
UNIVERSITY OF ZAGREB
MÄLARDALEN UNIVERSITY

COMPONENT-BASED DEVELOPMENT FOR
SOFTWARE AND HARDWARE

COMPONENTS

Luka Lednicki

Zagreb, May 2008

Table of Contents

1 Introduction...1
2 Universal Plug and Play...2

2.1 UPnP protocol stack...3
2.2 Elements of UPnP architecture...4

2.2.1 Devices..4
2.2.2 Services...4
2.2.3 Control points...4

2.3 Steps of UPnP networking...5
2.3.1 Addressing...5
2.3.2 Discovery...6
2.3.3 Description...7
2.3.4 Control...10
2.3.5 Eventing...10
2.3.6 Presentation...11

2.4 Problems with UPnP architecture...12
2.4.1 Lack of authentication..12
2.4.2 Use of UDP multicast..12
2.4.3 Protocol complexity...12

3 Component-based development.....................................14
3.1 Basic concepts..15

3.1.1 Components..15
3.1.2 Interfaces...16
3.1.3 Contracts...16
3.1.4 Component model...17
3.1.5 Component framework..17

3.2 Component-based development process..18
3.2.1 Component development process...18
3.2.2 System development process...18

3.3 Component-based development for embedded systems......................20
3.3.1 Main issues..20

3.4 The SaveComp Component Model...21
3.4.1 Components..21
3.4.2 Switches..21
3.4.3 Composite components...22
3.4.4 Assemblies...22
3.4.5 Ports..22
3.4.6 Component execution..23

4 UComp – Combining CBD and UPnP.............................24
4.1 UComp architecture...25

4.1.1 Framework and containers..26
4.1.2 Components..27
4.1.3 UPnP components...27
4.1.4 Software components..28
4.1.5 Composite components...30

4.1.6 Ports..30
4.1.7 Component execution..33
4.1.8 Development of new software components..33

4.2 Visual development tool..38
4.2.1 Tool-bar..38
4.2.2 Component tree...40
4.2.3 Development panel..41

4.3 UComp file format...43
4.4 Mapping between UComp and SaveCCM...46

4.4.1 Main differences between models...46
4.5 Testing results...48

4.5.1 Development process..48
4.5.2 False expiration of UPnP devices...48
4.5.3 Component execution time..48
4.5.4 Serial vs. parallel execution of UPnP components...............................48

4.6 Possibilities for improvement...50
4.6.1 Adding semantic information to UPnP device description.....................50
4.6.2 Implementing component hierarchy..50
4.6.3 Storing UPnP device descriptions...50
4.6.4 Changing the control protocol...50
4.6.5 Testing the devices that are about to expire..51

5 Conclusion..52
6 Bibliography..53
7 Abstract / Sažetak...54
8 List of abbreviations...55

1 Introduction

1 Introduction
Today we are witnesses to growing integration of computers into our

environment. Such embedded devices often have the possibility to connect to
TCP/IP networks which are standard in today's computing. This allows the devices
to be connected in an easy and economic way. Distributed systems built in such a
way can range from devices connected by a local network to devices scattered
over the globe communicating via the Internet. One of the technologies that can be
used for connecting network-enabled devices is Universal Plug and Play (UPnP).
It allows distributed devices to be discovered, described, controlled and their state
monitored.

Rapid development of embedded computers leads to increasing complexity of
embedded systems. Standard development models have difficulties keeping up
with such complex systems: their development becomes too costly and time
consuming, or produced systems are unreliable and unpredictable. In search for a
better development process, component-based development (CBD) asserts itself
as an obvious choice. It is a concept well proven and widely used in electronic
engineering. It is also increasingly used in software engineering. Use of CBD in
building embedded systems is still in its early stages, mainly because of the strict
constraints this systems face.

The aim of this thesis is to create a simple component model for developing
distributed embedded systems using UPnP technology and explore the
characteristics of that model.

1

2 Universal Plug and Play

2 Universal Plug and Play
Universal Plug and Play (UPnP) is a technology that defines an architecture for

seamlessly connecting different network devices.
The term UPnP is derived from Plug and Play (PnP), a technology that enables

dynamically connecting peripherals to a personal computer, without requiring
reconfiguration or manual installation of device drivers. UPnP takes the idea of
PnP and generalizes it (therefore the 'Universal' in the name) to enable
cooperation of any two devices connected to a computer network without any
manual configuration by the user. The technology enables network devices to be
discovered, describe their capabilities, be controlled and exchange information
with other network devices. All this is done by defining a set of protocols for
communication between devices, leaving the networking media independent.
UPnP devices can be implemented using any programming language and on any
operating system.

The development of UPnP architecture is controlled by UPnP Forum. UPnP
Forum is an industry initiative designed to enable simple and robust connectivity
among consumer electronics, intelligent appliances and mobile devices from many
different vendors. It consists of more than eight hundred vendors.

2.1 UPnP protocol stack
The UPnP protocol stack is based on well known and standardized Internet

protocols. This allows UPnP to be used on today's standard TCP/IP networks. The
advantage of this is that there is no need to building separate network
infrastructure for connecting the devices. It also enables UPnP technology to run
on many media that support IP.

Using these protocols also makes building distributed systems composed of
UPnP devices much easier because they can communicate over the Internet.
Although multicast messages used in UPnP discovery will most likely be blocked
by Internet routers, the problem can be solved using hardware or software to
create a Virtual Private Network (VPN) between distributed sites.

2

2 Universal Plug and Play

Because all the networking protocols are based on HTTP and XML, UPnP can
easily be extended by adding new information, without affecting its standard
behavior.

2.2 Elements of UPnP architecture
Two general classifications of entities are defined by UPnP architecture:

controlled devices (or simply “devices”) and control points. A UPnP entity can also
be a combination of the two, it can implement both a device and a control point.

2.2.1 Devices
A device is a component of UPnP network that provides services. A device

functions in the role of a server, responding to requests from control points.
Because UPnP architecture defines protocols for communication between

UPnP entities, and not their implementation (API), any network device or
application that adheres to UPnP device protocol is also a UPnP device.
Consequence of this is that, for an example, UPnP-enabled network router and a
desktop application that implements UPnP device stack are equally worth UPnP
devices, and can be discovered, described, and controlled in the same way.

2.2.2 Services
Every UPnP device provides one or more services. A service represents a set of

functionalities of a device. Every service is defined by its actions and a table of
state variables.

An action is a command that the service responds to. Actions can have input
and output arguments.

State variable table lists the variables that model the state of a service.

3

Figure 2.1: UPnP protocol stack [1].
IP

UDP TCP

HTTPMU HTTPU HTTP

SSDP SOAP GENA

UPnP Device Architecture

UPnP Forum

UPnP vendor

2 Universal Plug and Play

2.2.3 Control points
A control point functions in the role of a client. It discovers UPnP devices on the

network and utilizes their services.
When a control point discovers a device it can:

● request the device description,
● request a description of a service provided by the device,
● control the device by executing its actions,
● subscribe to the events of a service provided by the device and receive
notifications when the state of the service changes.

2.3 Steps of UPnP networking
UPnP networking is divided in six steps [1].

● Step 0, addressing, step in which the device acquires an IP address.
● Step 1, discovery, in which a control point discovers devices that are
available on the network.
● Step 2, description, in which the control point learns more about a
device and its capabilities.
● Step 3, control, enables the control points to control the devices it
discovers.
● Step 4, eventing, enables the devices to provide information about their
state to control points.
● Step 5, presentation, can be used to provide the control point with a
HTML page which can be used to control and/or view the state of the
device.

4

Figure 2.2: Steps of UPnP networking [6].

0. Addressing

1. Discovery

2. Description

3. Control 4. Eventing 5. Presentation

2 Universal Plug and Play

2.3.1 Addressing
Addressing is Step 0 of UPnP networking [1]. Through addressing, devices get

a network address.
The foundation of UPnP networking is IP addressing. Each UPnP device which

does not itself implement DHCP server must have a DHCP client and search for a
DHCP server when the device is connected to the network (if the device itself
implements DHCP server, it may allocate itself an address from the pool it
controls). If the DHCP server is available (the network is managed) the device
must use the IP address assigned to it. If no DHCP server is available (the network
is unmanaged) the device must use automatic IP addressing (Auto-IP) to obtain an
address. A device that has auto-configured IP address must periodically check for
existence of a DHCP server.

Once a device has a valid IP address for the network, it can be located and
referenced on that network through that address. There may be situations where
the end user needs to locate and identify a device. In this situations, a friendly
name for the device is much easier for a human to use than an IP address. If a
UPnP device chooses to provide a host name to a DHCP server and register with
a DNS server, the device should either ensure that the requested host name is
unique or provide a means for the user to change the host name. Most often,
UPnP devices do not provide a host name, but provide URLs using literal
(numeric) IP addresses.

