
Scalable Peer-to-Peer Web Retrieval with Highly Discriminative Keys ∗

Ivana Podnar, Martin Rajman, Toan Luu, Fabius Klemm, Karl Aberer
School of Computer and Communication Sciences
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland
firstname.lastname@epfl.ch

Abstract

The suitability of Peer-to-Peer (P2P) approaches for full-
text web retrieval has recently been questioned because of
the claimed unacceptable bandwidth consumption induced
by retrieval from very large document collections.

In this contribution we formalize a novel index-
ing/retrieval model that achieves high performance, cost-
efficient retrieval by indexing with highly discriminative
keys (HDKs) stored in a distributed global index main-
tained in a structured P2P network. HDKs correspond to
carefully selected terms and term sets appearing in a small
number of collection documents. We provide a theoretical
analysis of the scalability of our retrieval model and report
experimental results obtained with our HDK-based P2P re-
trieval engine. These results show that, despite increased
indexing costs, the total traffic generated with the HDK ap-
proach is significantly smaller than the one obtained with
distributed single-term indexing strategies. Furthermore,
our experiments show that the retrieval performance ob-
tained with a random set of real queries is comparable to
the one of centralized, single-term solution using the best
state-of-the-art BM25 relevance computation scheme. Fi-
nally, our scalability analysis demonstrates that the HDK
approach can scale to large networks of peers indexing
web-size document collections, thus opening the way to-
wards viable, truly-decentralized web retrieval.

1. Introduction

Contrarily to traditional information retrieval (IR) sys-
tems that build upon centralized or clustered architectures,
P2P retrieval engines theoretically offer the possibility to
cope with web-scale document collections by distributing

∗The work presented in this paper was carried out in the framework of
the EPFL Center for Global Computing and supported by the Swiss Na-
tional Funding Agency OFES as part of the European FP 6 STREP project
ALVIS (002068)

the indexing and querying load over large networks of col-
laborating peers. However, while P2P distribution results
in smaller resource consumption at the level of individual
peers, there is an ongoing debate about the overall scala-
bility of P2P web search because of the claimed unaccept-
able bandwidth consumption induced by retrieval from very
large document collections. In [7] for example, it is shown
that a naı̈ve use of structured or unstructured P2P networks
for web retrieval leads to practically nonviable systems, as
the traffic generated by such systems would exceed the ca-
pacity of the existing communication networks. Addition-
ally, a recent study [20] has shown that, even when carefully
optimized, P2P algorithms using traditional single-term in-
dexes in structured P2P networks do not scale to web size
document collections. Similarly, even for more sophisti-
cated schemes, such as term-to-peer indexing [5, 4] or hi-
erarchical federated architectures [2, 9], there is little evi-
dence on whether these approaches can scale to web sizes.

The design of scalable models for full-text IR over P2P
networks therefore remains an open issue. We argue that
any solution to this problem should at least verify the fol-
lowing three properties: (1) it should support unrestricted
multi-term queries; (2) it should provide retrieval perfor-
mance comparable to state-of-the-art centralized search en-
gines; and (3) it should scale to very large networks, pos-
sibly consisting of millions of peers. In addition, as the
natural P2P solution for processing document collections
that reach unmanageable sizes is to increase the number of
available peers, we focus on use case scenarios in which the
maximal number of documents each peer contributes to the
global network can be assumed constant which again makes
bandwidth consumption the major concern.

This paper formalizes our novel indexing model (origi-
nally introduced in [13]) that maintains indexing at docu-
ment granularity and is characterized by the following cen-
tral property: We carefully select the keys used for indexing
so that they consist of terms and term sets that are discrimi-
native with respect to the document collection, i.e. appear in
a limited number of documents. Such keys, which may be

seen as highly-selective multi-term queries associated with
precomputed answer sets, enable efficient retrieval because
of the short size of the associated posting lists.

However, as retrieval efficiency often comes at the price
of an increased indexing cost, a theoretical analysis of the
scalability of our indexing/retrieval model is crucial to asses
the feasibility of the proposed approach, in particular, be-
cause the size of the key vocabulary can easily become un-
manageable as it theoretically grows with 2|T |, where |T |
is the size of single-term vocabulary. We therefore per-
form a scalability analysis to demonstrate the viability of
our model and to point out the salient properties that make
it superior to existing alternative solutions. However, as the
theoretical scalability analysis essentially concentrates on
asymptotic properties, it provides few evidence about the
practical feasibility of our approach in more realistic usage
scenarios. In this perspective we have used our P2P retrieval
engine to carry out an experimental study and gather empir-
ical data about our indexing/retrieval method. These exper-
iments confirm that the growth of the key vocabulary, as
well as the size of the global index remain bounded with
realistic upper bounds. Furthermore, the measured retrieval
performance is comparable to the one achieved with a cen-
tralized single-term engine using the best state-of-the-art
BM25 relevance computation scheme. Finally, the analysis
of the total traffic generated during both indexing and re-
trieval demonstrates the potential of the key-based indexing
approach to achieve orders of magnitude traffic reduction.

In summary, the main contributions presented in this
paper are the following: (1) we formalize our index-
ing/retrieval model for full-text P2P search that relies on
global key-to-document indexing to overcome the retrieval
scalability problems encountered by existing solutions with
respect to retrieval costs; (2) we provide a fully worked out
theoretical scalability analysis of the proposed model; (3)
we report experimental results obtained with our distributed
prototype that confirm the practical feasibility of our key-
based approach.

The rest of the paper is structured as follows: Section 2
analyzes related work in the area of full-text IR in P2P net-
works. In Section 3 we present our model and describe the
key-based indexing and retrieval mechanisms. Section 4
presents the scalability analysis, while experimental results
obtained with our truly-distributed prototype implementa-
tion are given in Section 5. Finally, Section 6 provides the
conclusion and sketches out possible future steps.

