
Towards Reinterpretation of Interaction Complexity
for Load Prediction in Cloud-based MMORPGs

Mirko Suznjevic
University of Zagreb

Faculty of Electrical Engineering and Computing
Unska 3, Zagreb, Croatia

E-mail: mirko.suznjevic@fer.hr

Maja Matijasevic
University of Zagreb

Faculty of Electrical Engineering and Computing
Unska 3, Zagreb, Croatia

E-mail: maja.matijasevic@fer.hr

Abstract—We present an approach for predicting the load of
Massively Multiplayer Online Role-Playing Games (MMORPGs)
in a cloud-hosted environment. The load of a MMORPG is
determined not only by the number of players, but also by
what they do in the virtual world. In our previous work, we
have shown that player activity patterns can be categorized,
and that each category may be represented by a corresponding
mathematical model. In this work we extend the concept of
interaction complexity applied for load prediction by Nae et. al.
by taking into account MMORPG player behavior categories,
and asses the prediction accuracy of the proposed approach.

I. INTRODUCTION

Hosting Massively Multiplayer Online Role-Playing Games
(MMORPGs) in a cloud-based environment offers the nec-
essary resource flexibility to deal with highly fluctuating
requirements of MMORPGs. The transition to cloud, how-
ever, opens a new problem, i.e., how to accurately predict
the load of an MMORPG. In general, load estimation and
prediction algorithms and techniques based on historical data
range from simple models, based on average or exponential
smoothing, to complex ones, such as autoregressive, moving
average, integrated, and combinations thereof [1]. The load for
MMORPGs, however, is determined not only by the number
of players, but also by what they do in the virtual world, since
different activity patterns generate widely different load [2].

A model for network load and server utilization of MMOG
systems has been proposed Yee and Cheng in [3]. They
describe the relationship between the number of active players
and input and output traffic, as well as the processor utilization
and claim that the dependency is strongly linear. A later work
by Lee and Cheng in [4] has been applied for energy and
hardware resource usage optimization, based on past player
behavior. The authors focus on location of players in the virtual
world and develop a zone-based server consolidation strategy.

An notable approach for load calculation for MMORPGs
has been proposed by Nae and Prodan [5], [6]. They explore
a neural networks based load prediction for MMORPGs, and
define formulae for calculation of required processing time
based on different states of the virtual world.

In our previous work, we have shown that MMORPG player
activity patterns can be categorized, and that each category
may be represented by a corresponding mathematical model.
The proposed action categories have been termed Trading,

TABLE I
INTERACTION COMPLEXITY PER ACTION CATEGORY

Behavior Players vs Players vs Number Network
category Players NPC of NPCs load [kbit/s]
Questing O(n) O(n ∗ log(n)) n ≤ 5 11.4
Trading O(n) O(n) N ≤ 20 8.1

Dungeons O(n2) O(n2) N ≤ 20 18.3
PvP combat O(n3) O(n) n = 0 24.1

Raiding O(n2 ∗ log(n)) O(n3) N ≤ 40 32.0

Raiding, Player vs Player (PvP) combat, Dungeons, and Raid-
ing [7]. In this work we extend the concept of interaction
complexity applied for load prediction by Nae and Prodan by
taking into account MMORPG player behavior categories, and
asses the prediction accuracy of the proposed approach.

II. INTERACTION COMPLEXITY

Our approach is based on mapping of action categories to in-
teraction complexities in load calculation formula proposed by
[5]. The mapping is presented in Table I and it is based on the
specific characteristics of the action categories. For example,
PvP combat is characterized by only involving human players
(no NPCs) and the most complex interaction between players,
while Raiding has complex interactions between players and
NPCs as well as amongst players themselves.

III. PREDICTION MODEL

Prediction of the load is based on complete history dataset
H of player behavior on a single shard. The time length of the
pattern we want to capture is P (e.g., an hour, a day, a month).
P is divided into discrete intervals i (e.g., seconds, minutes,
hours) at which we observe the number of active players in
each action category.

Prediction of the number of players for each action category
is based on an algorithm which adapts the parameters calcu-
lated from the entire history dataset H with the data from the
last window L which has the same size as the pattern P .

For each discrete interval i we calculate:

R(i) = Max{H(i), L(i)} · L(i)/H(i) ·Max(L) (1)

where R(i) is the predicted number of players, H(i) is the
historical information, L(i) is the information from the last
window, and Max(L) is the maximal number of players in
the last window.



This approach makes the algorithm prone to overestimation,
but results in quick adaptation based on a sliding window.
Also, the algorithm is simple enough to perform the cal-
culation in real time. For example, we can recalculate the
prediction with new data in the order of minutes, and thus
enable quick adaptation in case of “flash mobs” in the game.

