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Faculty of Electrical Engineering and Computing
Department of Electronics, Microelectronics, Computer and Intelligent Systems

A baseline for semi-supervised learning of efficient semantic segmentation models 1 / 14



Overview

• Semi-supervised learning (SSL) is interesting in the dense prediction
context.

• Evaluation on an efficient architecture,

• Enforcement of one-way consistency under photometric and
geometric input perturbations.

• We investigate some consistency training choices.
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SSL with input perturbation consistency
• Enforcement of prediction consistency under different input

perturbations or different model instances.

• Some perturbations are such that the correct output is not invariant
to them.
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One-way consistency

• The student hθ, is trained to be consistent with the teacher hθ′ .
• The simplest algorithm,

• θ′ is an independent copy of θ and
• the student’s input is perturbed.

• Alternative teacher: Mean Teacher pseudo-ensembling [3].

• The memory footprint of supervised training.
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One-way consistency

• Let x be the unlabeled input, hθ the student, hθ′ the teacher, Tτ and
T y
τ the corresponding input and output perturbations, and D a

measure of distance between two distributions.

• Only the blue part of the graph is used for computing the gradient.
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A baseline for semi-supervised learning of efficient semantic segmentation models 5 / 14



One-way consistency

• Let x be the unlabeled input, hθ the student, hθ′ the teacher, Tτ and
T y
τ the corresponding input and output perturbations, and D a

measure of distance between two distributions.

• Only the blue part of the graph is used for computing the gradient.

x

hθ′ T y
τ

Tτ hθ

D(y′, ỹ)
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Our method

• We achieve best results with Mean Teacher (MT) and our
perturbation model (PhTPS) – a composition of a photometric and a
geometric transformation.
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Our method

• We express our consistency loss as mean per-pixel KL-divergence over
valid prediction pixels.

• Since the gradient is not propagated through the teacher and

D(y, ỹ) = IE
y
ln

P(y = y)

P(ỹ = y)
= H ỹ (y)−H(y),

the entropy increasing term −H(y) has no effect on parameter
updates; only the cross-entropy term has an effect.
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Experiments

• For the efficient model, we use SwiftNet-RN18 (SN), which is ∼5×
faster to train in our configurations and ∼12× faster to evaluate than
DeepLabv2 (DL).

• The compared SSL algorithm configurations:
• The teacher can equal the student (simple consistency) or be a ”mean

teacher” (MT).
• The perturbations can be ours (PhTPS) or CutMix. We also test

CutMix with L2 loss and confidence thresholding [1] (CutMix*).
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Half-resolution Cityscapes label subsets
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• SwiftNet-RN18 (solid) is slightly worse than DeepLabv2 (dotted).

• The models behave similarly: PhTPS � CutMix* � supervised.
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• Comparison of SSL configurations under SwiftNet-RN18.

• Mostly PhTPS � CutMix � supervised (maybe MT � simple).
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Comparison of consistency variants

• We compare consistency variants on CIFAR-10 classification and
half-resolution Cityscapes semantic segmentation.

• ”1w” denotes one-way consistency. ”ps”, ”pt”, and ”p2” denote
perturbation of the teacher’s, the student’s, and both inputs.

• ”2w-p1” denotes two-way consistency with 1 input perturbed.

Dataset SSL algorithm sup. 1w-ps 1w-pt 2w-p1 1w-p2

CIFAR-10, 2/25 simple-PhTPS 80.80.4 90.80.3 50.120.1 72.91.0 73.37.0
CIFAR-10, 2/25 MT-PhTPS 80.80.4 90.80.4 80.50.5 - 73.41.4
Cityscapes, 1/4 simple-PhTPS 61.50.5 65.31.9 1.61.0 16.73.0 61.60.5
Cityscapes, 1/4 MT-PhTPS 61.50.5 66.01.0 61.51.4 - 62.01.1

• Only 1w-ps significantly outperforms the supervised baseline.
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input ground truth MT-PhTPS supervised
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Conclusion

• It might be good to consider efficient models for comparison of
semi-supervised semantic segmentation algorithms (∼5× faster
training, ∼12× faster inference).

• Our perturbation model (PhTPS) outperformed CutMix.

• Mean Teacher slightly outperformed simple consistency with our
perturbations.

• One-way consistency with a perturbed student outperformed all
alternative consistency variants.
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