2. Related Work

There are two architectural concepts for designing P2P
retrieval engines in the area of IR: a) federated engines in
unstructured P2P networks, and b) global inverted index
in structured P2P networks. The first strategy [8] relies

on peers maintaining indexes of their local document col-
lections. Such indexes are in principle independent, and a
query is broadcasted to all the peers generating an enormous
number of messages, while more advanced approaches re-
strict the amount of messages by random walks. The second
strategy [15] distributes the global document index over a
structured P2P network and each peer is responsible for a
part of the global vocabulary and their associated posting
lists. Queries are processed by retrieving posting lists asso-
ciated with query terms from the global P2P index.

A number of solutions have been proposed to cope with
the scalability problem of federated engines using the prin-
ciple of answering a query at two levels, the peer and docu-
ment level. First, a group of peers with potentially relevant
local collections is detected; second, the query is submit-
ted to the identified peers which return answers from their
local indexes; and finally, the retrieved answers are merged
to produce a single ranked answer set. Some engines use
term-to-peer indexing where the indexed units are peers in-
stead of individual documents: PlanetP [5] gossips com-
pressed information about peers’ collections in an unstruc-
tured network, while MINERVA [4] maintains a global in-
dex with peer collection statistics in a structured overlay to
facilitate the peer selection process. Orthogonal solutions
are proposed based on hierarchical P2P overlays where a
backbone P2P network maintains a directory service which
routes queries to peers with the relevant content [8, 9, 3].

Since large posting lists are the major concern of global
single-term indexing, both [15] and [17] have proposed top-
k posting list joins, Bloom filters, and caching as promising
techniques to reduce search costs for multi-term queries.
However, a recent study [20] shows that single-term index-
ing is practically unscalable for web sizes even when so-
phisticated protocols using Bloom filters are combined to
reduce retrieval costs. Distributed top-k approach [2] is a
viable solution for bandwidth scalability, however the open
problem is related to the resulting retrieval performance.
Therefore, our approach comes as a completely novel so-
lution for global document-level indexing in structured P2P
networks. The idea of indexing term sets is somewhat simi-
lar to the set-based vector model [14] that indexes term sets
occurring in queries. In contrast to our indexing scheme,
the set-based model has been used to index frequent term
sets in a centralized setting.

We have presented the general indexing idea and the ar-
chitecture of our P2P retrieval engine in [12], and in this
paper we focus on scalability aspects stressing that the pre-
sented theoretical scalability analysis is among the first in
the field: Currently, the reasoning about system viability
mostly relies on simulations and few comparative analysis
are available. [19], for example, provides a performance
study of structured, unstructured and hierarchical web re-
trieval solutions and reports that in terms of bandwidth the

hierarchical solution performs slightly better than the other
two architectures, but structured P2P offers the best re-
sponse time. In that respect our engine also offers good
response time, while it significantly reduces bandwidth re-
quired for retrieval.

3. Indexing and Retrieving with Highly Dis-
criminative Keys

Let us consider a structured P2P network with N peers
Pi, 1 ≤ i ≤ N and a possibly very large document collec-
tion D, consisting of M documents dj , 1 ≤ j ≤ M . M is
referred to as the size of D, while the total number of term
occurrences denoted by D is referred to as the sample size
of D. Furthermore, T denotes the term vocabulary in D.

In the P2P network, each of the peers Pi plays two roles.
First, Pi stores a fraction of the global document collection
D, denoted by D(Pi). Second, it contributes to build, store,
and maintain the global inverted index that associates in-
dexing features to the documents of D. The fraction of the
global index under the responsibility of Pi consists of all the
keys and associated posting lists (i.e. document references)
that are allocated to Pi by the Distributed Hash Table (DHT)
built by the P2P network.

As far as indexing is concerned, each peer Pi is respon-
sible for two complementary tasks. First, it indexes D(Pi)
by computing the indexing keys and associated posting lists
that can be locally derived from D(Pi) and inserts them into
the global P2P index. Second, Pi is responsible for main-
taining its fraction of the global index. More precisely, Pi

maintains pairs of the form (k, PL(k)), where k is a key
that Pi is responsible for and PL(k) = {dj ∈ D|k ∈ dj} is
the posting list associated with k. Notice that a (k, PL(k))
pair stored in the fraction of the global index under the re-
sponsibility of Pi has no a priori reason to be the one that
Pi extracts from D(Pi).

As far as retrieval is concerned, each peer Pi is responsi-
ble, when receiving a query q, for interacting with the global
network in order to retrieve the list of documents from D
that contain indexing keys that maximally overlap with q.

3.1. Indexing Model

The central principle underlying our indexing model is
quite intuitive and is depicted in Figure 1. Instead of index-
ing with single-terms, which might lead to potentially very
large posting lists as it is the case for the naı̈ve approach,
we index with selected terms and term sets, hereafter called
the keys, that occur in at most DFmax documents, where
DFmax is a parameter of our model. Such keys are discrim-
inative and specific wrt document collection. The crucial
characteristic of this new indexing method is that it leads to
an increase in the total number of indexing features (keys),

but, at the same time, strictly limits the size of the associated
posting lists to DFmax, which bounds the traffic generated
during retrieval. This approach is fully in line with the gen-
eral properties of P2P networks that can easily store large
amounts of data (provided that enough peers are available),
but must be carefully controlled wrt the volume of informa-
tion transmitted between the peers.

However, even if P2P networks can provide very large
storage capabilities, if no special care is taken, the set of in-
dexing keys can still become unmanageable in size. Thus,
the major issue we have to cope with is to find a key com-
putation mechanism which generates key sets of scalable
size, while preserving a good retrieval performance. Such
a key generation mechanism, relying on the combination of
adequately defined key filtering methods, is presented here-
after.

term 1 posting list 1
term 2 posting list 2

term T-1 posting list T-1
term T posting list T

... ...

long posting lists

sm
al

l v
oc

.

key 11 posting list 11
key 12 posting list 12

key 1i posting list 1i

... ...

short posting lists

la
rg

e
vo

c.

