# Deep generative networks for anomaly detection from ultrasound images of materials



Fran Milković, mag. ing.

mentor: Prof. Marko Subašić, PhD University of Zagreb Faculty of Electrical Engineering and Computing

# 1. Introduction

# **Ultrasonic testing (UT)**

- Type of non-destructive evaluation
- Advantages: simplicity, efficiency, reliability, precision
- Main drawback: vast amounts of generated data
- "SmartUTX" project:
  - "Smart" artificial intelligence and advanced image processing techniques
  - "UT" ultrasonic testing
  - "X" extreme conditions





# 2. Problem Description

#### **Defects**

- Hard to distinguish from noise and geometry signals
- Very rare, vary in size and intensity -> traits of anomalies

#### Anomaly (defect) detection (AD)

- Unsupervised or semi-supervised **using only normal images**, i.e., the ones without defects
- Creating representations of "normality" to detect anomalies

   ¬ generative networks

# 3. Methodology

#### Variational autoencoder (VAE)

- Trained to reconstruct the input
- Also learns a latent representation of the input based on a set of normal (Gaussian) distributions  $\rightarrow \mu_z$  and  $\sigma_z$
- AD criteria reconstruction quality and deviations from ideal distributions -> anomalies should stand out
- Adding another encoder at the VAE output and training it to give the same representation as the first encoder creates new criteria [1]
  - Differences between input and reconstruction encodings



Architecture of the VAE with an additional encoder

# Normalizing flow (NF)

- Performs density estimation → used for AD
- Uses bijective transformations (e.g., '+' and '·') to reduce input distributions to normal distributions in the output
- Trained by maximizing log-likelihood

$$p_X(\boldsymbol{x}) = p_Z(\boldsymbol{z}) \left| \det \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{x}} \right| \qquad \log p_X(\boldsymbol{x}) = \log p_Z(\boldsymbol{z}) + \log \left| \det \frac{\partial \boldsymbol{z}}{\partial \boldsymbol{x}} \right|$$

 Significant reduction in model size and using simpler feature extractors improve AD



NF's AD pipeline and architecture of one coupling block

#### 4. Results

## **VAE**

| AUC-ROC values [%] for used AD criteria |                             |                             |                              |                              |  |
|-----------------------------------------|-----------------------------|-----------------------------|------------------------------|------------------------------|--|
| Reconstruction error                    | μ <sub>z</sub><br>deviation | σ <sub>z</sub><br>deviation | μ <sub>z</sub><br>difference | σ <sub>z</sub><br>difference |  |
| 01101                                   | deviation                   | deviation                   | difference                   | difference                   |  |
| 54.39                                   | 59.35                       | 58.32                       | 69.37                        | 63.2                         |  |

The additional encoder gives significantly better criteria because it makes excellent use of the information present in the reconstructions.

#### NF

| AUC-ROC values [%] for state-of-the-art methods |       |           |        |  |
|-------------------------------------------------|-------|-----------|--------|--|
| GANomaly                                        | PaDiM | DifferNet | Our NF |  |
| 73.0                                            | 81.9  | 74.8      | 82.8   |  |

The multi-input NF achieves higher results than state-of-the-art AD methods [2]. NFs have already proven to be good AD methods, but the simplifications we introduced gave a model adapted to the relatively simple structures seen in UT data.

## 5. Conclusion

Generative methods have previously already shown their applicability in AD. Anomalies in ultrasound images of materials pose a difficult problem, even for such methods. Our proposed modifications improve their results and reliability, as well as reduce computational requirements.

## Acknowledgments

This research was done in cooperation with Inetec d.o.o. as a part of the SmartUTX IRI project, partially funded by the European regional development fund.

References

[1] F. Milković et al., Ultrasound Anomaly Detection Based on Variational Autoencoders, 12th ISPA, Zagreb, Croatia, 2021, https://doi.org/10.1109/ISPA52656.2021.9552041.
[2] L. Posilović et al., Deep learning-based anomaly detection from ultrasonic images, Ultrasonics 124, 2022, https://doi.org/10.1016/j.ultras.2022.106737

Contact

Fran Milković, mag. ing. fran.milkovic@fer.hr