

Distributed Polling System
Error Handling Strategy

Version 1.0

Distributed Polling System – Error Handling Strategy 1

0BDocument Purpose
Purpose of this document is to design and formulate DPS error handling strategy at middleware
layer to provide robust, reliable, guaranteed message delivery and easy maintenance.
We have segregated synchronous and asynchronous type of interfaces and we will specify
treatment for each type of interfaces.

1BSome Basic Rules
1. A business process generally includes two or more applications.
2. Error handling strategy depicted here is at very high level.
3. By synchronous request from Web-DPS, we mean the whole business process is invoked

synchronously from source.
4. By Asynchronous request from Web-DPS, we mean the whole business process is invoked

asynchronously from source and within that business process there might be synchronous calls to
each target application.

5. If member selects ‘SMS’ first preference then ‘Email’ second way of intimation and vice-versa.
6. Middleware won’t modify any data, If any failure occurs due to data (ex: corrupted data sent from

source, mismatched data format between source and target application requirement and so on), it’s
the application responsibility to modify and retrigger

7. Retry timing can be decided as per agreement
8. Technical Error is the error due to unavailability of the technical infrastructure like database

failure, network down, server down and so on.
9. Functional error is the error due to mismatched expectation between applications - like target

application expects a parameter as date-time format(11-11-2008 08:02:55) whereas source
application sends only date(11-11-2008), or some new parameter has been configured in source
application due to business needs whereas target application has not configured that parameter and
causes unknown data at target system.

10. For synchronous requests (end-to-end I,e source to target via middleware) initiated from source,
we assume if source has X time unit as time-out period, middleware should have Y time-unit for
time-out (this includes both target API invoke) where X > Y.
So middleware will be able to respond back to source within X time-unit.

11. Although we have depicted here the error handling strategy for Web-DPS Middleware SMS
Gateway and Email server, where Web-DPS application is the originator, the other interfaces
initiated from SMS Gateway and Email server, will be treated in the similar manner.

12. We have represented here target application shortly as ‘SMS Gateway/Email Server’, but these are
two different applications and the error handling treatment is the same.

Distributed Polling System – Error Handling Strategy 2

Table of Contents

UDocument PurposeU ... 2

USome Basic RulesU... 2

U1.U USynch Request from Web-DPS (Technical Error)U .. 4

U1.1U UWeb-DPS failed to invoke middleware service (Tech-Syn-001)U 4

U1.2U UMiddleware failed to invoke target system API (Tech-Syn-002)U 5

U1.3U UMiddleware failed to receive response from target application (Tech-Syn-003)U............. 6

U1.4U UWeb-DPS failed to receive response from Middleware (Tech-Syn-004)U 7

U2.U USynch Request from Web-DPS (Functional Error)U ... 8

U2.1U UWeb-DPS receives validation (Functional) error from middleware (Func-Syn-005)U 8

U2.2U UWeb-DPS receives functional error from target application (Func-Syn-006)U.................. 9

U3.U UAsync Request from Web-DPS (Technical Error)U... 10

U3.1U UMiddleware failed to connect to source application (Tech-Asyn-007)U 10

U3.2U UMiddleware failed to connect to target (Tech-Asyn-008)U .. 11

U3.3U UMiddleware failed to receive response from target application (Tech-Asyn-009)U......... 12

U3.4U UMiddleware failed to update response at Web-DPS (Tech-Asyn-010)U 13

U4.U UAsync Request from Web-DPS (Functional Error)U ... 14

U4.1U USiebel receives validation (Functional) error from middleware (Func-Asyn-011)U 14

U4.2U UWeb-DPS receives functional error from target application (Func-Asyn-012)U 15

Distributed Polling System – Error Handling Strategy 3

Following (Section-1 and 2) are the scenarios, where there is synchronous invoke of middleware
service using XML over HTTP or SOAP over HTTP from Web-DPS.

1. 2BSynch Request from Web-DPS (Technical Error)
1.1 6BWeb-DPS failed to invoke middleware service (Tech-Syn-001)

Figure 1-1: Web-DPS failed to invoke exposed middleware service

This is the scenario, if we finalize XML over HTTP or SOAP over HTTP from Web-DPS to
middleware.

Failure Scenario Handling Strategy

Web-DPS is unable to invoke exposed
middleware service

• Web-DPS will retry for a predefined number of times
with a specified interval.

• If still unable to invoke, Web-DPS will raise an alert
(through email) to maintenance support group for
further action.