PEER 1

...

key N1 posting list N1
key N2 posting list N2

key Nj posting list Nj
... ... PEER N

PEER 1

PEER N

...

HDK approach

Naïve approach

Figure 1. The basic idea of HDK indexing

Definition 1. A key k is defined as any set of terms
{t1, t2, . . . , ts} , ti ∈ T . The set of keys that can be ex-
tracted from a document collection D is denoted by KD (or
simply K), and the number of terms present in a key is re-
ferred to as the size of the key.

Size filtering. As keys can be interpreted as selective
queries associated with pre-computed answer sets, the aver-
age size of a query submitted by users to the retrieval system
is a crucial parameter for our indexing model. For example,
in the case of web retrieval, the current average query size is
estimated to be between 2 and 3 terms. We therefore define
a maximal size smax for the size of the keys to be consid-
ered. Furthermore, limiting the size of the considered keys
does not have any substantial impact on the global indexing
quality because, for a well chosen value of smax, most of
the user queries have a size smaller than or equal to smax,
and for the few queries of size bigger than smax, the re-

trieval mechanism described in Section 3.2 is applied.
Proximity filtering. This filtering method uses the no-

tion of textual context to reduce the number of generated
keys. More precisely, we only keep keys containing terms
that all appear in the same textual context, e.g., the same
sentence, paragraph, or fixed-size document window. The
underlying argumentation is that words appearing close to
each other in documents are good candidates to also co-
occur in queries. For example, the analysis presented in [16]
reports the importance of text passages, considered as more
relevant to user queries than the full documents. A similar
reasoning is used in a recently proposed method for static
index pruning [6] which indexes ‘significant sentences’,
i.e. phrases appearing in similar contexts. In our indexing
model, we use the simplest textual context, a fixed-size win-
dow, and consider as keys only term sets exclusively con-
sisting of terms occurring in a window of size w, where w
is a parameter of our model.

Notice that size and proximity filtering only rely on lo-
cal information, i.e. they do not require the knowledge of
the global document collection. They can therefore be per-
formed fully independently by each peer Pi on its local doc-
ument collection D(Pi). For the rest of this paper, we only
consider terms and term sets that result from size and prox-
imity filtering.

Definition 2. F or any given document collection D, KD,sw

(or simply Ksw) is the set of keys of maximal size smax that
exclusively consist of terms occurring in D within at least
one document window of size w.

Discriminative and non-discriminative keys. Each key
k ∈ Ksw has an associated document frequency dfD(k)
corresponding to the number of documents in the collection
D that contain k in a window of size w. Given a docu-
ment frequency threshold DFmax such that 1 ≤ DFmax ≤
M , we use the key document frequencies to classify the
keys into two distinct categories: discriminative and non-
discriminative keys.

Definition 3. KD,d = {k ∈ Ksw|dfD(k) ≤ DFmax} is
the set of discriminative keys (DKs), i.e. the keys that ap-
pear in at most DFmax documents and therefore have high
discriminative power wrt D.

Definition 4. KD,nd = {k ∈ Ksw|dfD(k) > DFmax}
is the set of non-discriminative keys (NDKs), i.e. the keys
with low discriminative power wrt D.

To simplify the notations, and because our analysis is
focussed on a single collection D, KD,d and KD,nd will be
simply denoted by Kd, and Knd respectively.

Notice that the DKs (resp. NDKs) verify the following
subsumption property: Any key containing a DK of smaller
size is also a DK. Any key contained in an NDK of bigger
size is also an NDK. In addition, for a key to be globally
non-discriminative (i.e. non-discriminative in the global

document collection D), it is sufficient that it is locally non-
discriminative, i.e. that it is non-discriminative in any of
the local document collections D(Pi). These properties are
important for the redundancy filtering method described be-
low.

Redundancy filtering. This filtering method relies on
the subsumption property of the DKs to further reduce the
number of generated keys. If a key k1 contains a DK k2 of
smaller size, then k1 is also discriminative and the answer
set PL(k1), which is contained in PL(k2), can be produced
by local postprocessing of PL(k2). In other words, k1 is
practically redundant with k2 and therefore does not need
to be stored in the global index.

Definition 5. A key k is intrinsically discriminative iff it
is discriminative and all its sub-keys of strictly smaller size
are non-discriminative.

Redundancy-based filtering considers only intrinsically
discriminative keys for indexing. This again strongly re-
duces the number of generated keys, but, due to the sub-
sumption property, fully preserves the indexing exhaustive-
ness, i.e. all the answer sets that can be generated with
an index consisting of DKs can also be generated with an
index restricted to the intrinsically-discriminative keys. In
addition, the notion of intrinsically-discriminative key also
provides a more precise way for defining the smax thresh-
old used for size filtering. Indeed, if we take smax to be
the maximal size of the intrinsically-discriminative key in
D, then it is guaranteed that size filtering also preserves in-
dexing exhaustiveness.

Definition 6. A key k is highly discriminative iff (1) |k| ≤
smax (size filtering); (2) k ∈ Ksw (proximity filtering); and
(3) k is intrinsically discriminative (redundancy filtering).
In the rest of this paper, highly discriminative keys will be
referred to as HDKs.

Notice that HDKs verify the following central property:
Any key that is locally highly-discriminative (i.e. highly-
discriminative in any of the local document collections
D(Pi)) is, either globally highly-discriminative, or globally
non-discriminative.

