m

JAGUAR: A Fully Pipelined VLSI Architecture
for JPEG Image Compression Standard

MARIO KOVAC AND N. RANGANATHAN, SENIOR MEMBER, IEEE

In this paper, we describe a fully pipelined single chip VLSI ar-
chitecture for implementing the JPEG baseline image compression
standard. The architecture exploits the principles of pipelining and
parallelism to the maximum extent in order to obtain high speed
and throughput. The architecture for discrete cosine transform and
the entropy encoder are based on efficient algorithms designed for
high speed VLSI implementation. The entire architecture can be
implemented on a single VLSI chip to yield a clock rate of about
100 MHz which would allow an input rate of 30 frames per second
Jor 1024 x 1024 color images.

Keywords—data compression, DCT, JPEG, parallel processing, VLSI

I. INTRODUCTION

Data compression is the reduction or elimination of re-
dundancy in data representation in order to achieve savings
in storage and communication costs. Data compression
techniques can be broadly classified into two categories:
lossless and lossy schemes. In lossless methods, the exact
original data can be recovered while in lossy schemes
a close approximation of the original data can be ob-
tained. The lossless methods are also called entropy coding
schemes since there is no loss of information content during
the process of compression. Lossless methods are used
for text compression and image compression in certain
environments such as medical imaging where no loss
of information is tolerated and typically the compres-
sion ratio is around 3:1. Lossy compression methods are
commonly applied in image and audio compression and
depending upon the fidelity required compression ratios
of even up to 100:1 can be obtained. Digital images
require an enormous amount of space for storage. For
example, a color image with a resolution of 1024 x
1024 picture elements (pixels) with 24 b per pixel would

Manuscript received February 22, 1994; revised July 10, 1994.. M.
Kovac’s work was supported by a Fullbright scholarship and N. Ran-
ganathan’s work is supported in part by Enterprise Florida Innovation
Partnership FTRI Fund (formerly Florida High Technology and Industry
Council).

M. Kovac is with the Faculty of Electrical Engineering, University of
Zagreb, 41000 Zagreb, Croatia.

N. Ranganathan is with the Center for Microelectronics Research,
Department of Computer Science and Engineering, University of South
Florida, Tampa, FL 33620 USA.

IEEE Log Number 9407659.

JPEG Encoder
:— _______________ N
|
(= wr e =
| + I
Model Entropy
tables au:ﬁln;
Fig. 1. JPEG Encoder.
Eacoder medel

i

Fig. 2. JPEG baseline encoder model.

require 3.15 M bytes in uncompressed form. At a video
rate of 30 frames per second, this requires a data rate
of 94 M bytes per second. With the recent advances in
video applications such as video teleconferencing, HDTV,
home entertainment systems, interactive visualization and
multimedia, there is an increasing demand for even higher
bandwidth computing and communication systems. Very
high speed implementation of efficient image compression
techniques will significantly help in meeting that challenge.

In recent years, a working group known as Joint Photo-
graphic Expert Group (JPEG) consisting of three interna-
tional standard organizations, International Telegraph and
Telephone Consultative Committee (CCITT), International
Organization for Standardization (ISO) and International
Electrotechnical Commission (IEC), has defined an interna-
tional standard for coding and compression of continuous-
tone still images. This standard is commonly referred to as
the JPEG standard. The primary aim of the JPEG standard
is to propose an image compression algorithm that would
be application independent and aid VLSI implementation
of data compression [9].

0018-9219/95$04.00 © 1995 IEEE

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 2, FEBRUARY 1995

247

8
3

A DC=DC DC

From

zig-zag AC AC, AC,

Fig. 3. Reordering of DCT output.

In this paper, we propose an efficient single chip VLSI
architecture for implementing the JPEG baseline compres-
sion standard algorithm. The architecture fully exploits
the principles of pipelining and parallelism to achieve
high speed and throughput. The JPEG baseline algorithm
consists mainly of two parts: 1) Discrete Cosine Transform
(DCT) computation and 2) Entropy encoding. The hardware
architecture for DCT is based on a modification of the
algorithm proposed in [21] for reduction in computation.
The entropy encoding part consists of runlength encoding
followed by Huffman encoding. The architecture for en-
tropy encoding is based on a hardware algorithm designed
to yield maximum throughput and clock speed.

The paper is organized as follows. An outline of the
JPEG compression standard is given in Section IL. Section
III describes briefly related work on the implementation of
the JPEG standard. The proposed system architecture is dis-
cussed in Section IV. The design of specific algorithms and
their mapping onto efficient hardware architectures for each
component of the JPEG standard are described in Sections
V and VI. Conclusions are provided in Section VIL

II. OUTLINE OF THE JPEG COMPRESSION STANDARD

The basic model for the JPEG encoder is shown in Fig. 1.
The encoder model transforms the input image into an
abstract representation more suitable for further processing.
The encoder model may require parameters stored in some
model tables for achieving this transformation. The entropy
encoder is a compression procedure which converts the
output of the encoder model into a compressed form. Also,
the entropy encoder may use tables for storing the entropy
codes. Four distinct coding processes were derived based
on the above described JPEG model: 1) baseline process,
2) extended DCT-based process, 3) lossless process, and 4)
hierarchical process.