2.3.2 Discovery
Discovery is step 1 of UPnP networking [1]. For discovery, UPnP uses protocol

know as SSDP (Simple Service Discovery Protocol).
When a device is added to the network, SSDP allows that device to advertise

itself, any embedded devices it contains and its services to control points on the
network. It also periodically re-advertises itself to confirm its presence on the
network.

Similarly, when a control point is added to the network, the discovery protocol
allows that control point to search for devices of interest on that network. The
control point can search for all devices on the network, a specific device defined
by its Unique Device Name, just a specified device type or just a specified service
type.

In all cases, the device sends a discovery message containing few, essential
specifics about the device or one of its services, e.g., its type, identifier, and a
pointer to more detailed information.

To send messages, HTTPMU protocol is used, which stands for “HTTP over
UDP (multicast)”. HTTP messages are sent over UDP protocol to multicast
address and port 239.255.255.250:1900. Any network devices listening for that
multicast address and port receives the messages.

Using multicast UDP makes the discovery protocol very simple, but it also has
its drawbacks. UDP does not guarantee reliability in the way that TCP does. UDP

5

2 Universal Plug and Play

messages (datagrams) may go missing without notice. This is why UPnP
recommends sending each discovery message more than once.

2.3.3 Description
Description is step 2 of UPnP networking [1].
After a control point has discovered a device, the control point still knows very

little about the device. For control point to learn more about the device and its
capabilities or to interact with the device, it must retrieve the device's description
from the URL provided by the device in the discovery message.

Device description
The description for a device is expressed in XML and includes vendor-specific,

manufacturer information like the model name and number, serial number,
manufacturer name, URLs to vendor-specific Web sites, etc. The description also
includes a list of any embedded devices or services, as well as URLs for control,
eventing and presentation. Every service device offers has its separate
description. URLs to that descriptions are given in the service list of device
description.

<?xml version="1.0"?>
<root xmlns="urn:schemas-upnp-org:device-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <URLBase>base URL for all relative URLs</URLBase>
 <device>
 <deviceType>urn:schemas-upnp-org:device:deviceType:v</deviceType>

6

Figure 2.3: UPnP messaging during discovery [1].

Control point 1

Control point 2

Control point 3

Root device 1

Root device 2

Service

Service

Service

Device
Service

advertise

advertise

m
ul

tic
as

t

search

search

advertise

responses (unicast)

advertise

search

2 Universal Plug and Play

 <friendlyName>short user-friendly title</friendlyName>
 <manufacturer>manufacturer name</manufacturer>
 <manufacturerURL>URL to manufacturer site</manufacturerURL>
 <modelDescription>long user-friendly title</modelDescription>
 <modelName>model name</modelName>
 <modelNumber>model number</modelNumber>
 <modelURL>URL to model site</modelURL>
 <serialNumber>manufacturer's serial number</serialNumber>
 <UDN>uuid:UUID</UDN>
 <UPC>Universal Product Code</UPC>
 <iconList>
 <icon>
 <mimetype>image/format</mimetype>
 <width>horizontal pixels</width>
 <height>vertical pixels</height>
 <depth>color depth</depth>
 <url>URL to icon</url>
 </icon>
 XML to declare other icons, if any, go here
 </iconList>
 <serviceList>
 <service>
 <serviceType>urn:schemas-upnp-
org:service:serviceType:version</serviceType>
 <serviceId>urn:upnp-org:serviceId:serviceID</serviceId>
 <SCPDURL>URL to service description</SCPDURL>
 <controlURL>URL for control</controlURL>
 <eventSubURL>URL for eventing</eventSubURL>
 </service>
 Declarations for other services defined by a UPnP Forum working
committee (if any) go here
 Declarations for other services added by UPnP vendor (if any) go here
 </serviceList>
 <deviceList>
 Description of embedded devices defined by a UPnP Forum working
committee (if any) go here
 Description of embedded devices added by UPnP vendor (if any) go here
 </deviceList>
 <presentationURL>URL for presentation</presentationURL>
 </device>
</root>

Code 2.1: Device description template [1].

7

2 Universal Plug and Play

Service description
For each service, the description includes a list of actions the service responds

to, input and output arguments for each action, and a list of state variables. These
variables model the state of the service at run time, and are described in terms of
their data type, range and event characteristics.

<?xml version="1.0"?>
<scpd xmlns="urn:schemas-upnp-org:service-1-0">
 <specVersion>
 <major>1</major>
 <minor>0</minor>
 </specVersion>
 <actionList>
 <action>
 <name>actionName</name>
 <argumentList>
 <argument>
 <name>formalParameterName</name>
 <direction>in xor out</direction>
 <retval />
 <relatedStateVariable>stateVariableName</relatedStateVariable>
 </argument>
 Declarations for other arguments defined by UPnP Forum working
committee (if any) go here
 </argumentList>
 </action>
 Declarations for other actions defined by UPnP Forum working committee
(if any) go here
 Declarations for other actions added by UPnP vendor (if any) go here
 </actionList>
 <serviceStateTable>
 <stateVariable sendEvents="yes">
 <name>variableName</name>
 <dataType>variable data type</dataType>
 <defaultValue>default value</defaultValue>
 <allowedValueList>
 <allowedValue>enumerated value</allowedValue>
 Other allowed values defined by UPnP Forum working committee (if
any) go here
 </allowedValueList>
 </stateVariable>
 <stateVariable sendEvents="yes">
 <name>variableName</name>
 <dataType>variable data type</dataType>
 <defaultValue>default value</defaultValue>
 <allowedValueRange>
 <minimum>minimum value</minimum>
 <maximum>maximum value</maximum>
 <step>increment value</step>
 </allowedValueRange>
 </stateVariable>
 Declarations for other state variables defined by UPnP Forum working
committee (if any) go here
 Declarations for other state variables added by UPnP vendor (if any) go
here
 </serviceStateTable>
</scpd>

Code 2.2: Service description template [1].

8

2 Universal Plug and Play

2.3.4 Control
Control is step 3 of UPnP networking [1]. Through control, control points can

send actions to device's services and query the services state variables.

Invoking actions
To invoke an action to a device's service, control point needs to send control

message to the control URL of the service. Control messages are expressed in
XML using Simple Object Access Protocol (SOAP). In the message, action name
and values for the input arguments of the action are sent to the service. As the
result of the action, service responds with a message containing output arguments
of the action. If the action failed, a message containing error code and description
is returned.

Query for state variables
Using control, control points can also query service's state variables. When

control point sends a query message to the service specifying a state variable,
service returns a message with the current value of that variable.

2.3.5 Eventing
Eventing is step 4 of UPnP networking [1]. Eventing enables control points to

receive notifications when a state variable changes its value. Eventing messages
are built upon General Event Notification Architecture (GENA) and XML.

Subscription
If a control point wants to be notified when service's state variables are

changed, it needs to subscribe to the events of that service. It does that by
sending subscription message to the service's event notification URL (which is
defined in the device description). Service then returns a message with information
whether the subscription was accepted or not, and a subscription ID along with the
expiration time if the subscription was accepted. If the subscription was accepted,
service also sends initial event notification with values of all evented state
variables. Control point needs to send re-subscription message before the
expiration time to renew subscription or the service will cancel the subscription
upon expiration.

If a control point does not want to receive notification messages it needs to
send an “unsubscribe” message to the service's event notification URL or wait
while the subscription expires.

Event notification
Whenever an evented state variable changes its value, service sends

notification message containing the new value to all subscribed control points.
Whether a state variable is evented or not is defined in the state variable list of the
service description.

9

2 Universal Plug and Play

All notification messages contain their sequence number so the control point
can detect if any notification message is missing.

2.3.6 Presentation
Presentation is step 5 of UPnP networking [1].
If a device has a URL for presentation, then the control point can retrieve a

page from this URL, load the page into a browser, and depending on the
capabilities of the page, allow a user to control the device and/or view device
status. The degree to which each of these can be accomplished depends on the
specific capabilities of the presentation page and device.

2.4 Problems with UPnP architecture
Although UPnP has done much to enable simple connectivity of devices, there

are still some open issues, which can present mild or severe problems, depending
on the configuration and purpose of the system.

Among the biggest of these issues are:
● lack of authentication,
● use of UDP multicast,
● protocol complexity.