Computing the global index. The goal of the indexing
algorithm is to produce, for any given global document col-
lectionD split over N peers, all the keys that are either glob-
ally non-discriminative, or globally highly-discriminative,
and to associate with them the corresponding global post-
ing lists. Full posting lists are stored for HDKs, while the
posting lists for NDKs are truncated to their top-DFmax

best elements.
Since the indexing process is computationally intensive,

peers share the indexing load to collaboratively build the
global index. Each peer Pi performs its local indexing in
several iterations, starting by computing single-term keys,
then 2-term keys, . . ., and finally smax-term keys. For any

current key-size s, Pi computes its local HDKs and NDKs
of size s and inserts them in the global network, along with
the associated local posting lists.

At the global level, the P2P network maintains the global
posting lists, i.e. updates the top-DFmax posting lists for
the NDKs if necessary, and, if any of the inserted HDKs
become globally non-discriminative, notifies the peers that
have submitted such key so that they start expanding the
key with additional terms to produce new HDKs of bigger
size. The computation of the local size-s HDKs only re-
quires knowledge about the global document frequencies of
the local size 1 and size (s − 1) NDKs, as these are the
only ones required for the size s key generation. The global
knowledge about HDK and NDK document frequencies is
maintained in the global P2P index. As the number of lo-
cal NDKs is very small wrt to the number of local HDKs,
this guarantees the computational efficiency of our indexing
algorithm. Further details about the computational mecha-
nism and a formal algorithm are provided in [12].

3.2. Retrieval Model

The general idea behind our retrieval mechanism is to
consider each of the queries q = {t1, t2, . . . , t|q|}, where |q|
is the size of the query and ti ∈ T , as a document collection
consisting of a unique document (the query itself), and to
apply a procedure very similar to the previously described
indexing mechanism to identify, in the lattice of query term
combinations, the term sets corresponding to global HDKs
or NDKs. For the identified keys, the associated postings
are retrieved from the global index, and are merged (sim-
ple set union) into a single posting list that is subsequently
ranked using our distributed ranking implementation.

More precisely, the retrieval mechanism might in theory
require the exploration of (

(|q|
1

)
+

(|q|
2

)
+. . .+

(|q|
smax

)
) query

term subsets. In practice, due to the smart use of the HDK
and NDK related subsumption properties and to the quite
limited size of the queries submitted by the users in the case
of web retrieval, the number of messages generated during
retrieval remains in fact very limited and fully scalable.

4. Scalability analysis

To assess the scalability of the HDK approach, we ana-
lyze the indexing and retrieval costs in terms of the number
of transmitted postings in the peer network because these
make the dominant part of the generated traffic. We are
interested in the upper bound on the number of postings as-
sociated with the HDK index that have to be transmitted
through the network during indexing, and the number of
postings transmitted during retrieval. To simplify the analy-
sis, we do not analyze the total traffic between the peers re-
lated to P2P network maintenance and routing, and merely

analyze the number of postings the network needs to ab-
sorb and transmit to examine whether the approach has the
potential to scale in P2P overlays.

4.1. Indexing Scalability

The indexing scalability is evaluated for document col-
lection D of total size D when varying the size of collec-
tion sample l, 1 ≤ l ≤ D. We assume documents from D
are concatenated and l counts the number of first term oc-
currences in D. The scalability analysis is based on term
frequency distributions instead of document frequency dis-
tributions because they are currently well explored in the
literature [1]. Term frequency distributions can be used to
estimate the size of the positional index which gives in turn
the upper bound of the document index size created by our
indexing model.

Rare, frequent, and very frequent keys. Each key
k ∈ K has an associated collection frequency fD(k) cor-
responding to the number of occurrences of k in the whole
collection D. Given the two frequency thresholds Ff and
Fr such that 1 ≤ Fr ≤ Ff ≤ D, we use key frequencies
to classify the keys into three distinct categories: the set of
rare, frequent, and very frequent keys defined as follows:

Definition 7. KD,r = {k ∈ K|fD(k) ≤ Fr} is the set of
rare keys; i.e. keys that occur less that Fr times in D.

Definition 8. KD,f = {k ∈ K|Fr < fD(k) ≤ Ff} is the
set of frequent keys; i.e. keys that are frequent but do not
occur more than Ff times in D.

Definition 9. KD,vf = {k ∈ K|fFf <D(k)} is the set of
very frequent keys; i.e. keys that occur more that Ff times
in D.

To simplify the notation, KD,r, KD,f , and KD,vf are
denoted by Kr, Kf , and Kvf respectively. By definition,
dfD(k) ≤ fD(k) and thus we have the following property.

Corollary 1. If DFmax = max [dfD(k)|k ∈ Kr], then all
rare keys are discriminative and Kr ⊆ Kd.
Proof. As ∀k ∈ Kr, dfD(k) ≤ DFmax, all rare keys are
discriminative by Definition 3.

Zipf model. Zipf law constitutes a parametric function
family that provides good fitting function candidates for
the approximation between the term frequencies and term
ranks, where a rank of a term t in collection D is defined
as the number of distinct terms in D having a collection
frequency larger than fD(t) [1]. The quality of the zip-
fian approximations is usually increasing with the size of
the collection D. More formally, for a zipf function with a
skew a and a scale C, the collection frequency of a term t
with a zipf rank r is approximated by z(r) = C · r−a. In
addition, as the standard zipfian assumption is that the scale
parameter depends on the size of the collection while the

rf1 rr1rf2 rr2
r

Fr

Ff

z�r�

Figure 2. Zipf function

skew does not, for any term t ∈ D, if r(t, l) is the collection
rank of t within the collection sample of size l, we can write
fD(t, l) ≈ zD(r(t, l)) = C(l) · r−a.

Figure 2 depicts two zipf functions with a = 1.5 mod-
eling frequency distributions for two sample sizes. Ff and
Fr are independent of collection size and determine the val-
ues of term ranks rf and rr, rf ≤ rr, that change when
increasing l. It is visible that rf1 < rf2 and rr1 < rr2 as
l1 < l2.