The baseline and the extended processes are also known
as DCT-based processes since they use DCT within the
encoder model. The lossless process uses prediction based
methods within the encoder model. The hierarchical process
uses the encoder model from the extended process or
the lossless process. The baseline process uses Huffman
codes for entropy encoding while the other three processes
use either Huffman or arithmetic. Since the focus of this
paper is on VLSI implementation of the baseline process,
we describe the baseline process in detail in the rest
of this section. For a complete overview of the JPEG

248

standard and the various processes, the reader is referred
to [7]-[10].

The encoder model for the baseline process is shown
in Fig. 2. The input image is divided into nonoverlapping
blocks of 8 x 8 pixels and input to the baseline encoder.
The pixel values are converted from unsigned integer
format to signed integer format and DCT computation is
performed on each block. DCT transforms the pixel data
into a block of spatial frequencies that are called the DCT
coefficients. Since the pixels in the 8 x 8 neighborhood
typically have small variations in gray levels, the output of
DCT will result in most of the block energy being stored in
the lower spatial frequencies. On the other hand, the higher
frequencies will have values equal to or close to zero and
hence, can be ignored during encoding without significantly
affecting the image quality. The selection of frequencies
based on which frequencies are more important and which
ones are less important can affect the quality of the final
image. JPEG allows for this by letting the user predefine the
quantization tables used in the quantization step that follows
the DCT computation. The selection of quantization values
is critical since it affects both the compression efficiency
and the reconstructed image quality.

The block of DCT coefficients output by the encoder
model is rearranged into one dimensional data using zigzag
reordering as shown in Fig. 3. The location (0, 0) of each
block ¢ contains the DC coefficient for the block represented
as DC;. This DC coefficient is replaced by the value ADC;
which is the difference between the DC coefficients of block
¢ and block ¢z — 1. Since the pixels of adjacent blocks
are likely to have similar average energy levels only the
difference between the current and previous DC coefficients
is used, which is commonly known as differential pulse
code modulation (DPCM) technique. It should be noted
that the high frequency coefficients that are more likely to
be zeroes get grouped at the end of the one dimensional
data due to the zigzag reordering.

The entropy encoder details are shown in Fig. 4. The
entropy encoder uses variable length encoding based on a
statistical model in order to encode the rearranged DCT
coefficients. In the entropy encoder the quantized DCT
coefficients are converted into a stream of [runlength count,
category] pairs. For each pair, there is a corresponding
variable length Huffman code which will be used by the
Huffman encoder to perform the compression. The Huffman
codes are stored in a table. A detailed description of the

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 2, FEBRUARY 1995

T i

T

Fig. 4. JPEG baseline entropy encoder.

various steps in the entropy encoder is given later in
Section VI.

In order to achieve better compression results, very
often, input images are transformed to a different color
space (or color coordinates) representation before being
input to the encoder. Although the JPEG algorithm is
unaffected by the color, since it processes each color
independently, it has been shown that by changing the
color space, the compression ratio can be significantly
improved. This is due to the perception of the human
visual system and the less perfect characteristics of the
display devices. One of the most appropriate color spaces
for the JPEG algorithm has been shown to be YCbCr,
where Y is the luminance component and Cb and Cr are
the two chrominance components. Since the luminance
component carries much more information compared to the
chrominance components, JPEG allows different tables to
be used during compression. For additional information on
how color could affect compression the reader is referred

to [1]-[6].

III. RELATED WORK

The JPEG baseline compression standard uses DCT and
the Huffman entropy coding method for achieving com-
pression. Due to the wide spectrum of applications in which
DCT is used, several researchers have worked on this topic
resulting in a vast amount of literature. Similarly, there
exist different software and hardware approaches towards
the implementation of Huffman coding. Since it is difficult
to cover the entire work in the literature, we only provide
a brief outline and pointers to some of the important
contributions in this section.

It should be noted that two-dimensional DCT compu-
tation can be implemented as a sequence of two one-
dimensional DCT’s which is commonly referred to as the
separability property. This approach is simpler to imple-
ment in hardware. It was shown by Haralick [24] that the
DCT of N points can be computed using two IN-point
FFT’s by exploiting the symmetry of the inputs. Later,
‘Tseng and Miller [25] showed that the DCT can be obtained
more efficiently by just computing the real part of the first
N coefficients of the 2N-point DFT. The computation of
8-point DCT needed for JPEG can be replaced by 16-
point DFT computation followed by scaling. An optimum
form for 16-point DFT was developed by Winograd [27].
Arai, Agui, and Nakagima adapted Winograd’s solution
for 8-point DCT reducing the computation by using the

symmetry property [21]. The hardware implementation of
one-dimensional scaled DCT in our proposed architecture is
based on the algorithm by Arai et al. [21]. Their computa-
tional flowgraph requires 5 multiplications, 29 additions and
16 two’s complement operations (referred as multiplications
by -1 by Arai et al. [21]). In the next section, we describe
a modification to this algorithm that reduces the number of
two’s complement operations required from 16 to 12. Due
to the extensive use of DCT in various applications that
demand real time processing, numerous VLSI chips have
been designed and built by both university and industry.
For a compiled list of the different VLSI chips and their
performance, the reader is referred to [20].

A class of VLSI architectures has been proposed for data
transformation of tree based codes including the Huffman
codes in [44]. Their algorithms use the principle of propa-
gation of a token in a reversed binary tree constructed from
the original Huffman codes. Thus the algorithms map to
tree based architectures. Several other architectures have
been proposed in the literature for implementing static
compression techniques in [45], [46]. The codes are fixed
prior to the implementation and can not be changed later
on which is a disadvantage with the static schemes. A
few other VLSI architectures for implementing VLC coders
using sequential and concurrent VLSI models are described
in [47]-[50]. In the architecture described in this paper the
Huffman codes are stored in RAM modules so that the
codes can be changed depending on the application.