2.4.1 Lack of authentication
The UPnP architecture does not implement any authentication [7]. It assumes

that all devices connected to the network are trustworthy and are not infected with
any malicious software. This problem can be resolved by implementing custom
authentication mechanisms, or the standardized Device Security Service on the
devices, but since these protocols are quite complex, very little devices do this.
Routers and firewalls running the UPnP Internet Gateway Device (IGD) protocol
(allowing retrieval of the external IP address, enumeration of the existing port
mappings, and adding/removing port mappings) are vulnerable to attacks since
the framers of the protocol omitted to add any standard authentication method.

2.4.2 Use of UDP multicast
In step 1 of UPnP networking, discovery, UDP multicast messages are used by

the devices to advertise themselves to control points, and by control point to
search for devices connected to the network. UDP is a connectionless protocol,
and does not guarantee reliability like TCP does. Datagrams may arrive out of
order, appear duplicated or go missing without notice. The last can cause
problems in UPnP networking. If notification message advertising a device
disappears, control point may not detect that a new device is connected to the
network, or conclude that a device is no longer available. Similarly, if a device
misses a control point's search message, it will not respond to that message,

10

2 Universal Plug and Play

causing the control point not to discover that device. There is no solution to this
problem, and only improvement can be done by, as the UPnP architecture
suggests, sending messages over UDP more than once.

2.4.3 Protocol complexity
To achieve openness and better standardization, UPnP uses standard Internet

protocols and protocols based on XML. Although these can be viewed as
lightweight for modern personal computers, they are still pretty complex for small
and embedded devices. Since these devices are of biggest interest to the UPnP
networking, that can represent a problem.

Tests of the implementation of UPnP device stack were made on RCM2200
network microcontroler with a CPU clock rate of 22.1 MHz, 256 KB of flash
memory and 128 KB of ram memory. The stack took nearly 150 KB of the flash
memory. Average of execution time of action invocations (from the time the
invocation was sent to the time the response was received by the control point)
was between 100 and 250 ms.

11

3 Component-based development

3 Component-based development
Component-based development (CBD) is a concept well known (almost

inevitable) and proven in development of hardware systems. It is based on
developing complex systems out of smaller, well defined components. Although
the use of CBD principles in developing software has advanced in the last decade,
Component-based software engineering (CBSE) still has a lot of room for
improvement.

Main goals of CBD are [8] [9]:
● reuse of components, thus shortening time-to-market of new systems,
● making the systems easier to maintain and upgrade by making their
components easily replaceable and deployable,
● making the system development easier and more reliable by predicting
system properties from the properties of its components.

3.1 Basic concepts
In CBD systems are built by combining components using their interfaces. To

connect interfaces of two components, contracts of those interfaces must be
satisfied. To ensure that the components can be deployed to a component
framework that will support them at run-time, and that they can interact with each
other, component models are used.

12

Figure 3.1: Relation between basic concepts of component-based
technology [11].

3 Component-based development

3.1.1 Components
Components are the basic building blocks in the Component-based

development. There are many definitions of a component. One of the most
accepted is given by Szyperski [9]:

A software component is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A software component
can be deployed independently and is subject to composition by third
party.

Most important characteristic of components are [8]:
● reusability, the ability of a component to be used in different systems,
● usability by third parties,
● seamless replacement of a component with newer or different
components.

To achieve this it is necessary to separate the implementation of a component
from its interface.

3.1.2 Interfaces
Interfaces can be viewed as access points through which the components can

exchange information and cooperate with other components or the component
framework.

Interfaces can generally be divided into two groups: provided and required
interfaces. Provided interfaces define services that a component can provide to
other components or the framework. Required interfaces define services that the
component requires from other components or the framework.

As already stated, it is essential that the component's interfaces are separated
from the implementation of the component's services. They are used just to list
and describe those services. By having the services listed and described, it is
much easier to combine components into complex systems. The separation of
interface and implementation enables a component to be replaced with new
component that provides the same interface.

In most modern component models (e.g. COM, JavaBeans, .NET) interface's
description gives just syntactical information. In many cases this information is not
sufficient and the need of contractual definition of interfaces arises.

3.1.3 Contracts
Interface semantics can be viewed as contracts between the provider and the

user of the interface [12]. Through a contract, user of the interface obliges to
constraints (preconditions) that the provider sets, and in respect to that, provider of
the interface guarantees some functional and/or non-functional properties.

Hierarchically, we can divide contract definition in four levels [9].

13

3 Component-based development

● Level 1: Syntactic interface. A list of operations including types of their
inputs and outputs. Using the knowledge about types of inputs and outputs,
type safety can be established. Type safety ensures that no run-time error
will occur from usage of operation with wrong type of object.
● Level 2: Constraints on values of parameters and of persistent state
variables. This constraints can be viewed as pre- and post- conditions for
an operation. An example would be a range for the value of variable.
● Level 3: Synchronization between different services and method
calls. This level describes the ordering between different interaction at the
component interface. It also enables the interaction between the component
and its environment to be non-atomic. Automata, temporal logic, process
algebras or sequence diagrams can be used for the description.
● Level 4: Extra-functional properties. Level 4 describes properties like
latency, worst-case execution time, memory usage, reliability, robustness
and availability. These properties are of great importance in real-time,
embedded and safety-critical domains. By knowing the extra-functional
properties of the components that will be used in the system, some
properties of the system can be derived before it is actually built.

3.1.4 Component model
Component model imposes a set of conventions that the components using that

model must adhere to. With that conventions, component model ensures that the
components can be deployed to the component framework and interact with each
other.

Types of rules that component models define:
● types of components that can be used,
● how the components interact with each other,
● how the components bind resources.

In a way, component models define the architecture of systems. That limits the
flexibility of the system, but also speeds up the process of the development
because new architecture does not have to be created.

3.1.5 Component framework
Component framework is a run-time infrastructure that upholds the component

model [9]. It manages resources for components and supports component
interaction.

Component framework can be viewed as an operating system for the
components [9]. From that viewpoint, components are to framework what
processes are to the operating system. The difference is that the component
frameworks are more compact than operating systems. They are specialized to
support a limited range of component types and interactions between those types.
By limiting the diversity, component composition becomes simpler, more robust
and more predictable.

14

3 Component-based development

Another difference between component frameworks and operating systems is
that the implementation of the framework does not have to be completely
separated from the components. It is possible that a part of the framework is
implemented by components themselves.

3.2 Component-based development process
In order to fully utilize the advantages of component based architecture,

standard development process needs to be adapted to CBD. Component based
development process is divided into two processes: development of components
and development of systems [10]. In most cases this two processes can be
completely separated from each other. As shown in Figure 3.2, in component
development process components are developed and stored in a common
component repository. In system development process, components are fetched
from the component repository and used to build systems. Separation of this two
processes allows parallel development which results in shorter time-to-market. It
also enables organization of a global component market.

3.2.1 Component development process
Development process for components does not differ much from the standard

development processes used in software development. Main difference is that
components are developed to be fully reusable and available for composition by
third party. There is no (or very little) knowledge about the systems the component
will be used in. Because of that component's functionality must be carefully
devised, well defined and thoroughly tested.

3.2.2 System development process
Due to the orientation to reuse in CBD, standard system development must be

adapted to system development using components. This changes will be
discussed on the adapted V-model shown in Figure 3.3.

First difference is in the way requirements and system design are defined. In
these two stages the component model used and components that are available
must be taken into account. In some cases requirements will have to be
conformed to fit available components because adaptation or development of new
components would be to expensive or time consuming. In other cases

15

Figure 3.2: Component-based development process.

Component
repository

Component
development

System
development

Store new
components

Select and
use

3 Component-based development

components that support features not originally foreseen may be found, allowing
enhancements in the system.

Instead of unit implementation, component-based development of systems is
based on finding and reusing components. Here, three stages can be identified.

● Selecting a component. This stage consists of finding and evaluating
existing components in search of a component that satisfies the
requirements and fits system design. In case that an appropriate
component cannot be found it must be created.
● Adaptation of the component. Components will often implement a
generalized functionality to extend the possibility of reuse. Because of that,
most components will have to be adapted to fit the system design.
● Testing. When reusing components (regardless if they were developed
by third party or not) their specification, adaptation and composition with
other components has to be thoroughly tested to be sure that they work
properly, and that the system specifications are satisfied.

Operation and maintenance stage of system life cycle is based on updating,
replacing or adding new components. This approach makes the maintenance
much easier and the system much more suitable for changes than a monolithic
one because there is no need to rebuild the whole system. When replacing or
adding a new component, the same select-adapt-test process that was used while
building the system is used.

16

Figure 3.3: V development model for component-based system development [10].

Component
repository

System development

Requirements

System
design

Select

Adapt

Test

System
test

System
integration

Create

InspectInspect

Operation and
maintenance

Select

Adapt

Test

3 Component-based development

3.3 Component-based development for embedded systems
Embedded systems use computers to monitor and control their environment.