Distributed Polling System – Error Handling Strategy 4

1.2 7BMiddleware failed to invoke target system API (Tech-Syn-002)

 Figure 1-2: Middleware failed to invoke target system API

Failure Scenario Handling Strategy

Middleware is unable to invoke any of the
target system as per user’s first preference
- SMS Gateway or Email server
API(Sync Request).
Info: User can specify in Web-DPS
system as SMS first preference or Email
as fisrt preference

• As per business rules, middleware will initially invoke
API of SMS Gateway or Email server (as per user’s
first preference).
If middleware is unable to invoke the first target
application, then middleware will invoke the second
target application

• Status of invoking 2nd target application will be
responded back to Web-DPS application

Middleware is unable to invoke both
SMS Gateway and Email server
API(Sync Request).

• As per business rules, middleware will initially invoke
API of SMS Gateway or Email server (as per user’s
first preference).
If middleware is unable to invoke the first target
application, then middleware will invoke the second
target application.
If still unable to invoke any of the two target
applications, will raise an alert to support group through
email.

• Middleware will respond back to Web-DPS application
as failed to invoke both target.

Distributed Polling System – Error Handling Strategy 5

1.3 8BMiddleware failed to receive response from target application (Tech-
Syn-003)

Figure 1-3: Middleware failed to receive response from target

Failure Scenario Handling Strategy
Web-DPS receives time-out response from middleware
due to transaction-time out set at middleware layer.

Desc: Web-DPS has sent a request to middleware
and middleware has forwarded the request to first
target application. But middleware does not receive
response from first target application within
transaction timeout period Specified at middleware
layer. (might be due to network failure).
Then middleware will retry (if designed that way)
else will try for the second target application in the
similar way.
Eventually, middleware does not receive response
from the second application too.

Steps:
1. Web-DPS Middleware
2. Middleware first Target Application
3. Middleware does not receive response from

first target app
4. Middleware retries first target for few

predefined configured number of times (if
designed)

5. Now middleware invokes 2nd target app, as it
failed to inform customer through first target
middleware second target

6. If middleware receives success from 2nd
target, will respond back to Web-DPS

7. else if does not receive response also from 2nd
target, will retry, and once the time-out
period set at middleware layer is reached ,
will respond back to Web-DPS.

• Web-DPS will retry for this Sync
request (as middleware intimated Web-
DPS that from both target application
middleware did not receive any
response).

• During retry, if the last request in target
application was processed successfully,
middleware will receive response as
duplicate from target and will return
SUCCESS to Web-DPS.

Note: Need to verify how duplicate
verification can be performed at each target
application.

Distributed Polling System – Error Handling Strategy 6

1.4 9BWeb-DPS failed to receive response from Middleware (Tech-Syn-004)

 Figure 1-4: Web-DPS failed to receive response from Middleware

Failure Scenario Handling Strategy

Web-DPS synchronous request timed-out, due to not
receiving response from middleware (might be due to
network failure).
Desc: Web-DPS has sent a synchronous request to
middleware and middleware has interacted with target
applications. Whatever might be the response of
middleware for handling target applications, middleware
has responded back to Web-DPS.
But Web-DPS has not received synchronous response
(might be due to network failure).

• Web-DPS will retry (re-send the same
request).

• Middleware will maintain the status of
previous request and using some key
value, middleware will identify this as
duplicate and will return back the actual
response.

Distributed Polling System – Error Handling Strategy 7

2. 3BSynch Request from Web-DPS (Functional Error)
2.1 10BWeb-DPS receives validation (Functional) error from middleware (Func-

Syn-005)

Figure 2-1: Web-DPS receives validation (Functional) error from middleware

Failure Scenario Handling Strategy
Web-DPS receives response from middleware as
functional error.
Desc: Web-DPS has sent a request to middleware and
after initial validation at middleware layer (like
mandatory fields missing), middleware finds out
validation error and responds back to Web-DPS as
functional error.

• If modifications required at Web-DPS
end on data, poll creator can modify the
data using Web-DPS screen and resend
to middleware for re-processing.

• If any modifications required at
middleware end, middleware will
update accordingly and later inform
Web-DPS to resend the request.

Distributed Polling System – Error Handling Strategy 8

2.2 11BWeb-DPS receives functional error from target application (Func-Syn-
006)

Figure 2-2: Web-DPS receives functional error from target application

Failure Scenario Handling Strategy

Web-DPS receives functional error response returned by
target application.
Desc: Web-DPS has sent a request to middleware and
middleware has forwarded to target applications. But
target applications returns functional error and
middleware responds back to Web-DPS as functional
error.