Recently, a few special purpose VLSI chips implement-
ing the JPEG baseline compression standard have been
built and successfully commercialized. The Intel’s i750
video processor [39], [40] consists of two chips, the 82
750PB pixel processor and the 82 750DB display processor.
The pixel processor can be programmed to implement the
JPEG compression standard. The C-CUBE CLS550 is a
single chip processor for JPEG image compression and
decompression [38]. The core of the chip is a compres-
sion/decompression unit which consists of the FDCT/IDCT,
the quantizer, the run-length encoder/decoder and the Huff-
man encoder/decoder. The chip can operate at up to 35
MHz. The chip can draw data at rates up to 17.5 million
pixels per second and produce compressed data at a rate
of approximately 2 million bytes per second. Since the
entropy encoder in the chip operates at a slower speed than
the DCT module a FIFO buffer is used between the two
modules to avoid overflow during compression. Whenever
the amount of data in the buffer reaches a certain level a
delay signal is generated which stalls the DCT computation
as well as the data input to the system. LSI Logic announced
a chipset for JPEG compression that consists of 164735
DCT processor, 1L.64745 JPEG coder and L74765 color
and raster-block converter [41]. The chipset operates at
maximum rate of 35 MHz and processes still image data at
up to 30 million bytes per second. LSI Logic s JPEG chipset
is described in [51]. In July 1993, LSI Logic announced a
single chip JPEG coprocessor L64702 designed for graphics
and video applications in personal computers, engineering
workstations and laser printers [42]. The chip is capable

KOVAC AND RANGANATHAN: JAGUAR: A FULLY PIPELINED VLSI ARCHITECTURE 249

1l

—_

Huffmen
tables [

e e e e — e e —— — i —— — a— —— —— —— — o— — —

Fig. 5. JAGUAR architecture.

of compressing and decompressing data at rates up to 8.25
million bytes per second with an operating frequency of
33 MHz.

The fact that there does not exist any paper in the
literature that describes the complete architecture for im-
plementing the JPEG standard was the initial motivation
for our work. From the information available on the few
commercial chips described above, it was clear that we
can achieve much better speeds by designing a linear
static pipeline architecture with no global communication or
global control logic. Such an architecture is advantageous
in that higher clock speeds can be easily obtained by
decreasing the granularity of processing in each stage. In
other words, the clock period can be reduced by subdividing
the critical delay path into smaller slices or stages.

In this paper, we propose a fully pipelined VLSI archi-
tecture for implementing the JPEG baseline compression
standard. The architecture does not require any global
communication or global control logic. Thus, the entire
architecture can be sliced into thin stages resulting in
a small clock period. The architecture for DCT and for
category selection and Huffman coding in the entropy
encoder are based on the efficient algorithm that lead to high
speed VLSI implementation. With the architecture proposed
in this paper, it is possible to obtain data compression rates
of 100 million bytes per second or more.

IV. JAGUAR: JPEG VLSI ARCHITECTURE

The system architecture of JAGUAR, the JPEG baseline
compression chip is shown in Fig. 5. The entire architecture

250

Fig. 6. DCT module.

is organized as a linear multistage pipeline in order to
achieve high throughput. The hardware organization shown
in Fig. 5 reflects the sequence of computation in the JPEG
baseline process. The architecture consists of: 1) Encoder
model and 2) Entropy encoder. The encoder model consists
of DCT module, quantization module and reordering logic.
The entropy encoder consists of several modules such as
zero-runlength encoder, category selection circuit, Huffman
encoder and data packer. The image to be compressed is
input to the architecture at the rate of one pixel per clock
cycle. The input data is processed by the various modules
in a linear fashion where each module itself is organized
internally as a multistage linear pipe. The compressed data
is output by the system at a variable rate depending on
the amount of compression achieved. The design of each
module is described in detail in the rest of the section.

V. ENCODER MODEL

The encoder model consists of: 1) DCT module, 2)
quantization module, and 3) zigzag reordering buffer. These
modules are described in the rest of this section.

A. DCT Module

The DCT module shown in Fig. 6 consists of a level
shifter, two DCT circuits and a transpose buffer. As men-
tioned in Section II, the scaled two-dimensional DCT com-
putation can be separated into two one-dimensional DCT
operations and each one-dimensional DCT can be imple-
mented by using modified DFT. The first DCT computation
is performed row-wise and the second DCT computation is
performed column-wise.

The main features of the proposed DCT module is as
follows. The DCT module is based on an algorithm that
reduces the number of two s complement operations from

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 2, FEBRUARY 1995

M

16 to 12. The basic goal was to arrive at a design that is a
multistage linear static pipeline with a small clock period.
It was found that the 16-b multiplier required for the DCT
computation can be reduced to a 10 x 13-b multiplier
by actually examining the values of the weights and the
coefficients specific for JPEG implementation. This was
further verified through extensive simulations. Since the
research on DCT circuits is rich and mature, the description
of the DCT module design is limited only to cover the
requirements for JPEG implementation.