Most of them need to work in real-time and often have a safety-critical role. Due to
their need to blend into the environment they usually have very limited memory
and processing power at their disposal.

With the growing complexity of such systems the need for development model
that would enable reuse of once developed parts and provide a way for more
efficient development that results in more reliable systems arises. These need
could be met through component based development.

3.3.1 Main issues

System constraints
Due to the limited memory and processing power available, component models

for embedded systems must have high run-time efficiency. Most general purpose
component models (e.g. JavaBeans, EJB, .NET, COM...) are built to maximize the
efficiency of the development process, counting on the powerful hardware to deal
with the heavy overhead of the model and the framework.

Meeting the required quality attributes
Quality attributes are often as important as the functionality of the embedded

systems. Component-based embedded systems in the real-time and safety-critical
domain must provide robustness, reliability and predictability. Unpredictable
behavior in such systems can result in immense damage or even loss of life. With
the ability to determine some of the properties of systems by knowing the
properties of the components that make up the system, CBD could meet the
quality demands set by the embedded domain. Unfortunately, these methods are
still in the research phase and most of the component models in use do not enable
definition of component's semantic and extra-functional properties that are
essential in the embedded domains.

3.4 The SaveComp Component Model
SaveComp Component Model (SaveCCM) is a component modeling language

for embedded systems designed with vehicle applications and safety concerns in
focus [14].

Systems are built from interconnected element with well-defined interfaces
consisting of input and output ports. There are three types of elements:
components, switches and assemblies. Element hierarchy is achieved by
composite components and assemblies. The model is built on XML syntax, and a
modified subset of UML2 diagrams is used for the graphical notation of the
elements (shown in Figure 3.4).

17

3 Component-based development

To enable the analysis of the system during development, semantic information
is provided for the components. The semantics is defined by a transformation into
timed automata with tasks which allows modeling of timing and real-time task
scheduling.

3.4.1 Components
Components are basic building blocks of SaveCCM. Their interfaces consist of

ports used for communication with other elements in the system and a series of
quality attributes, e.g. worst case execution time for different target platforms,
reliability estimates, safety models, etc. The attributes are associated with values
and can define a measure of confidence. These attributes can be used to analyze
the developed system and predict its characteristics.

The functionality of the component is typically provided by a single function
implemented in C. The component execution process is described in section 3.4.6.

3.4.2 Switches
Switches provide the means to change the component interconnection

structure, either statically for pre- run-time static configuration, or dynamically, run-
time switching. The switch defines a number of mappings between its input and
output ports. Each mapping has a logical expression over the values on the input
ports which is used to determine if that mapping is active or not. If the values of
the ports that are used in the logical expressions are fixed, the switch is optimized
into ordinary connection in the final system.

Switches do not use trigger ports to activate their execution. All data or trigger
signals that arrive to input ports of the switches are immediately relayed to its
output ports accordingly to the active port mapping.

18

Figure 3.4: Graphical notation of SaveCCM [14].

3 Component-based development

3.4.3 Composite components
Composite components are special type of SaveCCM components whose

behavior is defined by internal structure. An example of a composite component is
given in Figure 3.5. The gray area represents the separation between the external
interface of the composite component and its internal structure. Dashed lines
describe the transfer of data between external and internal ports. Unlike the data,
trigger signals are not transferred. When the component becomes active
(described in section 3.4.6) all trigger ports to the internal composition will become
active. Trigger signals sent from the internal components are discarded.

3.4.4 Assemblies
Assemblies are elements that encapsulate sub-systems. Internal elements and

connections that assembly consists of are hidden from the rest of the system and
can be accessed only through ports of the assembly. Like switches, data and
trigger signals are directly relayed from the assembly's ports to the ports of its sub-
elements, and vice versa.

3.4.5 Ports
As mentioned, to define element's functional interface, input and output ports

are used. Three different types of both input and output ports exist.
● Data ports. Data ports enable the exchange of data between elements.
All data ports are typed and can contain an initial value. Data input ports
also buffer the last value set to them. Data output port can only be
connected to a data input port.
● Trigger ports. Trigger ports are used to build control flow of the system.
Their function is to trigger components into execution. Trigger output port
can be connected only to a trigger input port. When a trigger output port

19

Figure 3.5: An example of a composite component viewed in the
expanded mode [14].

3 Component-based development

sends the trigger signal to a trigger input port, the input port becomes
activated, and remains in that state until the component is executed.
● Combined (data and trigger) ports. Combined ports have the function
of both data and trigger ports. Combined output port can be connected to
either data input port, trigger input port or combined input port.

With these port types, the data flow and control flow can be separated. The
isolation of the control flow makes the system support both periodic and event-
driven activities, and makes the temporal behavior of the system more suitable for
analysis. On the other hand, the isolation of data flow enables the elements to
exchange data without handling over control, which simplifies the creation of
feedback loops or connection of parts of the system which run at different clock
frequencies.

3.4.6 Component execution
A component starts its execution when it is triggered. For a component to

become triggered, all its trigger input ports must be activated. Component
execution is performed in three-phase read-execute-write semantics.

When the component is triggered it goes in the execution state and starts the
read phase. In the read phase values of all the data input ports are stored
internally in the component. This ensures the consistency of the computation. After
the input values are stored, execute phase begins. In this phase component
performs its computation. After the computation is finished output values are
written to the component's data output ports in the write phase. In the end, all
component's trigger output ports are activated and all its trigger input ports reset,
and the component goes back to the idle state.

20

4 UComp – Combining CBD and UPnP

4 UComp – Combining CBD and
UPnP

The drive for combining UPnP technology and CBD comes from the needs of
both of them. UPnP defines an easy way for devices to discover and control each
other on a managed or unmanaged networks. But there is no simple way for this
devices to cooperate in such a way that they produce useful, non-trivial,
functionality. To achieve that, control point would have to implement very complex
algorithms, and even then the resulting system would almost never fully comply to
the user requirements. Component based approach could help in building complex
UPnP systems that are fully adapted to the user requirements. On the other hand,
UPnP introduces a way for building distributed embedded systems using standard
protocols and networks that can connect different platforms and types of devices,
which is of great interest to CBD.

The UComp (UPnP Comp) component model is based on the SaveComp
component model described in section 3.4. Some changes were made to conform
the SaveCCM to the use of UPnP and to make the model more simple to use.

Domains in which the proposed architecture is useful is limited by the
drawbacks of UPnP. Long response time from the embedded devices caused by
the complex protocol and the possibility of “disappearance” of the devices (due to
the possible loss of UDP discovery messages) makes it unsuitable for any hard
real-time or safety-critical systems. With that in mind, the architecture is designed
to allow as simple development as it can. Main goals of this component model are
to enable development of non-critical embedded systems using UPnP devices in
as simple as possible way and to explore the possibilities of using UPnP in
component based development.

4.1 UComp architecture
The system is conceived as a Java application that controls UPnP devices

available on the network, processes their data and relays data between them. The
application communicates with the devices through a UPnP control point. The
functionality of the system (Java application) is defined by the components it uses
and connections between those components. Use of such centralized architecture
has the downside of generating more network traffic and longer response time. For
two devices to communicate, data needs to be sent from one device to the central
application, which then forwards it to the other device, instead of just one device
sending the data directly to the other. But this architecture also has its benefits.

● Data sent by one device can be processed by the application before it is
forwarded to other components, making the systems much more flexible
and eliminating the need to change the code of the devices to adapt them
to the needs of the developed system.

21

4 UComp – Combining CBD and UPnP

● Embedded devices do not need to implement UPnP control points.
These devices have limited memory capacity and processing capabilities.
Having to implement the control point stack would significantly decrease
their performance.
● Modification of systems is much easier. System's behavior can be
modified by simple changes in the interconnection of components (or by
changing components themselves) in the central application. No changes in
the behavior of the devices is needed. If devices were to communicate
directly to one another, a way for changing their configuration at run-time
would have to be devised. Such a functionality would mean that standard
UPnP devices could not be used. Also, it would take up a portion of device's
resources.

4.1.1 Framework and containers
A framework provides components with design- and run-time resources:

● development panel on which the components can draw themselves (this
element is not necessary at run-time, but can be used to provide the
overview of the system),
● component executor – a Java object which runs the thread for
component execution and manages the execution queue,
● UPnP control point, which handles the communication with UPnP
devices on the network.

Containers manage collections of components. They provide methods for
providing visual (development) information, component initialization, drawing

22

Figure 4.1: UComp architecture.

Central application

Network

UPnP control pointComponent executorDevelopment panel

Component Component Component. . .

