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1. Background and Introduction 
As in-house developed software systems are evolved, 
their initial scope and purpose may change and grow, 
until a point where there is some overlap in 
functionality and purpose. The same situation occurs, 
only more drastically, as a result of company 
acquisitions and mergers. A new system combining the 
functionality of the existing systems would improve 
the situation from an economical and maintenance 
point of view, as well as from the point of view of 
users, marketing and customers.  

To resolve this situation, it is perfectly possible to 
retire one of the existing systems and evolve the other 
to include some of the features of the retired system, or 
even to start developing a new generation of the 
systems and plan for retiring both the existing ones 
[15,17]. Reusing experience instead of 
implementations might be the best choice under some 
circumstances [18], for example if the existing systems 
are considered aged, or if users are dissatisfied and 
improvements would require major efforts [15].  

There is another option: to merge the systems, by 
picking some parts from one, some from the other, and 
assemble them into a new system [15,17]. If this is 
possible, the potential benefits include decreased costs 
for development and time to delivery, as well as 
reduced risk in the sense that components are of 
known quality. If the differences between the systems 
are too large, it is probably not worth the effort to 
attempt a merge. The purpose of the present paper is to 
address the merge strategy by providing a method for 
exploring different merge alternatives early in the 
process. 

1.1 Problem Context 
The envisioned context of the method is the small 
group of architects who typically meet and outline 
various solutions [19,20]. Many alternatives are partly 
developed and evaluated until (hopefully) one or a few 
high-level alternatives are fully elaborated, including 

some estimates on effort and time required for 
implementation. 

Merging large complex systems with limited 
resources can be expected to take numerous years, and 
there is a need to perform an evolutionary merge with 
stepwise deliveries [15,17]. In practice this means 
delivering the existing systems separately, with more 
and more parts being common, until some point in the 
future where all parts are common. This brings 
complexities in terms of making new components fit 
together with several existing ones. One would like to 
put as little effort as possible into modifications that 
are required only for an intermediate system delivery 
but will be obsolete in the final system. There is a 
delicate tradeoff between long-term and short term 
costs and goals with no simple solution, but the 
proposed method helps in exploring alternative partial 
deliveries and their implications.  

The starting points for our proposed method are 
several: first, the common use of module dependency 
diagrams to understand propagation of changes during 
system evolution, second, our previous observation 
from multiple cases in industry that similar high-level 
structures seem to be a prerequisite for merge [18], and 
third, one particular industrial case (presented in 
section 4) where the work actually carried out was an 
informal version of the method we present. 

1.2 The Present Paper 
We first provide some definitions and introduce 

our proposed method by means of an example in 
section Error! Reference source not found.. Section 
4 describes the events in an industrial case that 
supports the applicability of our method, and section 5 
discusses some important observations from the case 
and argues for some general advices based on this. 
Section Error! Reference source not found. surveys 
related literature, and section 6 summarizes and 
concludes the paper by motivating how the goals of 
the paper have been met and outlining future work.  

More Motivation? conceptual integrity, AOP. List 
problems - not here? conceptual integrity, divergence. 
In discussion in section 5?  

2. Related Work 
In our previous literature survey [16], we found that 
there are two classes of research on the topic of 
software integration. First, there is basic research 
describing integration rather fundamentally in terms of 
a) interfaces  [12,28,29], b) architecture [1,9,11], 
architectural mismatch [8], and architectural patterns 
[3,7,25], and c) information/taxonomies/data models 
[10]. Second, there are three major fields of 
application: a) Component-Based Software 
Engineering [5,21,26,27], including component 



technologies, b) standard interfaces and open systems  
[21,22], and c) Enterprise Application Integration 
(EAI) [6,24]. These existing fields are not directly 
applicable to the in-house integration context, as they 
address somewhat different problems than ours, as 
these fields concern components or systems 
complementing each other rather than systems that 
overlap functionally. Also, it is typically assumed that 
components or systems are acquired from third parties 
and that modifying them is not an option, a constraint 
that does not apply to the in-house situation. Finally, 
the goals of integration in these fields are to reduce 
development costs and time, while in the in-house 
context the goals are to lower maintenance costs and 
present a coherent system to users and customers.  