B. DCT Algorithm

The algorithm proposed by Arai et al. [21] requires 5
multiplications, 29 additions and 16 two’s complement
additions. The algorithm is modified here in order to reduce
the number of two’s complement operations from 16 to 12,
besides the same number of multiplications and additions.
The modified algorithm is stated below:

Step 1:
bp =ap+a7; by =a1+as b2 =az—ag;
b3 =a1 —as; by=ax+as; bs=az+ay;

be = az —as; by =ao—ar;

Step 2:

co =bo+b5; 1 =01 — by;

ca =by +bg; c3 = b1+ by;

ca=bg—bs; cs=bz+by; ce=bs+bs; cr=br;
Step 3:

do=co+c3; dy=co—cs;
dy=cy—cs5; ds =cy;

dy=co dz=c1+cy
de = cs; d7 = cg;

dg = c7;
Step 4:
eo = do; e1 =dy; es =m3xdy; es = mlxdy;

ea=midxdg es=ds; eg=mlxds; e =m2xdy;
eg = dg;

Step 5:
fo=eo; fi=e1; fa=e5+eq;
fa=es—es fa=e3z+es; fs=es—es;
fe=ea+er, fi=es+er;

Step 6:

So=fo; Si=fatfr; Se=fo; Sz3=f5s— fe;
Sa=fi; Ss=fs+fe; Se=1Ffs; Sv=fa— fr;

where:

a; input elements (0 < i < 7)

S; scaled DFT coefficients (0 < i < 7)

m; fixed multipliers: m1 = cos(4#/16); m2 = cos(67/16);
m3 = cos(2716) — cos(6716); m4 = cos(2716) + cos(6716).

C. DCT Circuit Architecture

The circuit architecture for DCT computation is shown
in Fig. 7. The circuit consists of six partitions as shown
in the figure. Each partition contains a register set (RS)
and an arithmetic unit with some associated control logic.
Each register set consists of two columns of eight registers
each except for the columns RS-d and RS-e which have
nine registers per column. The circuit accepts one pixel
per clock cycle and the entire processing is performed as
a linear pipe. The algorithm described in Section V-B
is mapped directly onto the architecture such that each
step in the algorithm corresponds to a partition in the
architecture. When the left column of register set RS-a is
filled with eight data elements, the entire column is copied
onto the corresponding registers in the right column. As
the adder logic performs the computations as in Step 1 of
the algorithm, the left column keeps receiving new input
data. A similar process occurs in each of the partitions
simultaneously. It takes eight clock cycles to complete all
the computations in Step 1 which is the same number of
cycles needed for filling up the left column. The adders
are single stage units while the 13 x 10-b multiplier is a
six stage Wallace tree multiplier. It will be later seen that
the worst case critical path for the entire chip is the 14-b
addition in the DCT computation. The DCT circuit has a
latency of 59 clock cycles computed as 9 cycles per stage
for all the stages except for the stage with the multiplier
that requires 14 cycles. The same module is replicated for
column-wise DCT computation. It should be noted that a
VLSI architecture for computing DCT with a latency of
less than 100 cycles has been proposed in [52].

D. Transpose Buffer

The transpose buffer is shown in Fig. 8. The buffer
consists of an 8 x 8 array of register pairs organized as
shown in figure. The data is input to the transpose buffer
in row-wise fashion until all the 64 registers are loaded.
The data in those registers are copied in parallel onto the
corresponding adjacent registers which are connected in
column-wise fashion. While the data is being read out from
the column registers, the row registers will keep receiving
further data from the DCT module. Thus, the output of
row-wise DCT computation is transposed for column-wise
DCT computation. The transpose buffer has a latency of
64 clock cycles.

E. Quantization Module

The quantization module is shown in Fig. 9. It consists of
a RAM to store the quantization table and a 16-b multiplier.
The output of DCT needs to be scaled which is done by
multiplying each coefficient with the predefined scaling
factor [7]. The quantization step in the JPEG algorithm
involves multiplying the output of DCT with a set of
predefined values from a quantization table. Since both the
above steps involve multiplication the two steps are merged
into a single multiplication step by suitably combining the
scaling and the quantization parameters. The latency of the

KOVAC AND RANGANATHAN: JAGUAR: A FULLY PIPELINED VLSI ARCHITECTURE 251

[Tl

l...l 9

A S

WY

Fig. 7. One dimensional DCT circuit.

7N

R
Rk

s

L

Fig. 8. Transpose buffer.

quantization module is six clock cycles which equals the
number of stages in the multiplier.

F. Zigzag Reordering Buffer

Each block of data that is output by the quantization
module needs to be reordered in a zigzag fashion before
being forwarded to the entropy encoder. This reordering is

252

—s,.8,

DCT coeff,

Q
logi tables
ogic

Fig. 9. Quantization module.

achieved by using an 8 x 8 array of register pairs organized
in a fashion similar to the transpose buffer.

VI. ENTROPY ENCODER

The function of the entropy encoder is to code the quan-
tized coefficients from the encoder model using variable
length encoding. The architecture of the entropy encoder is
shown in Fig. 10. As can be seen in the figure, the entropy
encoder consists of 1) zero-runlength coder, 2) category
selection circuit, 3) strip logic, 4) Huffman encoder, and 5)
data packer. Each block of quantized pixel data consists of
one DC coefficient followed by 63 AC coefficients.