• If modifications required at Web-DPS
application end, poll creator can modify
the data using Web-DPS screen for all
functional error out transactions and
resend to middleware for re-processing.

• If any modifications required at target
application end, target application will
update accordingly and later inform
Web-DPS to resend the request.

Distributed Polling System – Error Handling Strategy 9

If we choose JDBC adapter communication approach, then middleware needs to communicate with
Web-DPS application database with pull mechanism (called database polling), instead of Web-DPS
pushing the interface.

3. 4BAsync Request from Web-DPS (Technical Error)
3.1 12BMiddleware failed to connect to source application (Tech-Asyn-007)

Figure 3-1: Middleware failed to connect to Web-DPS

Failure Scenario Handling Strategy
Middleware is unable to connect to Web-DPS
database to process request.
Desc: Web-DPS has triggered an
asynchronous request to middleware-polling-
table residing in Web-DPS database and
middleware is unable to connect to Web-DPS
database to process that request.

• Middleware will retry for a predefined number of times
with a specified interval.

• After the maximum number of retries from
middleware, middleware will raise an alert (email) to
support group for further action to be taken.

Middleware is unable to connect to Web-DPS
database to archive a request (middleware has
already picked up from Web-DPS database).
Desc: Web-DPS has triggered an
asynchronous request to middleware-polling-
table residing in Web-DPS database and
middleware has picked up that request from
Web-DPS database to process that request.
Now after initial validation of the request
message at middleware layer, while going to
archive that event at Web-DPS database,
middleware is not able to connect.

• Middleware will retry for a predefined number of times
with a specified interval.

• After the maximum number of retries from
middleware, middleware will raise an alert (email) to
support group for further action to be taken.

• Middleware will proceed to interact with target
applications (SMS Gateway and Email).

Distributed Polling System – Error Handling Strategy 10

3.2 13BMiddleware failed to connect to target (Tech-Asyn-008)

 Figure 3-2: Middleware failed to connect to target application

Although the whole business process is asynchronous, still the call to SMS Gateway or Email
server is synchronous.

Failure Scenario Handling Strategy

Middleware is unable to invoke any of the
target application as per user’s first preference
- SMS Gateway or Email server API.
Info: User can specify in Web-DPS system as
SMS first preference or Email as first
preference

• As per business rules, middleware will initially
invoke API of SMS Gateway or Email server (as per
user’s first preference).
If middleware is unable to invoke the first target
application, then middleware will invoke the second
target application

• Status of invoking 2nd target application will be
updated back at Web-DPS application
asynchronously.

Middleware is unable to invoke both SMS
Gateway and Email server.

• As per business rules, middleware will initially
invoke API of SMS Gateway or Email server (as per
user’s first preference).
If middleware is unable to invoke the first target
application, then middleware will invoke the second
target application.
If still unable to connect to the two target applications,
will raise an alert (email) to support group through
email.

• Middleware will update status in Web-DPS
application database as failed to connect to both
target.

• middleware needs to store the event for future
resubmission

• Once the problem is rectified, the event needs to be
resubmitted from middleware layer

Distributed Polling System – Error Handling Strategy 11

3.3 14BMiddleware failed to receive response from target application (Tech-
Asyn-009)

 Figure 3-3: Middleware failed to receive response from target

Failure Scenario Handling Strategy

Web-DPS database table (Status Column) is updated with
‘Failed to receive response from both SMS Gateway and
Email’

Desc: Middleware has picked up an event from
Web-DPS database table and after initial validation,
forwarded the same to first target application (as per
member’s first preference). But middleware does
not receive response from first target application
within transaction timeout period Specified in
middleware. (might be due to network failure).
Then middleware will retry (if designed that way)
else will try for the second target application in the
similar way.
Eventually, middleware does not receive response
from the second application too.

Steps:
8. Web-DPS Middleware (asynch)
9. Middleware first Target (synch)

Application
10. Middleware does not receive response from

first target app
11. Middleware retries first target for few

predefined configured number of times (if
designed)

12. Now middleware invokes 2nd target app, as it
does not know the status of intimating
member through first target application
middleware second target (sync)

13. Again, if it does not receive response also
from 2nd target, will retry, and once the time-
out period set at middleware layer is reached,

• As middleware is unaware of the request
status from both the application, middleware
needs to store that event for future
resubmission.

• Middleware will raise an alert (email) to
support group

• Once the problem is rectified, the event needs
to be resubmitted from middleware with the
initial preferred way of communication
medium.

Distributed Polling System – Error Handling Strategy 12

will update status back at Web-DPS.