Key occurrence probabilities. As we define DFmax to
be max [dfD(k)|k ∈ Kr], by Corollary 1 all rare keys are
discriminative. The worst case scenario for our analysis is
when Kr = Kd and Kf = Knd, since all frequent keys
are non-discriminative and can be expanded to create new
HDKs of bigger size. Furthermore, we perform the scala-
bility analysis using collection frequencies instead of doc-
ument frequencies because, although the HDK index asso-
ciates postings to documents, the size of the positional index
gives an upper bound on the HDK index size. First we esti-
mate occurrence probabilities for very frequent and frequent
terms using the zipf function.

Theorem 1. The probability of very frequent term occur-
rences PD,vf (l) for document collection D depends on l
and can be calculated as

PD,vf(l) =
1 − Ff

C(l)

a−1
a

1 − 1
C(l)

a−1
a

. (1)

The analysis of Equation 1 shows that PD,vf depends on
l and when l → D, Pvf depends strongly on Ff

C(l) . The
probability of very frequent term occurrence may be ex-
tremely high for very large document collections and we
therefore do not use very frequent terms for building the key
vocabulary. Very frequent terms are further on disregarded
from our analysis.

Theorem 2. The probability of frequent term occurrences
PD,f is a characteristic constant of document collection D,

i.e. it does not depend on l and can be calculated as

PD,f =
1 − Fr

Ff

a−1
a

1 − 1
Ff

a−1
a

. (2)

The analysis of Equation 2 shows that PD,f depends on
the two constants Ff and Fr, and the skew parameter a, but
it does not depend on C(l). Therefore, PD,f is independent
of sample size and the growing collection size because the
skew factor a converges to a constant value when l → D.
The probability of rare term occurrences PD,r = 1 − PD,f

analogously does not depend on l.
The analysis of term occurrence probabilities reveals an

interesting property: The occurrence probability of both
rare and frequent terms is independent of collection size
and converges to a constant value for large document col-
lections. However, the occurrence probability of very fre-
quent terms does depend on l and may become very large:
Therefore, we are removing an increasing number of very
frequent terms from T when building the key vocabulary
following the common practice from the IR domain of re-
moving stop words. In our case the set of stop words de-
pends on the constant Ff and increases with l.

The presented occurrence probabilities are related to
single-term keys, K1, and to simplify the notation we de-
note PD,f as Pf,1. The zipf law can also be used to model
frequency distributions for keys of size s, Ks, that have an
associated skew parameter as. The associated key occur-
rence probability for frequent keys of size s, Pf,s is a func-
tion of the skew parameter as that varies for keys of differ-
ent sizes.

Estimating index size. Here we want to estimate the
upper bound on the positional index size ISs(D) for doc-
ument collection of size D associated with both rare and
frequent keys of size s because it is the upper bound of
the HDK and NDK index size. For K1 we have IS1 ≤∑

k∈K1
fD(ki) = D, and IS1

D ≤ 1. To estimate the in-
dex size associated with Ks, we assume the independency
of frequent term co-occurrence when estimating the num-
ber of combinations of s frequent terms within a window of
size w.

Theorem 3. The index size ISs(D) associated with HDKs
and NDKs of size s can be estimated as

ISs(D) = D · P 2
f,(s−1) ·

(
w − 1
s − 1

)
. (3)

Thus, ISs(D)
D = c, where c is a constant that can be es-

timated based on the parameters of our model (w, Ff and
DFmax) and the skew parameter as that describes the doc-
ument collection. This shows that the key-based index size
grows linearly with the collection size. Assuming that the
collection growth implies an increasing number of peers

Table 1. Wikipedia statistics
total number of documents M 653,546

size in words D 3 million words
average document size 225 words

where the size of the collection stays constant, the index
size per peer will remain constant. Furthermore, it is possi-
ble to estimate c and the upper bound on the size of the peer
index as shown in Section 5.

4.2. Retrieval Scalability

As our retrieval model applies a rather simple procedure,
the scalability wrt retrieval is bounded by Dmax and the
number of keys a query is mapped to. For a query of size
|q| in case |q| ≤ smax the number of keys that are mapped
to a query is nk = 2|q| − 1, while if |q| > smax the number
of keys is nk =

(|q|
smax

)
+

(|q|
smax−1

)
+ ... +

(|q|
1

)
. The up-

per bound on the generated traffic is therefore nk · DFmax.
Since the values for smax and |q| are typically low for web
queries, the true upper bound is relatively small. For ex-
ample, the average size of a query is 2.3 in the Wikipedia
query log, and nk ≈ 3.92. The experimental results pre-
sented in Section 5 show that the retrieval traffic is indeed
small and scalable compared to distributed single-term in-
dexing which grows for an increasing document collection
size due to unbounded posting list sizes.

5. Experimental evaluation

Experiments have been performed using our prototype
retrieval engine built on top of the P-Grid P2P layer [18].
Our implementation is a fully-functional P2P retrieval en-
gine that integrates a solution for distributed maintenance of
global key vocabulary with associated document frequen-
cies, calculates HDKs used for indexing in a completely
distributed fashion, stores posting lists in the global index
for computed keys, and integrates a solution for distributed
content-based ranking [10].

Experimental setup. The experiments were carried out
using a subset of documents from the Wikipedia collabo-
rative encyclopedia1 randomly distributed over the peers.
Wikipedia is chosen for its availability of content and a large
user base which represents a good case study for the web.
The collection statistics are listed in Table 1.

Performance analysis. The experiments investigate in-
dexing and retrieval costs, and compare the retrieval perfor-
mance achieved by our P2P engine to the one obtained by
a centralized single-term engine using the BM25 relevance
scheme. To simulate the evolution of a P2P system, i.e.