Based on the results of the prediction of the number of
players for each action category, we calculate two types of
load: a) processing load, and b) network load. We use formula
for CPU load of a distributed game server (comprising several
machines) as defined in [6].

tC = (N+BE+pui ·pci ·f(IC, IC)+pui ·pei ·f(IC,BE))·tu
(2)

where tC is the overall time spent in calculating one tick of
the virtual world; N is the overall number of users present;
f(a, b) is the interaction function, where parameters a and b
represent the numbers of interacting entities (avatars, NPCs);
IC is the number of avatars (i.e, human users) interacting with
other entities; BE is the overall number of NPCs; pui is the
ratio between the time necessary for one entity update and the
time for computing one interaction (in percentage); pci is the
percentage of users that are performing a certain action in that
moment; pei is the percentage of NPCs that are performing
a certain action in that moment; and tu is the update time of
entity states received from (sent to) another machine.

To take into account the level of interaction in given action
category, the interaction function f applies the interaction
complexities as defined in Table I.

IV. EXPERIMENTS

We perform two experiments, prediction for a “typical”
scenario in which the simulation log is based on the normal
simulation parameters. Also, we preform an experiment in
which we observe a scenario which simulates a surge in the
number of users, and also a different behavior pattern.

For both experiments, we use the previously developed
user behavior simulator [2] as a source of the history on
which the prediction is based. Log files obtained from the
simulation are used as an input for the predictor. By changing
the parameters of the behavior simulation we can create logs
of different scenarios. This enables various tests besides usual
behavior, e.g., addition of a patch with a new raiding instance
significantly increases the popularity of Raiding category, flash
mobs of certain action categories, etc. Eight days are simulated
and the results are stored in the the log. Seven days are used
as a history data to train the predictor, and the eight day is
used for verification. The load of the next day is predicted
with interval size of one minute.

Figure 1 shows the an example of CPU prediction results
without (top) and with (bottom) behavioral information. Three
lines are depicted, the predicted values, the values of the actual
load (calculated from the eight day), and the reserved values
(15% additional resources over the predicted).

Results indicate that there is a very significant difference
between prediction which takes only a number of users into

Fig. 1. Prediction results with (top) and without (bottom) user behavior

account (i.e, one interaction complexity), and the prediction
which takes into account user behavior (i.e., multiple inter-
action complexities). The discrepancies in this scenario are
reaching even 30%. This suggests, that for correct estimates
of load player behavior needs to be taken into account.

The load prediction showed to be quickly adaptive to the
changes in the last period yet capturing the patterns. Even with
the spikes with 200% of increase in the number of players,
the prediction would adapt the numbers for the next discrete
interval. The downside is that the algorithm would predict high
load for the whole next period, which introduces a significant
error if the spike in the number of users was just temporary.

V. CONCLUSION

In this paper we confirmed that application level behavior
has significant impacts on the both CPU and network load of
a MMORPG system through a development of a tool for load
prediction of MMORPGs. For our future work we aim to test
more complex algorithms, as well as to implement a real time
prediction which could be recalculated every discrete interval.

REFERENCES

[1] G. Box, G. M. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting
and Controls. New York: Prentice-Hall, 1994.

[2] M. Suznjevic, I. Stupar, and M. Matijasevic, “A model
and software architecture for MMORPG traffic generation
based on player behavior,” Multimedia Systems, 2012. [Online].
Available: http://www.springerlink.com/openurl.asp?genre=article&id=
doi:10.1007/s00530-012-0269-x

[3] M. Yee and L. Cheng, “System-performance modeling for massively
multiplayer online role-playing games,” IBM Systems Journal, vol. 45,
no. 1, pp. 45–58, 2006.

[4] Y.-T. Lee and K.-T. Chen, “Is server consolidation beneficial to
MMORPG? A case study of World of Warcraft,” in IEEE International
Conference on Cloud Computing, 2010, pp. 435–442.

[5] R. Prodan and V. Naea, “Prediction-based real-time resource provisioning
for massively multiplayer online games,” Future Generation Computer
Systems, vol. 25, pp. 785–793, 2009.

[6] V. Nae, A. Iosup, and R. Prodan, “Dynamic resource provisioning in
massively multiplayer online games,” IEEE Transactions on Parallel and
Distributed Systems, vol. 22, pp. 380–395, 2011.

[7] M. Suznjevic, O. Dobrijevic, and M. Matijasevic, “MMORPG player
actions: Network performance, session patterns and latency requirements
analysis,” Multimedia Tools and Applications, vol. 45, no. 1-3, pp. 191–
241, 2009.