Web-DPS database table (Status Column) is updated with
‘Intimated member through second application medium’

Desc: Middleware has picked up an event from
Web-DPS database table and after initial validation,
forwarded the same to first target application (as per
member’s first preference). But middleware does
not receive response from first target application
within transaction timeout period Specified in
middleware. (might be due to network failure).
Then middleware will retry (if designed that way)
else will try for the second target application in the
similar way.
Eventually, middleware succeeds to intimate
member through second preferred medium of
communication.

Steps:
14. Web-DPS Middleware (asynch)
15. Middleware first Target (synch)

Application
16. Middleware does not receive response from

first target app
17. Middleware retries first target for few

predefined configured number of times (if
designed)

18. Now middleware invokes 2nd target app, as it
failed to intimate member through first target
middleware second target (sync)

19. Now, middleware receives success from 2nd
target, updates Web-DPS database table
status column accordingly (asynchronously)

• Middleware does not need to store this
event for resubmission as it’s a success

• Updates the Web-DPS table accordingly

3.4 15BMiddleware failed to update response at Web-DPS (Tech-Asyn-010)

 Figure 3-4: Middleware failed to update response at Web-DPS

Distributed Polling System – Error Handling Strategy 13

Failure Scenario Handling Strategy

Middleware failed to update final response back
at Web-DPS database table (might be due to
network failure).
Desc: Middleware has picked up an event from
Web-DPS database table and interacted with the
target applications (as per member’s preference).
But while middleware is updating the final status
back at Web-DPS, it failed (might be due to
network failure)

• Middleware will retry.
• Middleware needs to store that event for future

resubmission.
• Middleware will raise an alert (email) to support

group
• Once the problem is rectified, the same event needs to

be resubmitted from middleware layer.

4. 5BAsync Request from Web-DPS (Functional Error)
4.1 16BSiebel receives validation (Functional) error from middleware (Func-

Asyn-011)

Figure 4-1: Web-DPS receives validation (Functional) error from middleware

Failure Scenario Handling Strategy

Web-DPS database table (status column) updated
with the response from middleware as functional
error.
Desc: Middleware has picked up an event from
Web-DPS database polling-table and after initial
validation at middleware layer (like mandatory
fields missing), middleware finds out validation
error. Middleware updates archive table status
column as functional error.

• If modifications required at Web-DPS end, poll
creator can modify the data using Web-DPS screen
and resend to middleware for re-processing.

• If any modifications required at middleware end,
middleware will update accordingly and later
inform Web-DPS to resend the request.

Distributed Polling System – Error Handling Strategy 14

4.2 17BWeb-DPS receives functional error from target application (Func-Asyn-
012)

Figure 4-2: Web-DPS receives functional error from target application

Failure Scenario Handling Strategy
Web-DPS receives functional error response
returned by target application.
Desc: Middleware has picked up an event from
Web-DPS database polling-table and after initial
validation at middleware layer (like mandatory
fields missing), middleware forwards the request
to target application. Target application returns
functional error and middleware updates the
same at Web-DPS application archive database
table (status column).

• If modifications required at Web-DPS application
end, poll creator can modify the data using Web-
DPS screen for functional error out transaction and
resend to middleware for re-processing.

• If any modifications required at target application
end, target application will update accordingly and
later inform Web-DPS to resend the request.

Distributed Polling System – Error Handling Strategy 15

	Document Purpose
	Some Basic Rules
	1. Synch Request from Web-DPS (Technical Error)
	1.1 Web-DPS failed to invoke middleware service (Tech-Syn-001)
	1.2 Middleware failed to invoke target system API (Tech-Syn-002)
	1.3 Middleware failed to receive response from target application (Tech-Syn-003)
	1.4 Web-DPS failed to receive response from Middleware (Tech-Syn-004)

	2. Synch Request from Web-DPS (Functional Error)
	2.1 Web-DPS receives validation (Functional) error from middleware (Func-Syn-005)
	2.2 Web-DPS receives functional error from target application (Func-Syn-006)

	3. Async Request from Web-DPS (Technical Error)
	3.1 Middleware failed to connect to source application (Tech-Asyn-007)
	3.2 Middleware failed to connect to target (Tech-Asyn-008)
	3.3 Middleware failed to receive response from target application (Tech-Asyn-009)
	3.4 Middleware failed to update response at Web-DPS (Tech-Asyn-010)

	4. Async Request from Web-DPS (Functional Error)
	4.1 Siebel receives validation (Functional) error from middleware (Func-Asyn-011)
	4.2 Web-DPS receives functional error from target application (Func-Asyn-012)