1http://www.wikipedia.org/, available for download from
http://download.wikimedia.org/

Table 2. Parameters used in experiments
number of peers N 4, 8, . . ., 28
documents per peer 5,000

size in words l 1,123,000 per peer
DFmax 400 and 500

Ff 100,000
w 20

smax 3

peers joining the network and increasing the document col-
lection, we started the experiment with 4 peers, and added
additional 4 peers at each new experimental run. The total
of 28 peers running on Linux RedHat PCs with 1GB of main
memory and connected via 100 Mbit Ethernet were used in
the experiments. The prototype system is implemented in
Java. All documents are pre-processed: First we remove
250 common English stop words and apply the Porter stem-
mer, and then we removed additional very frequent terms.
The parameters used in the experiments are listed in Table 2.

Indexing. To quantify indexing costs and the influence
of DFmax on required storage and bandwidth consumption,
we investigate the average number of postings stored per
peer (Figure 3) and the average number of postings inserted
by a peer into the global index (Figure 4), and compare it to
the size of the single-term index. Both curves are increas-
ing for the HDK approach since the document collection
sizes in our experiment are rather small, but are expected
to reach a constant value as predicted by the scalability
analysis. It is visible that a peer stores significantly more
postings associated with HDKs when compared to single-
term indexing (13.9 times more for 140,000 documents and
DFmax = 400), however the increased indexing costs are
still reasonable. The HDK index size can be reduced when
increasing DFmax because the HDK indexing is approach-
ing single-term indexing. In case when DFmax would be
equal to the maximum posting list size of a single-term in-
dex, the two indexing models would produce equal indexes.
However, an increased value of DFmax causes higher traf-
fic during retrieval and therefore must be carefully chosen
to reflect the networking conditions and P2P engine usage
model. The number of inserted postings per peer is larger
than the number of stored postings because the P2P index
stores top-DFmax postings associated with NDKs to im-
prove the retrieval performance. This puts an overhead on
the required bandwidth because all peers publish their lo-
cally produced top-DFmax postings associated with NDKs.

Figure 5 shows the ratio between locally calculated and
inserted postings associated with keys of different sizes and
D, and is used for comparison with the theoretical scala-
bility analysis. The largest part of the index is currently
associated with K2, while the index size associated with
K3 is slowly growing and is expected to be more signifi-
cant for larger collection size. The curves confirm our find-

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

20000 40000 60000 80000 100000 120000 140000

#Documents

#P
o

st
in

g
s

ST DFmax=500 DFmax=400

Figure 3. Stored postings per
peer (index size)

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

20000 40000 60000 80000 100000 120000 140000

#Documents

#P
o

st
in

g
s

ST DFmax=500 DFmax=400

Figure 4. Inserted postings
per peer (indexing costs)

0

1

2

3

4

5

6

7

8

9

10

0 20000 40000 60000 80000 100000 120000 140000 160000

#Documents

IS1/D

IS2/D

IS3/D

IS/D

Figure 5. Ratio between in-
serted IS and D

ing presented in Section 4.1 that IS1
D ≤ 1 while IS2

D and
IS3
D are still growing to reach the constant value for very

large D. Using Equation 3, the maximal estimated value
for IS2

D is 12.16 (a1 = 1.5 is fitted from true frequency
distribution, and Pf,1 = 0.8) and the estimated value for
IS3
D is 11.35 (a2 = 0.9 and Pf,2 = 0.257). Values ob-

tained experimentally are 6.26 and 2.82 respectively. Large
differences between estimated and experimentally obtained
values are due to the fact that estimated values are large
overestimations because they are based on the positional
index size, while experiments are performed on relatively
small collection sizes where the percentage of keys of size
3 is still rather small. Nevertheless, the analysis shows that
the generated indexing traffic associated with the HDK ap-
proach can be at most 40.7 times bigger than the one associ-
ated with single-term indexing for very large D (single-term
indexing produces on average 130 postings per Wikipedia
document compared to 5290 postings per document by the
HDK indexing).

Retrieval. To evaluate the retrieval performance, queries
were extracted from a true Wikipedia query log available for
2 months (08/2004 and 09/2004). We have chosen 3,000
queries from 2,000,000 unique queries that have produced
more than 20 hits from the indexed collection. The ex-
tracted queries contain on average 3.02 terms, with a min-
imum of 2 and maximum of 8 terms. Single term queries
were not considered because they would generate bounded
traffic associated with NDKs.

Figure 6 shows an enormous reduction of bandwidth
consumption per query of the HDK-based approach com-
pared to the naı̈ve single term indexing. The retrieval traffic
per query induced by the naı̈ve single-term indexing grows
linearly when increasing the document collection size and
the P2P network size, while it remains almost constant for
the HDK-based approach with a slightly larger traffic for
DFmax = 500. As the major costs are associated with re-
trieval due to high query frequency, the significant traffic re-
duction compared to distributed single-term indexing prac-
tically demonstrates the effect of the bounded number of
index postings to bandwidth consumption during retrieval.

The essential question remains whether the retrieval per-
formance of the HDK approach is satisfactory and compa-
rable to centralized counterparts. Due to the lack of relevant
judgment for the used query set, we have compared the re-
trieval performance to a centralized engine2 with BM25 rel-
evance computation scheme which is currently considered
as one of the top performing relevance schemes [11].

Figure 7 presents the overlap on top-20 documents re-
trieved by the HDK-based system and the centralized search
engine. We are interested in the high-end ranking as typi-
cal users are often interested only in the top 20 results. The
comparison shows significant and satisfactory overlap be-
tween the retrieved result sets. As expected, the retrieval
performance is similar to single-term indexing for larger
values of DFmax. There is obviously a trade-off between
retrieval quality and bandwidth consumption of our index-
ing strategy because an increased value of DFmax results
in an increased bandwidth consumption during retrieval,
while on the contrary, offers retrieval performance that bet-
ter mimics centralized engines. However, as bandwidth is
the major obstacle for scalable traffic consumption, it is vi-
tal to choose an adequate value for DFmax taking into ac-
count available network capacity.