UPnP device UPnP device UPnP device

4 UComp – Combining CBD and UPnP

components and adding, removing and finding components. Containers also
provide frameworks to components they contain. More detail of the Framework
and Container Java interfaces are given in Figure 4.3.

4.1.2 Components
UComp defines three basic types of components: UPnP components, software

components and composite components.

To make the browsing of components simpler they are arranged in groups.
Every component defines a list of groups it belongs to. The list is viewed
hierarchically: every group in the list treated like a sub-group of the group that
precedes it in the list. Groups are defined by their name. They also include a
description. An example of a group list would be (showing only the names of the
groups): “Software component”, “Math”, “Simple”. This list defines a group “Simple”
that is sub-group of the group “Math”, which is sub-group of the group “Software
component”.

4.1.3 UPnP components
UPnP components represent actions and events of UPnP devices. In respect to

that, there are two types of UPnP components: UPnP action components and
UPnP event components. Action arguments and evented state variables are used
for the interfaces. Although it would be more natural to view UPnP devices as
components and their services as interfaces of these components, this view gives
a component model that is more simple and easier to use.

Input and output ports of UPnP components are generated according to
arguments of device's actions (for action components) or state variables of its
services (for event components). In addition to these ports, every UPnP

23

Figure 4.2: Class diagram for the component classes.

4 UComp – Combining CBD and UPnP

component has a Boolean output port named “connected”. This port is set to true if
the device is connected to the network (accessible by the control point) and the
subscription to the events is accepted in case of event components.

UPnP action components
UPnP action components represent actions of UPnP devices. Every action

component is bound to a specific device by its UDN, a specific service of that
device by the service ID, and in the end to a specific action of that service by the
action name.

Input ports of action components are generated according to the arguments of
the UPnP action it is bound to. Mapping between UPnP data types and port data
types is given in Table 4.1. For every input argument of the action an input port is
added to the component and for every output argument of the action an output
port is added, taking into account the data types of arguments. The names of the
ports are equal to the names of the arguments. Every UPnP action component
also has an input port named “trigger” that accepts Object (any) data type. This
port is used for additional triggering of the component enabling more complex
triggering patterns and triggering of components whose actions don't have any
input arguments.

When an UPnP action component is triggered, values of its input ports (with
exception of the “trigger” port) are stored and transformed into input arguments for
the UPnP action. Then, using the UPnP control point, a control message is sent to
the device to invoke the action. In the end, output arguments of the action are
parsed from the result message and their values used to set the values of the
output ports.

UPnP event components
Event components handle the event notification from UPnP devices. Every

action component is bound to a specific device by its UDN and a specific service
of that device by the service ID. When the system is started event components
instruct the UPnP control point to subscribe to events of that service. Components
confirm that subscription in regular intervals, and in the case of loss of
subscription, send re-subscription requests.

Ports of UPnP event components are generated using the state variable tables
of UPnP services. For each evented state variable of the service event component
is bound to, an output port is created with the same name that the state variable
has. Same data type mapping as for action components (given in Table 4.1) is
used. Event components have no input ports.

UPnP event components are active components, they don't need to be
triggered to start execution. Instead, execution is started when the UPnP control
point receives event notification from the service. New values of state variables
are used to set the values of output ports of the component.

24

4 UComp – Combining CBD and UPnP

4.1.4 Software components
Software components are components whose functionality is fully implemented

in Java code. They are not associated with any UPnP device. Role of software
components is to process the data received from or sent to UPnP components,
direct the execution of components (e.g. generation of periodical triggers), data
flow control (using switches), definition of constants, etc.. Their function can vary
from very simple (e.g. addition of two numbers, logical operations, extraction of a
substring from string) to complex data processing. Having simple functions
available as components (together with use of simple data types in component
interfaces) makes it unnecessary to write any glue-code for connecting the
components and thus enabling fully visual development.

Distribution of software components
Software components are distributed as Java classes. This makes the

distribution fairly simple. For a new component to be available for development
and deployment, it only needs to be copied to adequate directory of the file
system. Since software components have to be placed into Java package
hr.fer.rasip.upnp.ucomp.softwarecomponents (or a sub-package of that package),
any directory path that conforms to that package can be used. Software
components must not be packed into Jar files because that makes them
undetectable for the development tool.

25

4 UComp – Combining CBD and UPnP

4.1.5 Composite components
In current implementation, composite components serve just as containers for

other components. They also provide a framework for the contained components.

4.1.6 Ports
Components exchange data and control each other through ports. Output ports

send data and triggering signals, while input ports receive them. Ports are defined

26

Figure 4.3: Class diagram describing relationships between framework,
container, composite component and components.

4 UComp – Combining CBD and UPnP

by their name and data type. All input and output port names of a component must
be unique (although an input port can have the same name as an output port).
Input ports also define their trigger type.

One output port can be connected to multiple input ports, but an input port can
be connected to only one output port. This limitation is set to make the analysis of
the model simpler. If there is a need for a input port to be connected to multiple
output ports, it should by done by using switching software components. The
actual connection of the ports is done by ports themselves: output ports keep a list
of input ports that they are connected to, and input ports keep a reference to the
connected output port. Whenever a component sets new data to one of its output
ports, the port automatically sends the data and triggering signals to all input ports
connected to it. Both input and output ports buffer the last data that was set to
them. Port's data can also be reset, making the port signal that there is no data
available. Data is also transferred from an output port to an input port when a
connection between the two is made. This provides better system behavior when
the system is modified at run-time.

Data types
Every port defines a data type for the data it handles. In addition, input ports

can define other data types they can accept and cast into their base data type.
Although ports could use any Java class for their data type, only five types are
currently implemented: Boolean, Integer, Double, String and Object. These types

27

Figure 4.4: Class diagram describing relationships between components and
ports.

4 UComp – Combining CBD and UPnP

are chosen to cover data types defined for UPnP arguments and state variables.
An overview of port data types, mapping to UPnP data types and types of data
accepted by the input ports is given in Table 4.1.

Table 4.1: Port data types, associated UPnP data types and types of data
accepted by input ports of that type.

Port data type UPnP data types Accepted types for input ports
Boolean boolean Boolean

Integer (0 is evaluated to false, all
other values to true)

Integer ui1, ui2, ui4, i1, i2,
i4, int

Integer
Double (the value is rounded by
math.Round() method)
Boolean (true is evaluated to 1,
false to 0)

Double r4, r8, number, float Double
Integer (same value is used in
format of a Double)
Boolean (true is evaluated to 1.0,
false to 0.0)

String All other types. String
Boolean (toString() method is used)
Integer (toString() method is used)
Double (toString() method is used)

Object Object (accepts any data type)

Although ports with Object data type accept any other data type, they are not
used for exchanging data. Instead, they should only be used for triggering
components. By setting the value of Object input port, the port is triggered and the
data ignored. Output Object ports can only be connected to input object ports
because they do not provide any data.

Trigger types
To be executed, a component needs to be triggered. Trigger signals are sent

from an output port to all input ports it is connected to along with the new data
when output port changes its data. All output ports send trigger signals. When an
input port receives a trigger signal, it becomes active. There are three types of
trigger for input ports.

● Trigger. A component is triggered if all trigger input ports are active.

28

4 UComp – Combining CBD and UPnP

● Priority trigger. A component is triggered if any of its priority trigger
input port is active.
● Data. If port's trigger type is set to data, its trigger state is ignored when
checking if component is triggered. It is only used to receive data.

With combination of these three trigger types, complex triggering patterns or
feedback-loops can be achieved.

4.1.7 Component execution
By looking at the way a component is executed, two types of components can

be distinguished: passive and active components. Passive components execute
only when they are triggered by other components, while active components may
start their execution by an internal event.

Execution of passive components is done by a separate class, Executor. This
class is provided to the components by their framework. Executor manages a
queue for the components that need to be executed and runs a thread that does
the actual execution of components. When a component is triggered, it adds itself
to the queue of the Executor object. Execution thread waits until there is at least
one component waiting to be executed. Then, it takes a component from the
queue and calls its execute method. Seeing that the Executor executes all
components in the same thread, developer of new software components should
start a new thread in the execute method if the method is expected to have a long
processing time. After the component's execute method has finished, all
component's input triggers are reset.

An example of an active component is UPnP event component. Its execution
starts when a UPnP event notification is received by the component. Although this
event is in fact external, it is viewed as internal by the component model because
it wasn't generated by any interaction with other components, but in the
component itself. Another example of active component would be a component
that generates periodical triggers.

4.1.8 Development of new software components
New software components can be developed by extending the

SoftwareComponent class or any of its subclasses. Extending a subclass has the
benefit of putting new component in the same group as other components that
have extended that class and inheriting common features (e.g. abstract class

29

Figure 4.5: Graphical
representation of ports.

