Pose Optimized Multiple Camera Systems For Vehicle Surround-View Vision

Venkata Anirudh Puligandla, Mr. (anirudh.puligandla@fer.hr) mentor: prof. dr. sc. Sven Lončarić,

University of Zagreb Faculty of Electrical Engineering and Computing

1. Introduction

Goal – find cameras' pose on the vehicle's surface (red) for maximum coverage (shown in blue).

Optimal Camera Placement - Challenges

- SOTA methods use discrete space models
- Discrete model => large number Of variables (~2million) => high computational time (> 40hrs for HD models)

2. Problem Description

Discrete binary decision variables, l.e., value is either '1' or '0' $X_{i\alpha}$ -> camera pose (voxel in red)

C_j -> control (voxel in blue) point

Objective -> max Σ C_i s.t. Σ X_{i α} =5

Optimization -> discrete combinatorial optimization methods Integer Linear Programming

3. Methodology

Goal -> Reduce computational time by reducing number of input variables. (multi-resolution optimization method)
How? -> clustering 'red' voxels based on points orientation (or surface normal of the voxel in discrete model).

- Iteratively cluster the surface voxels and optimize for camera poses. Pass only selected clusters for next iteration
- Advantages : 1) no memory run-out problem 2) computational time reduced by over 50 times
- Another approach: continuous space model (camera pose optimization on parametric ellipsoid around the vehicle)
- Advantages: requires only 5 variables (2 polar angles for position on ellipsoid and 3 variables for camera view-direction vector), therefore much faster than discrete model + no expensive pre-processing steps

4. Results

- Marginally better camera coverage than SOTA due to subvoxel accuracy achieved using clustering method
- Our method more than 150 times faster than SOTA

• Comparison of computational times (in seconds):

Instance	Pre- processing	Greedy	RWLS	PSO- variant
small	22.33	8.48	609.22	7.27
small (our)	0.75	4.81	67.04	21.05
large	12422.20	65.07	14467.06	13.39
Large (our)	140.05	23.41	329.04	99.75

 Our proposed clustering method better than SOTA on benchmark point cloud dataset (NYU-v2)

5. Conclusion

We proposed a novel optimization strategy that produces the same or better results than SOTA methods in only a fraction of the computational time. The clustering method designed for multi-resolution optimization method is better than SOTA methods on benchmark 3D point cloud datasets. Work on the continuous model for the optimal camera placement problem for vehicle surround-view vision in progress with promising priliminary results.

6. Project Acknowledgement

ImmerSAFE (project number 764951) is funded under the EU's H202-MSCA-ITN-2017 and is part of the Marie Skoldowska-Curie Actions Innovative Training Networks (ITN) funding scheme