To investigate the profitability of the HDK-based index-
ing, we have plotted in Figure 8 the predicted generated traf-
fic associated with both indexing and retrieval comparing
the naı̈ve single-term and HDK-based approach. The calcu-
lation assumes that indexing is done monthly and the corre-
sponding query load per month is 1.5 · 106 (corresponds to
the true number of queries from the query log). The analy-
sis shows that for the whole Wikipedia collection (653,546
documents), the HDK approach would generate 20 times
less traffic than the distributed single-term approach, while
for 1 billion documents the ratio is around 42. Moreover,
as the number of queries is expected to grow for web sizes,
this ratio would be significantly larger and in favor of the
HDK approach.

2Terrier search engine, http://ir.dcs.gla.ac.uk/terrier/

0.0E+00

5.0E+03

1.0E+04

1.5E+04

2.0E+04

2.5E+04

60000 80000 100000 120000 140000

#Documents

#P
o

st
in

g
s

ST HDK,DFmax=500 HDK, DFmax=400

Figure 6. Number of re-
trieved postings per query

0

10

20

30

40

50

60

70

80

90

100

60000 80000 100000 120000 140000

#Documents

O
ve

rl
ap

[%
]

ST HDK,DFmax=500 HDK, DFmax=400

Figure 7. Top-20 overlap with
BM25 relevance scheme

0

5E+13

1E+14

1.5E+14

2E+14

2.5E+14

0.E+00 2.E+08 4.E+08 6.E+08 8.E+08 1.E+09

#Documents

#P
o

st
in

g
s

HDK

single-term

Figure 8. Estimated total
generated traffic

6. Conclusion

We have presented a formal key-based model for full-
text document retrieval within structured P2P networks.
This model allows distributed cost-efficient and high per-
formance retrieval as it is confirmed by the presented ex-
perimental results showing that our approach achieves a re-
trieval quality (top-k precision) comparable to the standard
single term approach with the best state-of-the-art BM25
relevance computation scheme. The experiments carried
out with our truly-distributed prototype provide further ev-
idence that the proposed method is practically viable in
large-scale distributed environments and that it produces in-
dexes of realistic size. More importantly, the theoretical
scalability analysis proves that, due to its cost-efficient re-
trieval mechanism, our approach has the potential to scale to
very large document collections distributed over large num-
bers of peers. Finally, our model makes it possible to take
into account the characteristics of the used document col-
lection, the nature of the targeted usage model (e.g. the
planed frequency of indexing and querying), and the net-
work related capacity constraints, and can adequately adapt
the various parameters of the model in order to meet desired
indexing and retrieval traffic requirements.

Although an operational fully distributed prototype has
already been designed and tested [10], a number of open is-
sues still need to be investigated in more detail: the HDK
generation process might integrate more semantics about
the indexing keys in order to further reduce the size of
the produced global index; the parameters of the model
might be more adaptive in order to flexibly take into ac-
count changes in the working environment of the prototype;
finally, the used distributed ranking procedure might be ex-
tended to incorporate more sophisticated, especially query-
independent ranking schemes.

In conclusion, we believe that our model and the asso-
ciated prototype convincingly demonstrate that P2P web-
scale retrieval is feasible and hope that our work will con-
tribute to the progress in a domain that is generally recog-

nized as crucial for the development of less centralized and
therefore more user-centered information dissemination and
management techniques.

References

[1] R. H. Baayen. Word Frequency Distributions. Dordrecht,
Kluwer Academic Publishers, 2001.

[2] W. Balke, W. Nejdl, W. Siberski, and U. Thaden. Progres-
sive distributed top-k retrieval in peer-to-peer networks. In
Proceedings of the 21st International Conference on Data
Engineering (ICDE 2005), 2005.

[3] W.-T. Balke, W. Nejdl, W. Siberski, and U. Thaden. DL
Meets P2P - Distributed Document Retrieval Based on Clas-
sification and Content. In 9th European Conference on
Research and Advanced Technology for Digital Libraries,
(ECDL), pages 379–390, 2005.

[4] M. Bender, S. Michel, P. Triantafillou, G. Weikum, and
C. Zimmer. Improving collection selection with over-
lap awareness in P2P search engines. In Proceedings
of the 28th Annual International ACM SIGIR Confer-
ence of Research and Development In Information Re-
trieval(SIGIR’05), pages 67–74, 2005.

[5] F. M. Cuenca-Acuna, C. Peery, R. P. Martin, and T. D.
Nguyen. PlanetP: Using Gossiping to Build Content Ad-
dressable Peer-to-Peer Information Sharing Communities.
In 12th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-12). IEEE Press,
June 2003.

[6] E. S. de Moura, C. F. dos Santos, D. R. Fernandes, A. S.
Silva, P. Calado, and M. A. Nascimento. Improving web
search efficiency via a locality based static pruning method.
In Proceedings of the 14th International Conference on
World Wide Web, pages 235–244, 2005.

[7] J. Li, B. Loo, J. Hellerstein, F. Kaashoek, D. Karger, and
R. Morris. The feasibility of peer-to-peer web indexing
and search. In Peer-to-Peer Systems II: 2nd International
Workshop on Peer-to-Peer Systems (IPTPS), pages 207–215,
2003.

[8] J. Lu and J. Callan. Content-based retrieval in hybrid peer-
to-peer networks. In Proceedings of the 12th International
Conference on Information and Knowledge Management,
2003.

[9] J. Lu and J. Callan. Federated search of text-based digital
libraries in hierarchical peer-to-peer networks. In Advances
in Information Retrieval, 27th European Conference on IR
Research (ECIR), pages 52–66, 2005.