The main intention behind the design of the entropy
encoder is to achieve a linear pipe with a small clock period

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 2, FEBRUARY 1995

m

RUNLEN RUNLEN RUNLEN CATEG.
CATEG. CATBG.
= — —
H-LEN.
DC \ DC \ nc
AC 3 [AC < AL
B8 J [BOB___ <
| P& s
| 7
 Zero- Category Strip Huffinan Data
runlength gelection logic encoder packer
coder circuit
Fig. 10. Entropy encoding logic.
for each stage. In the JPEG chip described in [38], the Table 1 JPEG Category Definitions [7]
entropy encoder operates at a slower speed than the DCT Cat. | DC difference AC coeff
module which in turn decreases the overall compression
. . 0 0
rate possible. In the proposed design, the entropy encoder
consumes input data at the same rate as the DCT module. 1 -1, 1 -1,1
This is achieved by carefully designing the data packer 5 4223 3223
which produces output at a variable rate depending on the i N
amount of compression. 3 7.-4,4.-7 74,47
The various steps of the entropy encoder algorithm are 4 158 815 | 4s5...8.8..15
briefly outlined as follows. The first step is to calculate . .
ADC which is the difference between the current DC coef- 5 -31----16, 16---31 -31----16, 1631
ficient and the I?C coefﬁc‘ient of the previous block. ,'.\lso, 6 6332, 32 .63 6332, 32.- 63
the JPEG algorithm requires that the DC/AC cocfficients
are decremented by one if the sign of the coefficient is 7 | -127----64, 64---127 -127 - -64, 64- - 127
negative. The next step is to extract the zero-runlength 8 255- 128, 128- - 255 255..--128, 128- - -255

count from the stream of the AC coefficients within that
block. The block data is thus converted into a stream of AC
coefficients with an associated count value indicating the
number of zeros preceding that coefficient. The runlength
count is represented as a 4-b field. When the runlength is
greater than 16, two special symbols, ZRL and EOB are
used to code the data depending on certain conditions. A
zero-runlength symbol ZRL (represented in JPEG as F/0) is
inserted within the data whenever a runlength of 16 zeros
is encountered. The end-of-block symbol EOB (represented
in JPEG as 0/0) is inserted whenever it is detected that the
rest of the AC coefficients until the end of the block are
zeros. A 4-b status field is generated corresponding to each
coefficient which indicates if the data being output is a DC
or AC coefficient, ZRL or EOB symbol. The above steps
are performed within the zero-runlength coder.

Within the category selection circuit, each DC and AC
coefficient is associated with a corresponding category de-
pending on the magnitude of the coefficient. The definition
of categories as defined by the JPEG standard is shown in
Table 1. Each element in the stream of data coming out
of the category selection unit consists of coefficients, the
corresponding category, the runlength count and the four-bit
status. It should be noted that the data stream still contains
all 64 coefficients including the streaks of zero coefficients

9 -511- - --256, 256- - -511 -511- - --256, 256- - -511

10 -1023. .--512, 512- - -1023 -1023. - --512, 512- - -1023

11 -2047- - --1024, 1024- - -2047

which have been encoded as zero runlength counts. Also if
an EOB symbol follows one or more ZRL symbols within
the data stream the ZRL symbols are redundant and must
be stripped off the data stream. The above functions are

‘performed within the strip logic.

During the next step, each data element consisting of
(AC/DC coefficient, runlength count, category, status) out-
put by the strip logic is converted into a correspond-
ing element: (AC/DC coefficient, .category, Huffman code,
Huffman code length). The Huffman code is selected based
on the runlength count, category and status fields. The
set of Huffman codes are prestored in a table and can
be changed depending on the application. The category
and the Huffman code length fields are used in the data
packer unit to pack the variable length compressed data
(comprised of DC/AC coefficient and the Huffman code)
into a stream of fixed length compressed data units to
be output by the compression chip. The implementation

KOVAC AND RANGANATHAN: JAGUAR: A FULLY PIPELINED VLSI ARCHITECTURE 253

m

h&?—% coefficients
S—

DC/AC

zero-runlength
> DC
>AC
> EOB
> ZRL

B : subtractor |

Fig. 11. Zero-runlength coder.

of each module within the entropy encoder architecture is
described below.

A. Zero-Runlength Coder

The zero-runlength coder module performs the functions
as described in the earlier part of this section. The module
consists of three stages and thus a latency of three cycles.
The first stage consists of logic for computing ADC while
the second stage derives the runlength count and the third
stage is used for decrementing negative coefficients. The
various stages of the zero-runlength coder are shown in
Fig. 11.

B. Category Selection Circuit

The category selection is defined in the JPEG com-
pression standard as shown in Table 1. A straightforward
implementation of category selection would require storing
the ranges in memory and comparing the input data with
those prestored values which requires complex address
decoding and control logic. However, the table memory can
be avoided and the entire category selection can be achieved
with a simple combinational circuit. This circuit operates
like an encoder which converts the given coefficient into the
corresponding category in a single clock cycle. The circuit
is given in Fig 12. However, it should be noted that the
negative coefficients must be decremented by one before
applying the conversion logic as per the JPEG standard.

C. Strip Logic

The strip logic shown in Fig. 13 consists of four stages.
Each stage has three registers to hold the coefficient,
runlength count and category fields corresponding to a data
element output by the category selection circuit and a set
of one-bit registers to hold the corresponding status. The
status bits are decoded and used to strip the zero-valued
coefficients and also to strip off the ZRL symbols that
precede an EOB symbol. It should be noted that there
could be a maximum of three ZRL symbols preceding an

254

EOB symbol. The strip logic acts as a four stage buffer
through which the compressed data elements after the
removal of zero coefficients travel before being forwarded
to the Huffman encoder. The valid bit signal is set to high
whenever valid data is being output by the strip logic for
Huffman encoding. It should be noted that the ZRL bit
needs to be reset whenever a ZRL symbol has been deleted
from the data stream.

