivery and then discarded?