It is commonly known that a software architecture 
should be documented and described according to 
different views [4,11,13,14]. One commonly proposed 
view is the module view [4,11] (or development view 
[14]), describing development abstractions such as 
layers and modules and their relationships. The 
dependencies between the development time artifacts 
were first defined by Parnas [23] and are during 
ordinary software evolution the natural tool to 
understand how modifications made to one component 
propagate to other. The assumption underlying the 
present research is that dependency graphs should be a 
viable way to also understand the consequences of 
some choice during software merge.  

Although there are methods for merging source 
code [2], we consider this to be unrealistic for the task 
of in-house integration of large systems with complex 
requirements and stakeholder interests. The abstraction 
level must be higher. 
Evolution.. 
Degradation/deterioration. 
SA: 
• Arch styles/patterns. 
• ADLs (including UML) 
Merge of source code [Berzins?][Bosch] 
Arch mismatch [Garlan] – relate to this 

Take from Laurens paper, the idea of detecting 
mismatches with a tool. 

 
If the merge process is largely unexplored, a little 

more is known about the types of incompatibilities that 
may occur when assembling components built under 
different assumptions and using different technologies 
[8][Laurens’ survey]. 

 

3. Presenting the Method 
The method consists of two parts that are presented in 
this section: a model, i.e. a set of formal concepts and 

definitions, and a process, i.e. a set of human activities 
that utilizes the model. The model is designed to be 
simple but reflect reality as well as possible, and the 
process describes higher-level reasoning and heuristics 
that are suggested as useful practices in many cases. 

Figure 1 describes an example of two computer 
car games that after a company merger are candidates 
for merge. The figure describes a scenario where some 
modifications have been made – initially, all modules 
of System A would be denoted αA, and all of System B 
αB. The figure is further explained in the rest of the 
present section, as it is used to exemplify the method. 
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Figure 1: Two example systems. 

3.1 The Underlying Model 
Our proposed method builds on a model consisting of 
three parts, presented and defined below: a set of 
model elements, an inconsistency pattern defined in 
terms of these structures, and a set of permissible user 
operations. Once the systems are described in terms of 
the model elements, users can apply any of the 
possible operations, in any order, which includes 
annotating the structures with information how to 
solve the individual inconsistencies. Whenever the 
pattern is no longer found, the model represents 
systems that are internally consistent given that the 
annotated modifications are made. 

3.1.1 Concepts and Notation 
The following concepts are used in the model:  

• Existing systems are denoted by capital letters A, 
B, etc. 



• Module roles represent conceptual system parts 
that have been identified in the existing systems, 
such as “Engine” or “Graphics Library”. In the 
current version of the method, we assume full 
overlap between the module roles of the existing 
systems. Module roles are written with capital first 
letter, and parameterized by Greek letters α and β. 

• A module instance corresponds to a concrete 
realization of a module role, and is denoted αX 
where X is either a system (A, B, etc.) meaning 
that the module instance is the one that already 
exist in that system (e.g. EngineA), or a “new” 
marker, representing a module that is new to the 
systems. Such a new module could be either a 
non-existing, planned implementation, or an 
already existing module, to be reused in-house 
from some other program or a commercial 
component.  

• An adaptation is a pair of module instances. The 
pair 〈αX, βY〉 represents that αX is modified to be 
consistent with βY. In practice, this could mean 
anything from introducing some adapter to 
modifying many scattered lines of code 
throughout αX. This is further discussed in xxx 

• A dependency graph captures the structure of a 
system. It is a directed acyclic graph where each 
node in the graph represents a module instance 
and the edges represent dependencies between 
these module instances. An edge αX  βY 
represents that βY provides some service required 
by αX. In Figure 1, we have for example the 
dependencies JMA  EngineA and GMB  GLnew. 
Graphically, nodes with the same module role are 
written together inside a dashed box. 

• A scenario consists of a dependency graph for 
each existing system and a single set of 
adaptations. The dependency graphs must have 
identical module role dependency structures, so 
that for each dependency αX  βY there is a 
dependency αZ  βW in all graphs.  