D. Huffman Encoder Module

The Huffman encoder module consists of Huffman code
tables stored in random access memory modules and logic
for replacing the category, runlength count pairs with the
corresponding Huffman codes. Although the size of the DC
coefficient code table is small, the code table storage for AC
coefficients is relatively large. In order to keep the clock
period small the memory for the code tables is organized
as a set of five RAM modules arranged in a linear pipeline
fashion. The idea is to reduce the access time by keeping
the memory size small. The table is accessed by using
the runlength, category pair for addressing. The input data
passes through each of the five stages and depending on
the address the corresponding Huffman code and the code
length are output. The hardware organization is shown in
Fig. 14 which is self explanatory.

E. Data Packer

The data packer unit shown in Fig. 15 is used to convert
variable length compressed data into fixed length com-
pressed data stream. The logic consists of registers A and
B,-two left-shift units, two multiplexers and control logic
which includes two registers A-length and B-length. The
data packer works as follows. The Huffman code is first
loaded into register A left justified. Depending on the length
of the Huffman code, the coefficient is loaded through a
multiplexer into register A, bit-aligned with the Huffman
code. It should be noted that the total length of the Huffman
code and the coefficient cannot exceed 26 bits and the

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 2, FEBRUARY 1995

Ll

Fig. 12. Category selection circuit.

COEFF.
N
) CATEG. [N > >
RUNLEN
Load | 1, load Valid
control |~ > s
DC DC DC DC}—— 5 DC
4, AC 4 JAC 4, JAC 4 [AC}—— ac
i EOB 7 “EoB 7 ‘|eoB 7 “|eOB}———> EOB
ZRL ZRL ZRL ZRL ——> ZRL
{ ZRL modifier logic |
Fig. 13. Strip logic.
length information is loaded into the A-length register. The which are in turn controlled by the values in the A-length
data in register A is loaded through a left shifter unit and and the B-length registers. Whenever register B has more
a multiplexer into register B. The loading of new data into than 32 b of information which is indicated by the B-length

register B is controlled using the shifter and the multiplexer register value a 32-b compressed data is output. A similar

KOVAC AND RANGANATHAN: JAGUAR: A FULLY PIPELINED VLSI ARCHITECTURE 255

L ’ I

—_—

16x20 64x20
Addrees Addross
logic logic

N
N7

[] N
rd
19 |runlen 4 R
e H =T
coefficient
+ >
AC _L 1
EOB — L L]
L J*
N1} AN
w P 7
Vaid 7 7 ,
Fig. 14. Huffman encoder.
Huffman

Huffman code

coefficient

code len. category

[] A-length
e
—
:ts:] :FZG
L reg B 1| [] Brlength
32
Compressed data

Fig. 15. Data packer.

logic can be used for byte-stuffing required by the JPEG
standard.

VII. CONCLUSIONS

The proposed VLSI architecture was simulated and ver-
ified for functional correctness using Verilog and Veritime.
The entire architecture is organized as a linear multistage

256

AC3
64x20
Address
logic
LI Y 9// ll
4 Huff. code
:>_—7‘-) length
- 16, Huffman
<> chlggoty
n .
> coefficient
1
: Valid
-T————) signal

pipeline. Thus the clock period can be reduced by increas-
ing the level of fine grain parallelism. Since the entire
architecture requires only a few major components such as
three 13 x 10-b multipliers, a few adders and small random
access memory modules, the architecture can be realized as
a single VLSI chip. A prototype VLSI chip implementing a
part of the proposed architecture (for the one-dimensional
DCT) designed using 2-um CMOS technology and the
Cadence design tools has been submitted to MOSIS for
fabrication. The circuit was fit on a 6.8 mm X 6.9 mm
MOSIS standard frame. While the implementation of the
entire architecture would be expensive to fabricate, it was
decided to prototype the DCT portion of the circuit that
contains the worst case delay critical path for the proposed
architecture. The details of the prototype implementation
are omitted since the chip is currently still under fabrication.
Based on the prototype chip implementation, it is estimated
that the entire JPEG chip can be implemented on a silicon
area of 12 mm x 14 mm. For the architecture described in
this paper, the critical path of the chip depends on a 14-
b adder circuit which can be easily achieved with a 10 ns
clock period using 1 pm CMOS process. It should be noted
that the 14-b addition can be done in two clock cycles with
the use of two 7-b adders organized in two stages if a faster
clock is required. Thus the proposed chip can function with
an operating frequency of 100 MHz. This would allow an
input rate of 100 million pixels per second leading to a rate
of 30 frames per second for 1024 X 1024 color images.

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 2, FEBRUARY 1995

—

REFERENCES

(1]
[21

(B3
(4]
151
(6]
[71
(8

9
[10]

{11]
[12]

{13]

[14]

[15]

{16]

[17]

(18]
[19]
[20]
[21]

[22]
(23}

[24]

[25]

[26]

27

[28]
[29]

[30]

R. W. G. Hunt, Measuring Color. New York: Halsted, 1987.
A. N. Netravali and B. G.Haskell, Digital Pictures, Represen-
tation and Compression. New York: Plenum, 1988.