4 UComp – Combining CBD and UPnP

SimpleMathComponent already defines Double input ports a and b and an Double
output port out).

Constructor
For a software component to be valid, it has to implement a public constructor

that takes java.util.Properties as an (only) argument. First line of the constructor
must call the super-class constructor passing component name (String) and the
received Properties object as arguments. That constructor should also add input
ports of the component to the inputPorts Vector and output ports of the component
to the outputPorts Vector. A sample of the constructor is given in Code 4.1.

public Substring(Properties properties) {
 super("Substring", properties);

 inPort = new StringInputPort("in", this);
 inPort.setType(InputPortType.PRIORITY_TRIGGER);
 inPort.setDescription("The input string.");
 inputPorts.add(inPort);

 startPort = new IntegerInputPort("start", this);
 startPort.setType(InputPortType.PRIORITY_TRIGGER);
 startPort.setDescription("Index of the starting character of the
substring in the in string.");
 inputPorts.add(startPort);

 endPort = new IntegerInputPort("end", this);
 endPort.setType(InputPortType.PRIORITY_TRIGGER);
 endPort.setDescription("Index of the last character of the substring in
the in string.");
 inputPorts.add(endPort);

 outPort = new StringOutputPort("out", this);
 outPort.setDescription("Sustring of the in string.");
 outputPorts.add(outPort);
}

Code 4.1: Sample constructor of an software component.

30

4 UComp – Combining CBD and UPnP

Component description
Developers should also override the getDescription method when developing

new software components. The string that the method returns is used for showing
tool-tip description to the user. Method getPortsDescription can be used to
automatically add description of ports to the component description. Code 4.2
Shows an example of the override method.

public String getDescription() {
 StringBuilder sb = new StringBuilder("<html>Gets a substring of a
string." +
 "
Substring starting at start and ending at
end" +
 "
character of the string at the in port" +
 "
 is given at the out port.");
 sb.append(getPortsDescription());
 sb.append("</html>");
 return sb.toString();
}

Code 4.2: An example of the getDescription method override.

31

4 UComp – Combining CBD and UPnP

Adding custom properties dialog window
To add a custom properties dialog window to a component, first the dialog has

to be created. It should extend JDialog class and be defined as the inner class of
the component class. To enable showing the dialog, hasPropertiesDialog and
showPropertiesDialog methods have to be overridden. The first method should
just return true, and the second one should show the dialog and handle the results
of that showing. Developer must also override the getProperties method to enable
storing the properties set by the user to a file, and also modify constructor so that it
reads the same properties from the Properties object passed to it. When overriding
the getProperties method, developer must append new properties to the properties
defined by the superclass. A sample of the overridden methods, and a sample of
the constructor is given in Code 4.3.

public boolean hasPropertiesDialog() {
 return true;
}

public void showPropertiesDialog() {
 ConstantSoftwareComponent.PropertiesDialog dialog = new
PropertiesDialog();
 dialog.setValue(getValueString());
 dialog.setLocationByPlatform(true);
 dialog.setVisible(true);
 if (dialog.isResultOK()) {
 if (!setValueFromString(dialog.getValue(), true)) {
 // TODO do something...
 }
 }
}

public Properties getProperites() {h
 Properties properties = super.getProperites();
 properties.setProperty("value", getValueString());
 return properties;
}

protected ConstantSoftwareComponent(Properties properties) {
 super("Constant", properties);

 String value = properties.getProperty("value");
 if (value != null) {
 setValueFromString(value, false);
 } else {
 setInitialValue();
 }
}

Code 4.3: An example of the override of hasPropertiesDialog,
showPropertiesDialog, and getProperties methods, and a sample of the constructor
setting properties.

When distributing a software component that has a custom properties dialog
window, it must be kept in mind that both components and dialogs class files are
included.

32

4 UComp – Combining CBD and UPnP

Development of new port types
Any Java class can be used as port's data type. To create an input or output

port using new data type, generic classes InputPort<> or OutputPort<> have to be
extended. In both cases, the class that is to be used as port's data type needs to
be used as the type parameter for the generic port class. Because the generic
type in Java is erased at compile time, developer must set data member of the
Port class (this.data) to a new instance of the class to be used for data in the
constructor. Beside that, new output ports just have to call the superclass
constructor with name of the port and parent component as arguments. New input
ports also need to set the classes for the data types they can accept (by adding
them to the acceptableClasses Vector) and override castAndSetData method. The
castAndSetData method has to implement code for casting all acceptable data
types to the data type of the port and return true if the cast was successful.
Example of input and output ports is given in Code 4.4.

public class DoubleOutputPort extends OutputPort<Double> {

 public DoubleOutputPort(String name, Component parent) {
 super(name, parent);
 this.data = new Double(0);
 }
}

public class DoubleInputPort extends InputPort<Double> {

 public DoubleInputPort(String name, Component parent) {
 super(name, parent);
 acceptableClasses.add(Double.class);
 acceptableClasses.add(Integer.class);
 acceptableClasses.add(Boolean.class);
 this.data = new Double(0.0);
 }

 protected boolean castAndSetData(Object data) {
 if (data instanceof Double) {
 this.data = (Double) data;
 return true;
 } else if (data instanceof Integer) {
 this.data = ((Integer) data).doubleValue();
 return true;
 } else if (data instanceof Boolean) {
 if (((Boolean) data)) {
 this.data = 1.0;
 } else {
 this.data = 0.0;
 }
 return true;
 }
 return false;
 }
}

Code 4.4: An example of input and output port class.

33

4 UComp – Combining CBD and UPnP

4.2 Visual development tool
For building UComp systems, a visual development tool named UComp

Developer has been created within this thesis. It enables browsing available
components through a component tree, visual representation of components on a
development panel, connecting that components, setting their properties and the
properties of their ports, and starting and stopping the execution of the developed
system. Run-time modification of the system is supported: while the system is
running, components can be added or removed, connections between
components altered and the properties of the components or their ports changed.

The tool is built on Java Swing framework. To run, it needs JRE 1.6.

4.2.1 Tool-bar
A screenshot of the applications tool-bar is given in Figure 4.7. From left to right,

icons represent following actions:
● save system to a file,
● load system from a file,
● show or hide the component tree,
● refresh the list of UPnP components,
● zoom in the development panel,

34

Figure 4.6: UComp Developer application.

4 UComp – Combining CBD and UPnP

● zoom out the development panel,
● zoom the development panel to actual size,
● bring selected component(s) to front,
● send selected component(s) to back,
● start the execution of the system,
● stop the execution of the system.

4.2.2 Component tree
Component tree is used to browse available UPnP and software components.

Tree nods are organized by the component groups (described in section 4.1.2). It
shows UPnP components currently available on the network and software
components that were found while loading the application. The list of UPnP or
software components can be refreshed (reloaded in case of software components)
by right-clicking on the component tree and choosing either refresh UPnP
components or reload software components menu item from the pop-up menu. By
hovering the mouse pointer over a component or a component group a tool-tip
with the description of the component or group is shown.

35

Figure 4.8: Component tree.

Figure 4.7: Tool-bar.

4 UComp – Combining CBD and UPnP

4.2.3 Development panel
Development panel enables fully visual development and overview of the

system. Components that make up the system can be manipulated, connected or
their properties changed using the mouse. It also provides information about
components and ports (including their value during run-time) by tool-tips when
mouse hovers over them.

Adding components to the panel
Components are added to the panel by pressing down the left mouse button on

the desired component in the component tree, dragging the mouse cursor to the
development panel and releasing the mouse button. The component then appears
in the development panel on the place where the button was released.

Component pop-up menu
By right-clicking on a component, the component pop-up menu appears. From

that menu user can choose to bring the component forward or send it back in the
panel (in case two components overlap), remove the component from the panel or
show the component's properties window if the component has one.

Port connections
Two ports (input and output) can be connected by pressing down the left mouse

button over one of them, dragging the mouse cursor to the other and releasing the
mouse button. Input and output ports can only be connected if the input port can
accept the data type the output port offers. In that case, when one port is selected
and mouse is dragged over the other, line between the ports becomes orange and
snaps on that ports.

36

Figure 4.9: Development panel.

4 UComp – Combining CBD and UPnP

Connections between ports cannot be selected directly. Instead, they are
selected by selecting the ports they connect. By selecting an output port all
connections that start at that output port are selected. By selecting an input port
the connection that ends at that port is selected.

Connections are removed by either right-clicking an output port and clicking on
the remove all connections menu item (thus removing all connections that start at
that port), or by right-clicking on an input port and clicking on the remove
connection menu item (which results in removing only the connection that ends at
that port).