• The full model consists of a set of scenarios and 
an information database with general information 
related to individual adaptations and development 
of new module instances (including effort 
estimates). This information is not associated with 
a particular scenario, but can be used to derive 
scenario-specific information, e.g. the estimated 
total effort associated with the modifications in a 
given scenario.  We envision that any particular 
project or tool would define its own formats and 
types of information. At the least, there would be 
short textual descriptions of what each adaptation 
means in practice. We can note that a model might 
contain several different new modules for the 

same role α, used in different scenarios, such as 
αnew implementation, αopen source, αcommercial, etc. 

Figure 1 depicts a scenario where the Engine module  
instance from system A and the GM module from 
system B are used in both systems, and a new GL 
module is planned to be developed or acquired and is 
used in both systems. 

3.1.2 Inconsistency 
An inconsistency means that two dependent 

module instances are not functioning together. 
Trivially, two module instances from the same system 
are consistent without further adaptation. Two modules 
from different systems are consistent only if some 
measure has been taken to ensure it, i.e., if either 
module have been modified to work with the other. 

Formally, a dependency from αX to βY is consistent 
if X = Y or if the adaptation set contains 〈αX, βY〉 or 〈βY, 
αX〉. Otherwise, the dependency is inconsistent. 

A scenario is consistent if all dependencies in all 
dependency graphs are consistent. This means that the 
actual systems specified by the graphs are free from 
internal mismatches, provided that the module 
instances are modified according to the action set. 

Example: The scenario in Figure 1 is inconsistent, 
because of the inconsistent dependencies from KMB 
and JMB to EngineA, and from EngineA to GMB. The 
dependencies from GMB to GLnew and from EngineA to 
NMB on the other hand are consistent, as there are 
adaptations 〈GMB, GLnew〉 and 〈NMB, EngineA〉 
meaning that GMB and NMB have been modified to be 
consistent with GLnew and EngineA respectively. 

3.1.3 Scenario Operations 
The following operations can be performed on a 

scenario: 
1. Add or remove an adaptation to/from the 

adaptation set. 
2. Add the module instance αX to one of the 

dependency graphs. For each module role β, such 
that there is a dependency αY  βZ in the graph, a 
dependency αX  βW is added for some βW in the 
graph. 

3. Remove the module instance αX from one of the 
dependency graphs, if there are no edges to αX in 
the graph, and if the graph contains another 
module instance αY (i.e. X≠Y). 

4. Replace the dependency αX  βY by αX  βZ, for 
some βZ  in the graph. 

Note that these operations never change the 
participating module roles of the graph, nor the 
dependencies between them. Note also that we allow 
two or more instances for the same role in a system; 
whether this is suitable for a real system. 



3.2 Suggested Process 
The suggested process consists of two phases, the first 
consisting of two simple preparatory activities, and the 
second being recursive and exploratory.  

3.2.1 Preparatory Phase 
The Preparatory phase consists of two activities:  
P-I: Describe Existing Systems 
P-II: Describe Desired Future Architecture 
Activity P-I: Describe Existing Systems 
First, the dependency graphs of the existing systems 
must be created, and common module roles identified. 
This activity could and should arguably be kept 
informal as it occurs early, meaning that the people 
meet for the first time. We do not suggest any 
particular systematic method to arrive at these 
descriptions.  
Activity P-II: Describe Desired Future Architecture 
The dependency graph of the future system is the 
union of the graphs depicting the existing systems, i.e. 
where each existing role is present and each 
dependency is present. It is assumed that the systems 
show a considerable degree of similarity, so there is no 
need to formalize this further here (this assumption is 
further discussed in section 5.x). 

Not any module instance is desired in the future 
system. For some roles it is imperative to use some 
specific instance (e.g. αX because it is superior to αY, or 
a new implementation αnew because there have been 
problems with the existing αX, αY). For other roles, αX 
might be preferred over αY, but the final choice will 
also depend on other implications of the choice, which 
is not known until different alternatives are explored. 
The result of this activity is an outline of a desired 
future system, with some annotations, that serve as a 
guide during the exploratory phase. 