1. D. Foley et al., Computer Graphics. New York: Addison
Wesley, 1992.

R. Salmon and M. Slater, Computer Graphics.
Addison-Wesley, 1987.

D. R. Clark, Computers for Imagemaking. Oxford, UK: Perg-
amon.

D. Travis, Effective Color Displays.
1991.

ISO/IEC, Int. Standard DIS 10918, “Digital compression and
coding of continuous-tone still images. ”

W. B. Pennebaker and J. L. Mitchell, JPEG Still Image Data
Compression Standard. New York: Van Nostrand Reinhold,
1993.

G. K. Wallace, “The JPEG still picture compression standard,”
CACM, vol. 34, no. 4, pp. 31-44, 1991.

A. Leger, T. Omachi, and G. K. Wallace, “JPEG still picture
compression algorithm,” Optical Engineering, vol. 30, no. 7,
pp. 947-954, 1991.

M. Rabbani and P. W. Jones, Digital Image Compression
Techniques. Washington: SPIE Press, 1991.

H. Lohscheller and U. Franke, “Colour picture
coding—Algorithm optimization and technical realization,”
Frequenz, vol. 41, no. 11/12, pp. 291-299, 1987.

M. L. Liou and T. R. Hsing, “An overview for video signal
processing,” IEEE Symp. Circuits and Systems, Philadelphia,
PA, pp. 208-212, May 1987.

J. L. Mitchell and W. B. Pennebaker, “Envolving JPEG color
data compression standards,” Standards for Electronic Imaging
Systems, SPIE, vol. CR37, pp. 68-97, 1991.

G. Wallace, R. Vivian, and H. Poulsen, “Subjective testing
results for still picture compression algorithms for international
standardization,” Proc. IEEE Global Telecomm. Conf., Holly-
wood, pp. 1022-1027, Nov/Dec. 1988.

A. Leger, J. L. Mitchell, and Y. Yamazaki, “Still picture
compression algorithms evaluated for international standard-
ization,” Proc. IEEE Global Telecomm. Conf., Hollywood, pp.
1028-1032, Nov./Dec. 1988.

G. P. Hudson, H. Yasuda, and I. Sebestyen, “The international
standardization of a still picture compression technique,” Proc.
IEEE Global Telecomm. Conf., Hollywood, pp. 1016-1021,
Nov./Dec. 1988.

P.H. Ang, P. A. Ruetz, and D. Auld, “Video compression makes
big gains,” IEEE Spectrum, pp. 16-19, Oct. 1991.

A. K. Jain, “Image data compression: A review,” Proc. IEEE,
vol. 69, no. 3, pp. 349-389, 1981.

K. R. Rao and P. Yip, Discrete Cosine Transform. San Diego,
CA: Academic, 1990.

Y. Arai, T. Agui, and M. Nakajima, “A fast DCT-SQ scheme
for images,” Trans. IEICE, vol. E71, no. 11, pp. 1095-1097,
1988.

E. C. Ifeachor and B. W. Jervis, Digital Signal Processing.
New York: Addison Wesley, 1993.

H. Lohscheller, “Vision adapted progressive image transmis-
sion,” Signal Processing I, H. W. Schussler, Ed. Amsterdam:
North-Holland, 1983, pp. 191-194.

R. M. Haralick, “A storage efficent way to implement the
discrete cosine transform,” IEEE Trans. Comp., vol. C-25, pp.
764-765, July 1976.

B. D. Tseng and W. C. Miller, “On computing discrete cosine
transform,” IEEE Trans. Comp. vol. C-27, no. 10, pp. 966-968,
1978.

H. F. Silverman, “An introduction to programming the winograd
fourier transform algorithm (WFTA),” IEEE Trans. ASSP, vol.
ASSP-25, no. 2, pp. 152-165, 1977. '

S. Winograd, “On computing the discrete fouriere transform,”
Mathematics of Computation, vol. 32, no. 141, pp. 175-199,
1978.

“IEEE standard specifications for the implementations of 8 X
8 inverse discrete cosine transform,” IEEE Std, pp. 1180-1990.
E. Linzer and E. Feig, “New scaled DCT algorithms for fused
multiply/add architectures,” ICASSP, Toronto, pp. 2201-2204,
May 1991.

E. Feig, “A fast scaled-DCT algorithm,” Proc. SPIE, Santa
Clara, CA, vol. 1224, pp. 2-13, Feb. 1990.

New York:

San Diego: Academic,

[31]

[32]

[33]

[34]

£35]

[36]

[37)
[38]
[39]
{40]
[41]
[42]
[43]
[44]

[45]

[46]
[47]

[48]

[49]
{501

(513

[52]

H. A. Peterson, H. Peng, J. H. Morgan, and W. B. Pennabaker,
“Quantization of color image components in the DCT domain,”
Proc. SPIE, pp. 210-222, Feb. 1991.

M. Vetterly and H. J. Nussbaumer, “Simple FFT and DCT algo-
rithms with reduced number of operations,” Signal Processing,
vol. 6, pp. 267-278, 1984.

W. Chen, C. H. Smith, and S. C. Fralick, “A fast computa-
tional agorithm for the discrete cosine transform,” IEEE Trans.
Communications, vol. COM-25, no. 9, pp. 1004-1009, 1977.
P. Duhamel and C. Guillemot, “Polynomial transform com-
putation of the 2-D DCT,” Proc. ICASSP, Albuquerque, pp.
1515-1518, Apr. 1990.

