Software defect prediction based on features extracted

from the tree structure of the source code
and from its development process

Lucija Siki¢*, M.Eng.
Advisor: Associate professor Marin Silic, Ph.D.

=X

University of Zagreb Faculty of Electrical Engineering and Computing

1. Introduction

The development of software defect prediction (SDP) models
Is of great importance for improving software quality. Such
models are used to identify defect-prone software files
represented by a set of features so that these modules can be
corrected prior to the testing process, which ultimately helps
to optimize the allocation of testing resources.

2. Problem Description

SDP models learn from previous project version files to identify
defect-prone current project version files, where the previous
and current project version files are represented by features
of the same type. However, most of the existing models are
not specialized for the task of defect prediction nor for
processing the source code representations of files. Besides,
the existing metrics used to represent files do not reflect the
entire file development process, and such information may be
relevant to defect-proneness.

3. Methodoloqgy

To address the gaps In existing approaches, we propose a new
set of metrics [Siki¢ et al., 2021] and an end-to-end model
specifically designed for processing abstract syntax trees
(ASTs) representing the source code of files [Siki¢ et al., 2022].

A new set of fourteen metrics, called aggregated change
metrics (ACMs), is computed by aggregating change metrics
that describe commits that change files between the analyzed
versions, taking into account the chronological order of those
commits, as shown in Figure 1.

file 1

file 2

——commity

file 3

nth version

Figure 1. Collecting data for computing ACMs.

The proposed model, named DP-GCNN, is a spectral-based
graph convolutional neural network that learns to perform a
binary classification of files represented by a graphical
representation of ASTs. DP-GCNN adapts its architecture,
which Is shown In Figure 2, to the analyzed project so that it
can capture the same amount of information regardless of the
size of the project modules.

£ A

Convolution Convolution Global

Pooling
1#

Pooling Average

; N# ﬁ Pooling

Figure 2. Classifying an AST using DP-GCNN.

*lucija.sikic@fer.hr

4. Results

(n+l) th version

Files from two consecutive versions of seven open-source Java
projects are used to build and then evaluate a random forest
classifier (RFC) with the embedded feature selection method
and DP-GCNN. For each file from both project versions, we
collected the corresponding source code and a vector of 20
object-oriented metrics (OOMs) describing the file. To
represent the files in a form suitable for DP-GCNN, we first
translated the source code of each file into AST and then into
the corresponding adjacency matrix and node feature matrix.

For each project, RFC selected 20 features with the highest
Gini importance from a set of OOMs and ACMs. The histogram
In Figure 3 shows that some of the ACMs can give the model
better insight into the defect-proneness of modules than the
OOMs for a significant number of projects.

- —>

= - - — —
LA SEXP NS ND LT NUC EXP NF AGE REXP LD o

NUMBER OF PROJECTS
O HNWHNUO

- —>
NDEV ENT

Figure 3. Number of projects where ACMs were selected
among the 20 most important features for RFC.

DP-GCNN achieved a 13% higher average F-score than the RFC
build with modules represented by OOMSs. Its performance In
terms of average F-score is compared with the performances
of state-of-the-art models CNN [Pan et al, 2019], DBN [Wang
et al, 2016], DP-T [Zhang et al., 2020], MPT [Shi et al., 2021], and
SEML [Liang et al.,, 2019]. The result of the comparison, which
can be seen In Figure 4, shows that DP-GCNN provides
comparable results to these models for the analyzed projects.

1.0
0.9-
0.8 -

HEE DP-GCNN CNN s DBN DP-T MPT B SEML
0.7 1
o 0.6

S 0.5-

N

L 0.4-
0.3
0.2
0.1+
0.0 -

xerces xalan synapse poi lucene jedit camel

Figure 4. Performance comparison of DP-GCNN and
state-of-the-art models in terms of F-score.

5. Conclusion

In the experiments conducted, it is shown that a commonly
used binary classifier can achieve better results in predicting
defect-prone files when the files are represented by metrics
that accurately reflect their evolution process, rather than by
the existing metrics. In addition, the results suggest that
developing end-to-end models specifically tailored to graph
structures, such as source code representations, can yield
Improvements in the area of software defect prediction. We
believe that these results may inspire other researchers to
explore similar approaches to achieve future improvements in
software fault prediction.

PhD Day Faculty of Electrical Engineering and Computing, 2 June 2022.