[10] T. Luu, F. Klemm, I. Podnar, M. Rajman, and K. Aberer.
ALVIS Peers: A Scalable Full-text Peer-to-Peer Retrieval
Engine. In Workshop on Peer-to-Peer Information Retrieval
(P2PIR 2006), ACM 15th Conference on Information and
Knowledge Management Workshops, pages 41–48, Novem-
ber 2006.

[11] V. Plachouras, B. He, and I. Ounis. University of Glasgow
at TREC2004: Experiments in Web, Robust and Terabyte
tracks with Terrier. In Proceeddings of the 13th Text RE-
trieval Conference (TREC 2004), 2004.

[12] I. Podnar, T. Luu, M. Rajman, F. Klemm, and K. Aberer. A
Peer-to-Peer Architecture for Information Retrieval Across
Digital Library Collections. In European conference on re-
search and advanced technology for digital libraries (ECDL
2006), pages 14–25, September 2006.

[13] I. Podnar, M. Rajman, T. Luu, F. Klemm, and K. Aberer. Be-
yond term indexing: A P2P framework for web information
retrieval. Informatica, 2(30):153–161, 2006.

[14] B. Pôssas, N. Ziviani, J. Wagner Meira, and B. Ribeiro-
Neto. Set-based vector model: An efficient approach for
correlation-based ranking. ACM Trans. Inf. Syst., 23(4):397–
429, 2005.

[15] P. Reynolds and A. Vahdat. Efficient Peer-to-Peer Keyword
Searching. Middleware03, 2003.

[16] G. Salton, J. Allan, and C. Buckley. Approaches to Passage
Retrieval in Full Text Information Systems. In Proceedings
of the 16th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages
49–58, 1993.

[17] T. Suel, C. Mathur, J.-W. Wu, J. Zhang, A. Delis, M. Khar-
razi, X. Long, and K. Shanmugasundaram. ODISSEA: A
Peer-to-Peer Architecture for Scalable Web Search and In-
formation Retrieval. WebDB’03, 2003.

[18] The P-Grid Consortium. The P-Grid project, 2005.
http://www.p-grid.org/.

[19] M. R. Yong Yang, Rocky Dunlap and B. F. Cooper. Perfor-
mance of Full Text Search in Structured and Unstructured
Peer-to-Peer Systems. In IEEE INFOCOM, April 2006.

[20] J. Zhang and T. Suel. Efficient query evaluation on large tex-
tual collections in a peer-to-peer environment. In P2P ’05:
Proceedings of the Fifth IEEE International Conference on
Peer-to-Peer Computing (P2P’05), pages 225–233, Wash-
ington, DC, USA, 2005. IEEE Computer Society.

Appendix

Theorem 1. Proof.

Pvf (l) = P {ti|z(ti, l) > Ff} =

∑rf

r=1
z(r, l)∑T

r=1
z(r, l)

(4)

If we approximate the sum with an integral of the function
z(r, l), Pvf (l) can be computed as

Pvf (l) =

∫ rf

1
C(l) · r−adr∫ T

1
C(l) · r−adr

. (5)

As term frequency distributions are characterized by the pres-
ence of large numbers of terms with very low probabilities of oc-
currence [1], we can disregard hapax legomena in

∫ T

1
C(l)·r−adr

and approximate it by
∫ T ′

1
C(l) · r−adr, where T ′ is the rank of

the first hapax legomena, i.e. z(T ′, l) = 1. Therefore,

Pvf (l) =
r
(1−a)
f − 1

T ′(1−a) − 1
. (6)

Using the inverse Zipf function z−1(y, l) =
[

C(l)
y

] 1
a , the

probability of very frequent terms can be computed as

Pvf (l) =
1 − Ff

C(l)

a−1
a

1 − 1
C(l)

a−1
a

. (7)

Theorem 2. Proof. Ignoring both very frequent terms and ha-
pax legomena we have

Pf =
r
(1−a)
r − r

(1−a)
f

T ′(1−a) − r
(1−a)
f

=
1 − Fr

Ff

a−1
a

1 − 1
Ff

a−1
a

. (8)

Theorem 3. Proof. Let us estimate postings associated with K2.
In the first window w ∈ D, the expected number of frequent term
occurrences is Pf,1 ·w while the number of keys of size s = 2 that
can be generated from the window is

(
Pf,1·w

s

)
. The created 2-term

keys are not necessarily distinct, and therefore we are counting the
number of all 2-term keys occurrences (i.e. size of the positional
index). By sliding the window one position further, new keys can
be generated that consist of the new right-most term, provided that
this term is frequent, and frequent terms appearing in any of the
(w− 1) remaining positions in the window. The expected number
of newly created keys is P 2

f,1 ·(w−1). There are (D−w) windows
when successively shifting the original window by one position to
the right and the expected number of 2-term postings that can be
generated is

IS2(D) =

(
Pf,1 · w

s

)
+ (D − w) · P 2

f,1 · (w − 1) (9)

As D � w, (9) can be simplified to

IS2(D) = D · P 2
f,1 · (w − 1). (10)

Analogously, for index sizes ISs(D), we investigate the num-
ber of postings created by sliding the window. Notice that for
building keys of size s we are using 2 overlapping frequent keys
of size s− 1. The new right-most term creates

(
w−1
s−2

)
keys of size

s − 1 with terms from the previous (w − 1) positions, while the
expected number of frequent ones is Pf,(s−1)

(
w−1
s−2

)
. These keys

are combined with (s−1)-size keys built from (w−1) terms with
an addition condition: they have to overlap on s − 2 terms. There
are (w − 1) − (s − 2) such keys per each newly-created key, and
the total number is

(
w−1
s−2

)
· (w−1)−(s−2)

s−1
=

(
w−1
s−1

)
. The expected

index size for Ks is therefore

ISs(D) = D · P 2
f,(s−1) ·

(
w − 1

s − 1

)
. (11)