A. Lightenberg and J. H. O’Neill, “A single chip solution for
an 8 x 8 two dimensional DCT,” Proc. IEEE Symp. Circuits
and Systems, Philadelphia, pp. 1128-1131, May 1987.

L. McMillan and Lee Westover, “A forward mapping real-
ization of the inverse discrete cosine transform,” Proc. Data
Compression Conference, Snowbird, pp. 219-228, Mar. 1992.
N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine
transform,” IEEE Trans. Comp., vol. C-23, pp. 90-93, 1974.
CL550 Users Manual, C-Cube Microsystems, Milpitas, CA,
1992.

82750PB Pixel Processor darabook, INTEL, Santa Clara, CA,
Oct. 1993.

82750DB Display Processor databook, INTEL, Santa Clara,
CA, Sept. 1993.

JPEG Chipset Technical Manual, LSI Logic, Milpitas, CA, Jan.
1993.

L64702 JPEG Coprocessor Technical Manual, LSI Logic, Mil-
pitas, CA, July 1993.

N. Ranganathan, VLSI Algorithms and Architectures, IEEE
Comp. Soc. Press, Los Alamitos, 1993.

A. Mukherjee, N. Ranganathan, and M. Bassiouni, “Efficient
VLSI designs for data transformations of tree-based codes,”
IEEE Trans. Cir. Sys., vol. 38, pp. 306314, Mar. 1991.

A. Mukherjee, N. Ranganathan, J. W. Flieder, and T. Acharya,
“MARVLE: A VLSI chip for data compression using tree-based
codes,” IEEE Trans. VLSI Syst., vol. 1, pp. 203-214, June 1993.
M. T. Sun, “VLSI architecture and implementation of high
speed entropy decoder,” Proc. ISCS, pp. 200-202, 1991.

M. T. Sun, K. M. Yang, and K. H. Tzou, “A high speed
programmable VLSI for decoding variable length codes,” Proc.
SPIE, vol. 1153, Aug. 1989.

S. F. Chang and D. G. Messerschmitt, “Designing high through-
put VLC decoder: Part I—Concurrent VLSI architectures,”
IEEE Trans. Circ. and Sys. for Video Tech., June 1992.

J. L. Sicre and A. Leger, “Silicon complexity of VLC decoder
vs. Q-coder,” CCITT Feb. 1989.

M. T. Sun and S. M. Lei, “A parallel VLC decoder for advanced
television applications,” Proc 3rd Int. Workshop on HDTV, Aug.
1989. '

D. A. Luthi, P. Tong, and P.A. Ruetz, “A video-rate JPEG chip
set,” IEEE 1992 Custom Integrated Circuits Conf., May 1992.
M. Maruyama et al., “VLSI architecture and implementation
of a multi-function, forward/inverse discrete cosine transform
processor,” SPIE vol. 1360, Visual Communications and Image
Processing 90, pp. 410417, 1990.

Mario Kovac received the B.S. and M.S. de-
grees in computer science and engineering from
the Faculty of Electrical Engineering, University
of Zagreb, Croatia, in 1988 and 1991, respec-
tively, where he is working towards the Ph.D.
degree.

He has been on the faculty of the University
of Zagreb since 1989 and is currently holding a
scientific assistant position. During 1990, 1991,
and 1993, he was a visiting Research Scholar
at the University of South Florida, Tampa. His

research interests include computer architecture, parallel processing, VLSI
and implementation of algorithms and architectures in hardware (on both
PCB and chip level).

KOVAC AND RANGANATHAN: JAGUAR: A FULLY PIPELINED VLSI ARCHITECTURE

—_—

. 257

—

N. Ranganathan (Senior Member, IEEE) was
born in Tiruvaiyaru, India, in 1961. He re-
ceived the B.E. (honors) degree in electrical
and electronics engineering from the Regional
Engineering College, Tiruchirapalli, University
of Madras, India, in 1983 and the Ph.D. degree
in Computer Science from the University of
Central Florida, Orlando, FL, in 1988.

He is currently an Associate Professor in
the Department of Computer Science and En-
gineering and the Center for Microelectronics
Research at the University of South Florida, Tampa. His teaching and
research interests include VLSI design and hardware algorithms, computer
architecture and parallel processing. He is currently involved in the design
and implementation of VLSI architectures for computer vision, image
processing, pattern recognition, databases, data compression, and signal
processing applications.

Dr. Ranganathan is a member of the IEEE Computer Society, the
IEEE Computer Society Technical Committee on VLSI, the ACM and
the VLSI Society of India. He served as the Program Co-Chair for VLSI
Design ‘94 and the General Co-Chair for VLSI Design ‘95. He is also on
the Program Committees of ICCD, ICPP’95 and IPPS ‘95, IEEE SPDP
(‘95), and ICHP (‘95). He is the Program Chair for the IEEE Computer
Society Annual Workshop on VLSI, April 1995, to be held in Clearwater,
FL. He serves on the editorial boards of Pattern Recognition and VLSI
Design. He is the guest editor of a special issue of International Journal of
Pattern Recognition and Artificial Intelligence (IJPRAI) to be published
in 1995. He is the editor of a two-volume series on VLSI Algorithms and
Architectures published by IEEECS Press in June 1993.

258 . PROCEEDINGS OF THE IEEE, VOL. 83, NO. 2, FEBRUARY 1995

r ' i |