Changing trigger type of an input port
Trigger type of an input port is changed by right-clicking on that port and clicking

on the properties menu item in the pop-up menu. Then, a dialog window appears
showing radio buttons for selecting the trigger type. Select the desired type and
click on the OK button.

4.3 UComp file format
Once developed, system configuration can be stored to an XML file. Only static

information about the system is stored, current values of ports or information about
the state of components is not stored.

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.fer.hr/rasip/UComp"
elementFormDefault="qualified" xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:UComp="http://www.fer.hr/rasip/UComp">
 <element name="compositeComponent">
 <complexType>
 <sequence>
 <element ref="UComp:componentList"></element>
 <element ref="UComp:connectionList"></element>
 </sequence>
 </complexType>
 </element>
 <element name="componentList">
 <complexType>
 <sequence>
 <element ref="UComp:component"></element>
 </sequence>
 </complexType>
 </element>
 <element name="connectionList">
 <complexType>
 <sequence>
 <element ref="UComp:connection" maxOccurs="unbounded"
minOccurs="0"></element>
 </sequence>
 </complexType>
 </element>
 <element name="component">
 <complexType>
 <sequence>
 <element ref="UComp:developerInfo" maxOccurs="1"
minOccurs="1"></element>

37

4 UComp – Combining CBD and UPnP

 <element ref="UComp:inputPortList" maxOccurs="1"
minOccurs="0"></element>
 <element ref="UComp:outputPortList" maxOccurs="1"
minOccurs="0"></element>
 <element ref="UComp:propertyList" maxOccurs="1"
minOccurs="0"></element>
 </sequence>
 <attribute name="class" type="string"></attribute>
 <attribute name="name" type="string"></attribute>
 <attribute name="uuid" type="string"></attribute>
 </complexType>
 </element>
 <element name="developerInfo">
 <complexType>
 <attribute name="x" type="unsignedInt"></attribute>
 <attribute name="y" type="unsignedInt"></attribute>
 </complexType>
 </element>
 <element name="inputPortList">
 <complexType>
 <sequence>
 <element ref="UComp:inputPort" maxOccurs="unbounded"
minOccurs="0"></element>
 </sequence>
 </complexType>
 </element>
 <element name="outputPortList">
 <complexType>
 <sequence>
 <element ref="UComp:outputPort" maxOccurs="unbounded"
minOccurs="0"></element>
 </sequence>
 </complexType>
 </element>
 <element name="propertyList">
 <complexType>
 <sequence>
 <element ref="UComp:property" maxOccurs="unbounded"
minOccurs="0"></element>
 </sequence>
 </complexType>
 </element>
 <element name="inputPort">
 <complexType>
 <attribute name="class" type="string"></attribute>
 <attribute name="name" type="string"></attribute>
 <attribute name="type">
 <simpleType>
 <restriction base="string">
 <enumeration value="DATA"></enumeration>
 <enumeration value="TRIGGER"></enumeration>
 <enumeration value="PRIORITY_TRIGGER"></enumeration>
 </restriction>
 </simpleType>
 </attribute>
 </complexType>
 </element>
 <element name="outputPort">
 <complexType>
 <attribute name="class" type="string"></attribute>
 <attribute name="name" type="string"></attribute>
 </complexType>
 </element>
 <element name="property">
 <complexType>

38

4 UComp – Combining CBD and UPnP

 <attribute name="key" type="string"></attribute>
 <attribute name="value" type="string"></attribute>
 </complexType>
 </element>
 <element name="connection">
 <complexType>
 <sequence>
 <element ref="UComp:source" maxOccurs="1" minOccurs="1"></element>
 <element ref="UComp:target" maxOccurs="1" minOccurs="1"></element>
 </sequence>
 </complexType>
 </element>
 <element name="source">
 <complexType>
 <attribute name="componentUUID" type="string"></attribute>
 <attribute name="portName" type="string"></attribute>
 </complexType>
 </element>
 <element name="target">
 <complexType>
 <attribute name="componentUUID" type="string"></attribute>
 <attribute name="portName" type="string"></attribute>
 </complexType>
 </element>
</schema>

Code 4.5: XML Schema for UComp file.

4.4 Mapping between UComp and SaveCCM
As already mentioned, UComp component model is based on SaveCCM. There

are two main reasons for this. First, SaveCCM has proved itself successful in
modeling embedded systems. Second reason is that by keeping UComp model
similar to SaveCCM, transformation between this two models is easier.
Transformation between models may appear very useful because the two models
can be used in separate stage of development. SaveCCM provides a lot of
possibilities for testing the system before it is deployed. On the other hand,
UComp provides a simple way for implementation of distributed systems.

4.4.1 Main differences between models
When designing UComp the aim was to generate a model and architecture that

is very simple to use. Its main focus is to enable implementation of the systems.
For that reason some differences between UComp and SaveCCM emerge.

Priority trigger
To simplify the development of systems, UComp introduces priority trigger

which is not present in SaveCCM. There is no direct way to map priority triggers to
SaveCCM. One of the solution would be to use SaveCCM switch elements to
create an or operation on all connections that lead to priority trigger port in

39

4 UComp – Combining CBD and UPnP

UComp, and connect the output of the switch to all trigger ports of the SaveCCM
component.

SaveCCM switch
UComp does not define separate switch elements. Instead, switches are

defined through software components. In case of SaveCCM to UComp
transformation, switches should be transformed into software components
(possibly extending SwitchSoftwareComponent class). For the transformation in
other direction there are two possibilities: (1) treat switch components as all other
software components, and (2) try to detect if a software component extends the
SwitchSoftwareComponent class and transform it to a SaveCCM switch element.

Complex connections
In SaveCCM, connection between components can be defined to have complex

behavior. To keep development of systems simple, UComp defines no such
connection. In transformation between models, only normal SaveCCM connection
should be used.

Components attributes
UComp does not provide an ability to define non-functional (or semantical)

attributes of the component in the way SaveCCM does. If a transformation from
UComp to SaveCCM is made, this attributes should be determined from the tests
on the implemented components.

Assemblies and composite components
No means of component hierarchy is currently implemented in UComp

(composite components serve only as containers for components). At the time, it is
not possible to transform SaveCCM assemblies and composite components into
UComp.

4.5 Testing results
The UComp architecture was tested with several, both simple and complex,

system configurations. A screenshot of one of them is given in Figure 4.9. For the
purpose of testing UPnP devices running on personal computers and RCM2200
network microcontrolers were used.

4.5.1 Development process
The combination of component-based approach (building systems from

preexisting components) and UPnP technology (enabling control, event notification
and description of available devices over the standard computer network) resulted
in very efficient development of distributed embedded systems. The ability of fully
visual development through the UComp Developer tool adds to the simplicity of

40

4 UComp – Combining CBD and UPnP

development. One of the possibilities for further improvement of this process by
extending the description of UPnP devices is given in section 4.6.1.

4.5.2 False expiration of UPnP devices
Due to use of unreliable UDP protocol in UPnP discovery, a control point may

miss a notification of device's presence on the network and mark the device as
expired, making the device invisible to the system. Much attention was given to
this problem while testing. Rare occurrences of this problem have been detected.
On all occasions the connection to the device was reestablished with the next
notification message from the device. Nevertheless, this remains one of the
biggest problems because it makes the system unreliable. Section 4.6.5 gives a
proposal on how to try to solve this problem.

4.5.3 Component execution time
During testing, the execution time of components was measured. The data

collected has shown that almost all of the system's execution time relates to UPnP
action components. Execution time of software components was constantly under
1 ms. Average execution time of UPnP action components was between 150 and
350 ms. In some rare occasions, the action invocation took several seconds. The
cause of such long execution time is the low processing power of the embedded
devices and the complexity of the UPnP control protocol. One workaround for this
problem is given in section 4.6.4.

4.5.4 Serial vs. parallel execution of UPnP components
The system was tested both with (parallel execution) and without (serial

execution) executing UPnP action components in separate threads. When the
components were executed (UPnP actions invoked) in the same thread as all
other components, the system suffered from delays while waiting for devices to
respond to action requests. In that time no other passive components were able to
start their execution. On the other hand, when testing the system with starting a
new thread for execution of each UPnP action component problems arose when
the system contained multiple UPnP action components that were bound to the
same device. In that case some devices received multiple action invocations at the
same time, and sometimes were not able to process all of them. This problem
comes from low processing power of the RCM2200 microcontrolers on which the
devices were built and their inability of preemptive multitasking. Although slower,
serial execution of UPnP action components was chosen as a better solution at
this moment, because loss of information that parallel execution exhibits is
unacceptable.