3.2.2 Exploratory Phase 
Initially, the model contains a single scenario 
corresponding to the structure and contents (?) of the 
existing systems. The exploratory phase can be 
described in terms of four activities, but the order 
between them is not pre-determined. Any activity 
could be performed after any of the others, but they are 
not completely arbitrary. Early in the process, there 
will be an emphasis on activity E-I, where desired 
changes are introduced. These changes will lead to 
inconsistencies that need to be resolved in activity E-
II. As the exploration continues, one wants to branch 
scenarios in order to explore different choices; this is 
done in activity E-III. One also wants to continually 
evaluate the scenarios and compare them, which is 
done in activity E-IV, and towards the end when there 
are a number of consistent scenarios there will be an 

emphasis on evaluating these deliveries of the existing 
systems. It should once again be noted that these 
activities describe high-level things that are often 
useful to do, but nothing prohibits the user from 
carrying out any of the primitive operations defined 
above at any time.  
Activity E-I: Introduce Desired Changes 
Some module instances, desired in the future system, 
should be introduced into the existing systems. In 
some cases, it is imperative where to start (as described 
for activity P-II), and sometimes there might be several 
possible starting points. The choice may e.g. depend 
on the local priorities for each system (e.g. “we need to 
improve the Engine of system A”), and/or some 
strategic considerations concerning how to make the 
envisioned merge succeed (e.g. “the Engine should be 
made a common component as soon as possible”). 
Activity E-II: Resolve Inconsistencies 
As components are exchanged in the graphs, there will 
be mismatches between modules αX  βY that need to 
be resolved. There are three main ways of resolving 
these: 
1. Exchanging either module instance for another by 

combining operations 2, 4 and 3, so that the new 
pair of components are consistent, i.e. either 
exchange αX for αY, or βY for βX. In Figure 1, the 
inconsistent dependency between EngineA and 
GMB could be solved by replacing GMB by GMA. 

2. Modifying either module to be consistent with the 
interface of the other, i.e. adding an adaptation to 
the adaptation set (operation 1). In the example, 
this means adding either the adaptation 〈GMB, 
EngineA〉 or 〈EngineA, GMB〉 to the adaptation set. 
The actual modification could be of many 
different kinds, depending on the system domain 
and the type of module, e.g. adapters, modifying 
lines of source code throughout, etc. This is 
further discussed… This information should be 
added to the model information database for the 
particular adaptation. 

3. To introduce one more module instance for one 
of the roles, to exist in parallel with the existing. 
(This could be suitable for some library with 
many using modules, where using both libraries 
in parallel does not cause any problems. This is 
discussed further in section 5.x.) 

4. Developing a new instance… 
These introduced changes will likely cause new 
inconsistencies that need to be resolved (i.e. this 
activity need to be performed again). 
Activity E-III: Branching Scenarios 
As a scenario is evolved by applying the operations to 
it (most often according to either of the high-level 



approaches of activities E-I and E-II), there will be 
occasions where it is desired to explore two or more 
different choices. For example, two of the ways to 
resolve an inconsistence might make sense, and both 
choices should be explored. It is possible to copy the 
scenario and treat them as branches coming from 
different choices.  

(At this point, it could be noted that we have 
avoided formalizing operations such as create, delete, 
copy, or branch scenarios, because this is not essential 
neither to the model nor the process. In a tool 
implementation, one is free to visualize the 
information for example in several ways,  that 
facilitate the users’ work, .  (unordered) set of 
adaptations as a tree of choices, with some branches.  

 
In the example, …  
 
 

Activity E-IV: Evaluate Scenarios 
As scenarios evolve, they need to be evaluated in order 
to decide which branch to evolve further and which to 
abandon. Towards the end of the process, one 
probably wants to evaluate the final alternatives more 
thoroughly, and compare them. There seems to be at 
least two evaluation criteria for which data can be 
inferred directly from the model: 
1. The actual state of the systems (module instances 

plus the modifications to reduce inconsistencies). 
Do the systems contain many shared modules? 
Are the chosen modules the ones desired for the 
future system (highest quality etc.)? 

2. The work that needs to be done in order to arrive 
at the final scenario, i.e. the sum of all individual 
modification efforts (and new development effort 
for new components). This requires that the effort 
for each adaptation has been added to the 
information database. 

It also becomes possible to extract all information 
entered concerning the adaptations needed, such as 
short notes outlining what each modification means in 
practice, into a draft project plan.  

In addition, it becomes possible to reason about 
how much of the efforts required are “wasted”, that is: 
is most of the effort related to modifications that 
actually lead towards the desired future system, or is 
much effort required to make modules fit only for the 
next delivery and then discarded? 
 
 