4.6 Possibilities for improvement
In this sections a few possibilities for future improvement of UComp are given.

While considering this improvements, it was always kept in mind that the changes

41

4 UComp – Combining CBD and UPnP

made to the UPnP devices or control points would still leave them compatible with
standard UPnP architecture.

4.6.1 Adding semantic information to UPnP device description
Due to use of XML in UPnP device description, and the instructions of UPnP

forum for the control points to ignore any unknown elements or attributes while
reading it, the description could easily be extended to include semantic and extra-
functional information about the device and its services and actions. Such
information would greatly improve the development process.

4.6.2 Implementing component hierarchy
Development could be made easier by allowing the composite components to

be used as parts of the system just like UPnP and software components. Another
possibility would be for composite components to implement UPnP device stack,
thereby becoming UPnP devices themselves. Then they could be included as
UPnP components in other systems.

4.6.3 Storing UPnP device descriptions
Current implementation of UComp Developer tool only allows building systems

using only UPnP devices available on the network at the moment of development
(with exception of the devices that were added to system before they were
removed from the network). It would be very useful to add the ability to store
device description and make the devices available for development even when
they are disconnected from the network.

4.6.4 Changing the control protocol
Use of HTTP and SOAP protocols in UPnP control protocol makes the action

invocation very time-consuming, which greatly contributes to reduced
responsiveness of the UComp systems. The overhead of these two protocols most
often exceeds the useful data by several times. The characteristics of the
architecture could be enhanced by using a simpler control protocol that is more
suited to the embedded devices. This protocol could be used in parallel with the
standard UPnP control protocol. Devices that would implement this protocol could
respond to action invocation faster, while standard UPnP devices would be
controlled by standard UPnP control protocol.

4.6.5 Testing the devices that are about to expire
A way to compensate for the unreliability of the UDP protocol which is used in

UPnP discovery, and thus make the UComp architecture more reliable, would be
to check for existences of the devices that are about to expire using TCP protocol.
One way this could be done would be to define a “ping” service, with only one
action that takes no arguments, which devices could implement. UPnP control
point stack could then be modified to try to invoke that action for devices
implementing the “ping” service that are about to expire. If the device responds to

42

4 UComp – Combining CBD and UPnP

the invocation (and thereby confirms that it is still connected to the network) the
control point would postpone the device expiration. In this way both the device and
the control point would still be fully compatible with the UPnP standard.

43

5 Conclusion

5 Conclusion
Component model that was created within this thesis demonstrates how the

development of distributed embedded systems can be improved by combining the
component-based approach with UPnP technology. Implementation of the model
manifests some notable problems that arise from fully adhering to UPnP standard.
These problem make the architecture unsuitable for application in safety-critical or
hard real time domains. Many of them can be resolved by simple upgrades to the
UPnP protocol. The model also shows plenty of possibilities for improvement
which could lead to a more efficient development process and more robust,
reliable and efficient systems.

44

6 Bibliography

6 Bibliography
[1] UPnP Forum, UPnP Device Architecture 1.0, 2003
[2] UPnP Forum, http://www.upnp.org
[3] Cybergarage, http://www.cybergarage.org/net/upnp/java/index.html
[4] Intel Software for UPnP technology, http://www.intel.com/software/upnp
[5] Satoshi Konno, CyberLink for Java Programming Guide, 2005
[6] M. Vitulić, Sustav za prikupljanje podataka temeljen na mrežoj
arhitekturi UPnP, thesis no. 1566, Faculty of Electrical Engineering and
Computing, University of Zagreb, 2007

[7] Universal Plug and Play, Wikipedia, http://en.wikipedia.org/wiki/Upnp
[8] I. Crnković, M. Larsson, Building Reliable Component-Based Software
Systems, Artech House, 2002

[9] Component-Based Design and Integration Platforms, http://www.artist-
embedded.org/, 2003

[10] I. Crnković, S. Larsson, M. Chaudron, Component-based
Development Process and Component Lifecycle, International Conference
on Software Engineering Advances, 2006

[11] I. Crnković, B. Hnich, T. Jonsson, T. Kiziltan, Specification, Integration
and Deployment of Components, Communications of the ACM (CACM), vol
45, nr 10, Association for Computing (ACM), October, 2002

[12] A. Beugnard, Jean-Marc Jezequel, N. Plouzeau, D. Watkins, Making
components contract aware, IEEE Software, 1999

[13] Component-based software engineering, Wikipedia,
http://en.wikipedia.org/wiki/Component-based_software_engineering

[14] Håkansson J.: The SaveCCM Language Reference Manual

45

http://www.upnp.org/
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://www.artist-embedded.org/
http://www.artist-embedded.org/
http://en.wikipedia.org/wiki/Upnp
http://www.intel.com/software/upnp
http://www.cybergarage.org/net/upnp/java/index.html

7 Abstract / Sažetak

7 Abstract / Sažetak
This thesis explores the possibility of combining component-based approach to

development with UPnP technology to enable an easy and efficient way for
building distributed embedded systems.

First, the basics of UPnP technology and component-based development are
described. Then a description of a simple component model (created within the
thesis) that enables development of distributed embedded systems using UPnP
technology is given. A visual development tool created for that component model is
also described. In the end, results of testing of systems built with the model, along
with some suggestions for future improvement are given.

Komponentni razvoj sustava od programskih i
sklopovskih komponenti

Ovaj rad istražuje mogućnost povezivanja razvoja temeljenog na
komponentama i UPnP tehnologije kako bi se omogućio jednostavan i efikasan
način izgradnje distribuiranih ugrađenih sustava.

Prvo je dan pregled osnova UPnP tehnologije i razvoja temeljenog na
komponentama. Tada je opisan jednostavan komponentni model (izrađen u okviru
ovoga rada) namjenjen razvoju distribuiranih ugrađenih sustava koristeći UPnP
tehnologiju. Dan je i opis grafičkog alata za razvoj sustava prema tom modelu
(također izrađenog u okviru ovoga rada). Na kraju su dani rezultati testiranja
sustava stvorenih pomoću izrađenog modela zajedno sa prijedlozima za buduća
poboljšanja.

46

8 List of abbreviations

8 List of abbreviations
CBD Component-based Development

CBSE Component-based Software Engineering

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

GENA General Event Notification Architecture

HTTP Hypertext Transfer Protocol

HTTPMU HTTP over UDP (multicast)

HTTPU HTTP over UDP

JRE Java Run-time Environment

SOAP Simple Object Access Protocol

SSDP Simple Service Discovery Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

UPnP Universal Plug and Play

URL Uniform Resource Locator

VPN Virtual Private Network

XML Extensible Markup Language

47

	1Introduction
	2Universal Plug and Play
	2.1UPnP protocol stack
	2.2Elements of UPnP architecture
	2.2.1Devices
	2.2.2Services
	2.2.3Control points

	2.3Steps of UPnP networking
	2.3.1Addressing
	2.3.2Discovery
	2.3.3Description
	2.3.4Control
	2.3.5Eventing
	2.3.6Presentation

	2.4Problems with UPnP architecture
	2.4.1Lack of authentication
	2.4.2Use of UDP multicast
	2.4.3Protocol complexity

	3Component-based development
	3.1Basic concepts
	3.1.1Components
	3.1.2Interfaces
	3.1.3Contracts
	3.1.4Component model
	3.1.5Component framework

	3.2Component-based development process
	3.2.1Component development process
	3.2.2System development process

	3.3Component-based development for embedded systems
	3.3.1Main issues

	3.4The SaveComp Component Model
	3.4.1Components
	3.4.2Switches
	3.4.3Composite components
	3.4.4Assemblies
	3.4.5Ports
	3.4.6Component execution

	4UComp – Combining CBD and UPnP
	4.1UComp architecture
	4.1.1Framework and containers
	4.1.2Components
	4.1.3UPnP components
	4.1.4Software components
	4.1.5Composite components
	4.1.6Ports
	4.1.7Component execution
	4.1.8Development of new software components

	4.2Visual development tool
	4.2.1Tool-bar
	4.2.2Component tree
	4.2.3Development panel

	4.3UComp file format
	4.4Mapping between UComp and SaveCCM
	4.4.1Main differences between models

	4.5Testing results
	4.5.1Development process
	4.5.2False expiration of UPnP devices
	4.5.3Component execution time
	4.5.4Serial vs. parallel execution of UPnP components

	4.6Possibilities for improvement
	4.6.1Adding semantic information to UPnP device description
	4.6.2Implementing component hierarchy
	4.6.3Storing UPnP device descriptions
	4.6.4Changing the control protocol
	4.6.5Testing the devices that are about to expire

	5Conclusion
	6Bibliography
	7Abstract / Sažetak
	8List of abbreviations

